Уравнения онлайн. Уравнение - что такое? Определение термина, примеры

Что такое уравнение?










Тем, кто делает первые шаги в алгебре, конечно, требуется максимально упорядоченная подача материала. Поэтому в нашей статье о том, что такое уравнение, мы не только дадим определение, но и приведём различные классификации уравнений с примерами.

Что такое уравнение: общие понятия

Итак, уравнение — это вид равенства с неизвестным, обозначаемым латинской буквой. При этом числовое значение данной буквы, позволяющее получить верное равенство, называется корнем уравнения.Более подробно об этом вы можете прочитать в нашей статье , мы же продолжим разговор о самих уравнениях. Аргументами уравнения (или переменными) называются неизвестные, а решением уравнения называется нахождение всех его корней либо отсутствия корней.

Виды уравнений

Уравнения подразделяются на две большие группы: алгебраические и трансцендентные.

  • Алгебраическим называется такое уравнение, в котором для нахождения корня уравнения используются только алгебраические действия - 4 арифметических, а также возведение в степень и извлечение натурального корня.
  • Трансцендентным называется уравнение, в котором для нахождения корня используются неалгебраические функции: например, тригонометрические, логарифмические и иные.

Среди алгебраических уравнений выделяют также:

  • целые — с обеими частями, состоящими из целых алгебраических выражений по отношению к неизвестным;
  • дробные — содержащие целые алгебраические выражения в числителе и знаменателе;
  • иррациональные — алгебраические выражения здесь находятся под знаком корня.

Заметим также, что дробные и иррациональные уравнения можно свести к решению целых уравнений.

Трансцендентные уравнения подразделяются на:

  • показательные — это такие уравнения, которые содержат переменную в показателе степени. Они решаются путём перехода к единому основанию или показателю степени, вынесением общего множителя за скобку, разложением на множители и некоторыми другими способами;
  • логарифмические — уравнения с логарифмами, то есть такие уравнения, где неизвестные находятся внутри самих логарифмов. Решать такие уравнения весьма непросто (в отличие от, допустим, большинства алгебраических), поскольку для этого требуется солидная математическая подготовка. Самое важное здесь — перейти от уравнения с логарифмами к уравнению без них, то есть упростить уравнение (такой способ удаления логарифмов называется потенцированием). Разумеется, потенцировать логарифмическое уравнение можно только в том случае, если они имеют тождественные числовые основания и не имеют коэффициентов;
  • тригонометрические — это уравнения с переменных под знаками тригонометрических функций. Их решение требует первоначального освоения тригонометрических функций;
  • смешанные — это дифференцированные уравнения с частями, принадлежащими к различным типам (например, с параболической и эллиптической частями или эллиптической и гиперболической и т.д.).

Что касается классификации по числу неизвестных, то здесь всё просто: различают уравнения с одним, двумя, тремя и так далее неизвестными. Существует также и ещё одна классификация, которая основывается на степени, которая имеется в левой части многочлена. Исходя из этого различают линейные, квадратные и кубические уравнения. Линейные уравнения также могут называться уравнениями 1-й степени, квадратные — 2-й, а кубические, соответственно, 3-й. Ну а теперь приведём примеры уравнений той или иной группы.

Примеры различных типов уравнений

Примеры алгебраических уравнений:

  • ax + b= 0
  • ax 3 + bx 2 + cx+ d= 0
  • ax 4 + bx 3 + cx 2 + bx + a= 0
    (a не равно 0)

Примеры трансцендентных уравнений:

  • cos x = x lg x = x−5 2 x = lgx+x 5 +40

Примеры целых уравнений:

  • (2+x)2 = (2+x)(55x-4) (x2-12x+10)4 = (3x+10)4 (4x2+3x-10)2=9x4

Пример дробных уравнений:

  • 15 x + — = 5x - 17 x

Пример иррациональных уравнений:

  • √2kf(x)=g(x)

Примеры линейных уравнений:

  • 2х+7=0 х - 3 = 2 - 4х 2х+3=5х+5 - 3х - 2

Примеры квадратных уравнений:

  • x 2 +5x−7= 0 3x 2 +5x−7= 0 11x 2 −7x+3 = 0

Примеры кубических уравнений:

  • x 3 -9x 2 -46x+120=0 x 3 - 4x 2 + x + 6 = 0

Примеры показательных уравнений:

  • 5 х+2 = 125 3 х ·2 х = 8 х+3 3 2х +4·3 х -5 = 0

Примеры логарифмических уравнений:

  • log 2 x= 3 log 3 x= -1

Примеры тригонометрических уравнений:

  • 3sin 2 x + 4sin x cosx + cos 2 x = 2 sin(5x+π/4) = ctg(2x-π/3) sinx + cos 2 x + tg 3 x = ctg 4 x

Примеры смешанных уравнений:

  • log х (log 9 (4⋅3 х −3))=1 |5x−8|+|2⋅5x+3|=13

Осталось добавить, что для решения уравнений различных типов применяются самые разные методы. Ну а чтобы решать практически любые уравнения, потребуются знания не только алгебры, но также и тригонометрии, причём нередко знания весьма глубокие.

УРАВНЕНИЯ
Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида (x - 1)2 = (x - 1)(x - 1) выполняется при всех значениях переменной x. Для обозначения тождества часто вместо обычного знака равенства = пишут знак є, который читается "тождественно равно". Тождества используются в алгебре при записи разложения многочленов на множители (как в приведенном выше примере). Встречаются они и в тригонометрии в таких соотношениях, как sin2x + cos2x = 1, а в общем случае выражают формальное отношение между двумя на первый взгляд различными математическими выражениями. Если уравнение, содержащее переменную x, выполняется только при определенных, а не при всех значениях x, как в случае тождества, то может оказаться полезным определить те значения x, при которых это уравнение справедливо. Такие значения x называются корнями или решениями уравнения. Например, число 5 является корнем уравнения 2x + 7= 17. Уравнения служат мощным средством решения практических задач. Точный язык математики позволяет просто выразить факты и соотношения, которые, будучи изложенными обычным языком, могут показаться запутанными и сложными. Неизвестные величины, обозначаемые в задаче символами, например x, можно найти, сформулировав задачу на математическом языке в виде уравнений. Методы решения уравнений составляют в основном предмет того раздела математики, который называется теорией уравнений.
ТИПЫ УРАВНЕНИЙ
Алгебраические уравнения. Уравнения вида fn = 0, где fn - многочлен от одной или нескольких переменных, называются алгебраическими уравнениями. Многочленом называется выражение вида fn = a0 xiyj... vk + a1 xlym... vn + ј + asxpyq... vr, где x, y, ..., v - переменные, а i, j, ..., r - показатели степеней (целые неотрицательные числа). Многочлен от одной переменной записывается так: f(x) = a0xn + a1xn - 1 + ... + an - 1x + an или, в частном случае, 3x4 - x3 + 2x2 + 4x - 1. Алгебраическим уравнением с одним неизвестным называется любое уравнение вида f(x) = 0. Если a0 № 0, то n называется степенью уравнения. Например, 2x + 3 = 0 - уравнение первой степени; уравнения первой степени называются линейными, так как график функции y = ax + b имеет вид прямой. Уравнения второй степени называются квадратными, а уравнения третьей степени - кубическими. Аналогичные названия имеют и уравнения более высоких степеней.
Трансцендентные уравнения. Уравнения, содержащие трансцендентные функции, такие, как логарифмическая, показательная или тригонометрическая функция, называются трансцендентными. Примером могут служить следующие уравнения:

Где lg - логарифм по основанию 10.
Дифференциальные уравнения. Так называются уравнения, содержащие одну или несколько функций и их производные или дифференциалы. Дифференциальные уравнения оказались исключительно ценным средством точной формулировки законов природы.
Интегральные уравнения. Уравнения, содержащие неизвестную функцию под знаком интеграла, например, f (s) = тK (s, t) f (t) dt, где f (s) и K(s,t) заданы, а f (t) требуется найти.
Диофантовы уравнения. Диофантовым уравнением называется алгебраическое уравнение с двумя или более неизвестными с целыми коэффициентами, решение которого ищется в целых или рациональных числах. Например, уравнение 3x - 5y = 1 имеет решение x = 7, y = 4; вообще же его решениями служат целые числа вида x = 7 + 5n, y = 4 + 3n.
РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
Для всех перечисленных выше типов уравнений общих методов решения не существует. И все же во многих случаях, особенно для алгебраических уравнений определенного типа, имеется достаточно полная теория их решения.
Линейные уравнения. Эти простые уравнения решаются путем их сведения к эквивалентному уравнению, из которого непосредственно видно значение неизвестного. Например, уравнение x + 2 = 7 можно свести к эквивалентному уравнению x = 5 вычитанием числа 2 из правой и левой частей. Шаги, совершаемые при сведении простого уравнения, например, x + 2 = 7, к эквивалентному, основаны на использовании четырех аксиом. 1. Если равные величины увеличить на одно и то же число, то результаты будут равны. 2. Если из равных величин вычесть одно и то же число, то результаты будут равны. 3. Если равные величины умножить на одно и то же число, то результаты будут равны. 4. Если равные величины разделить на одно и то же число, то результаты будут равны. Например, чтобы решить уравнение 2x + 5 = 15, мы воспользуемся аксиомой 2 и вычтем число 5 из правой и левой частей, в результате чего получим эквивалентное уравнение 2x = 10. Затем мы воспользуемся аксиомой 4 и разделим обе части полученного уравнения на 2, в результате чего исходное уравнение сведется к виду x = 5, что и является искомым решением.
Квадратные уравнения. Решения общего квадратного уравнения ax2 + bx + c = 0 можно получить с помощью формулы


Таким образом, существуют два решения, которые в частном случае могут совпадать.
Другие алгебраические уравнения. Явные формулы, аналогичные формуле для решения квадратного уравнения, можно выписать только для уравнений третьей и четвертой степеней. Но и эти формулы сложны и далеко не всегда помогают легко находит корни. Что же касается уравнений пятой степени или выше, то для них, как доказал Н.Абель в 1824, нельзя указать общую формулу, которая выражала бы корни уравнения через его коэффициенты при помощи радикалов. В отдельных частных случаях уравнения высших степеней удается легко решить, факторизуя их левую часть, т.е. разлагая ее на множители. Например, уравнение x3 + 1 = 0 можно записать в факторизованном виде (x + 1)(x2 - x + 1) = 0. Решения мы находим, полагая каждый из множителей равным нулю: Таким образом, корни равны x = -1,
Системы линейных уравнений. Два линейных уравнения с двумя неизвестными можно записать в виде


Решение такой системы находится с помощью определителей


Оно имеет смысл, если

>
>>">



>">

и
отличен от нуля. В этом случае решения уравнений не существует; уравнения несовместны. Численный пример такой ситуации - система
">

Если же D = 0, то возможны два случая. (1) По крайней мере один из определителей
и
отличен от нуля. В этом случае решения уравнений не существует; уравнения несовместны. Численный пример такой ситуации - система

(2) Оба определителя равны нулю. В этом случае второе уравнение просто кратно первому и существует бесконечное число решений. Общая теория рассматривает m линейных уравнений с n переменными:


Если m = n и матрица (aij) невырожденна, то решение единственно и может быть найдено по правилу Крамера:


где Aji - алгебраическое дополнение элемента aij в матрице (aij). В более общем плане существуют следующие теоремы. Пусть r - ранг матрицы (aij), s - ранг окаймленной матрицы (aij; bi), которая получается из aij присоединением столбца из чисел bi. Тогда: (1) если r = s, то существует n - r линейно независимых решений; (2) если r См. также АЛГЕБРА .

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "УРАВНЕНИЯ" в других словарях:

    Уравнение равенство вида или, где f и g функции (в общем случае векторные) одного или нескольких аргументов, а также задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут… … Википедия

    уравнения - решать дифференциальные уравнения решение … Глагольной сочетаемости непредметных имён

    Уравнения Эйлера Лагранжа (в физике также уравнения Лагранжа Эйлера или уравнения Лагранжа) являются основными формулами вариационного исчисления, c помощью которых ищутся стационарные точки и экстремумы функционалов. В частности, эти… … Википедия

    Механика сплошных сред Сплошная среда Классическая меха … Википедия

    - (англ. RANS (Reynolds averaged Navier Stokes)) уравнения Навье Стокса (уравнения движения вязкой жидкости) осредненные по Рейнольдсу. Используются для описания турбулентных течений. Метод осреднения Рейнольдса заключается в замене случайно… … Википедия

    Уравнения Эйлера Лагранжа являются основными формулами вариационного исчисления, c помощью которых ищутся экстремумы функционалов. В частности, эти уравнения широко используются в задачах оптимизации, и, совместно с принципом действия,… … Википедия

    Уравнения Прока обобщение уравнений Максвелла, призванное описывать массивные частицы со спином 1. Уравнения Прока обычно записываются в виде, где антисимметричный тензор электромагнитного поля … Википедия

Решение уравнения

Иллюстрация графического метода нахождения корней уравнения

Решение уравнения - задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.).

При подстановке другого корня получается неправильное утверждение:

.

Таким образом, второй корень нужно отбросить, как посторонний.

Виды уравнений

Различают алгебраические , параметрические , трансцендентные , функциональные , дифференциальные и другие виды уравнений.

Некоторые классы уравнений имеют аналитические решения, которые удобны тем, что не только дают точное значение корня, а позволяют записать решение в виде формулы, в которую могут входить параметры. Аналитические выражения позволяют не только вычислить корни, а провести анализ их существования и их количества в зависимости от значений параметров, что часто бывает даже важнее для практического применения, чем конкретные значения корней.

К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения, не выше четвёртой степени: линейное уравнение , квадратное уравнение , кубическое уравнение и уравнение четвёртой степени . Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней.

Уравнение, в которые входят трансцендентные функции называются трансцендентными. Среди них аналитические решения известны для некоторых тригонометрических уравнений, поскольку нули тригонометрических функций хорошо известны.

В общем случае, когда аналитического решения найти не удается, применяют численные методы . Численные методы не дают точного решения, а только позволяют сузить интервал , в котором лежит корень, до определенного заранее заданного значения.

Примеры уравнений

См. также

Литература

  • Бекаревич, А. Б. Уравнения в школьном курсе математики / А. Б. Бекаревич. - М., 1968.
  • Маркушевич, Л. А. Уравнения и неравенства в заключительном повторении курса алгебры средней школы / Л. А. Маркушевич, Р. С. Черкасов. / Математика в школе. - 2004. - № 1.
  • Каплан Я. В. Рівняння. - Киев: Радянська школа, 1968.
  • Уравнение - статья из Большой советской энциклопедии
  • Уравнения // Энциклопедия Кольера. - Открытое общество. 2000.
  • Уравнение // Энциклопедия Кругосвет
  • Уравнение // Математическая энциклопедия. - М.: Советская энциклопедия. И. М. Виноградов. 1977-1985.

Ссылки

  • EqWorld - Мир математических уравнений - содержит обширную информацию о математических уравнениях и системах уравнений.

Wikimedia Foundation . 2010 .

Синонимы :

Антонимы :

  • Хаджимба, Рауль Джумкович
  • ЕС ЭВМ

Смотреть что такое "Уравнение" в других словарях:

    УРАВНЕНИЕ - (1) математическая запись задачи о разыскании таких значений аргументов (см. (2)), при которых значения двух данных (см.) равны. Аргументы, от которых зависят эти функции, называют неизвестными, а значения неизвестных, при которых значения… … Большая политехническая энциклопедия

    УРАВНЕНИЕ - УРАВНЕНИЕ, уравнения, ср. 1. Действие по гл. уравнять уравнивать и состояние по гл. уравняться уравниваться. Уравнение в правах. Уравнение времени (перевод истинного солнечного времени в среднее солнечное время, принятое в общежитии и в науке;… … Толковый словарь Ушакова

    УРАВНЕНИЕ - (equation) Требование того, чтобы математическое выражение принимало определенное значение. Например, квадратное уравнение записывается в виде: ах2+bх+с=0. Решением является такие значения х, при котором данное уравнение становится тождеством. В… … Экономический словарь

    УРАВНЕНИЕ - математическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны. Аргументы, от которых зависят эти функции, называются неизвестными, а значения неизвестных, при которых значения функций равны,… … Большой Энциклопедический словарь

    УРАВНЕНИЕ - УРАВНЕНИЕ, два выражения, соединенные знаком равенства; в эти выражения входят одна или несколько переменных, называемых неизвестными. Решить уравнение значит найти все значения неизвестных, при которых оно обращается в тождество, или установить … Современная энциклопедия


















Корни уравнения не изменяются, если какое – нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак. 3х – 8 = х – 14 3х –х = х = -6 х = -3












Уравнение, содержащее переменную под знаком логарифма, называется логарифмическим. Решение логарифмического уравнения вида основано на том, что такое уравнение равносильно уравнению f(x)=g(x) при дополнительных условиях f(x) Согласно определению логарифма,




0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р" title="Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р" class="link_thumb"> 23 Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два решения: 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р"> 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два решения:"> 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р" title="Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р"> title="Квадратным уравнение с одним неизвестным называется уравнение вида Дискриминантом квадратного уравнения называется число Если D > 0, то уравнение решений не имеет Если D=0, то уравнение имеет единственное решение: Если D > 0, то уравнение имеет два р">




















Тригонометрическое уравнение вида все члены которого имеют одну и ту же степень относительно синуса и косинуса, называется однородным. Однородное уравнение легко сводиться к уравнению относительно, если все его члены разделить на. При этом если, то такое деление не приведет к потере решений, поскольку значение не удовлетворяет уравнению. Если же, то выносится за скобки.


Уравнение вида равносильно уравнению,где Наиболее часто применяется метод, состоящий в том, что все члены уравнения, состоящие в правой части, переносятся в левую часть; после чего левая часть уравнения разлагается на множители, при этом применяются формулы разложения тригонометрических функций в произведение, формулы понижения степени, формулы преобразования произведения тригонометрических функций в систему.




Иррациональные уравнения Уравнения, содержащие один знак радикала второй степени -В-Возведение обеих частей уравнения в степень. При возведении обеих частей уравнения в четную степень, получается уравнение, неравносильное исходному. Избавиться от посторонних корней помогает непосредственная проверка полученных корней в исходном уравнении, т.е. корни поочередно подставляют в начальное уравнение и проверяют, верно ли получается числовое равенство.


Равенство нулю произведения(частного) двух выражений. Произведение двух выражений равно нулю, если хотя бы одно из выражений равно нулю, а другое при этом имеет смысл. Формально это записывается так: Формальная запись частного от деления двух выражений равных нулю:




Уравнения, содержащие два(три) знака радикала второй степени Возведение в квадрат обеих частей уравнения. Сначала уравнение нужно преобразовать так, чтобы в одной части стояли радикалы, а в другой- остальные члены исходного уравнения. Так поступают, если в уравнении два радикала. Если же их три, то два из них оставляют в одной части уравнения, а третий переносят в другую. Затем обе части уравнения возводят в квадрат и проводятся необходимые преобразования. Далее все члены уравнения, не содержащие радикалов, снова переносятся в одну сторону уравнения, а оставшийся радикал(теперь он один!)-в другую. Полученное уравнение вновь возводят в квадрат, и в итоге получается уравнение, не содержащее радикалов.







Уравнения, содержащие радикалы третьей и более высоких степей. При решении уравнений, содержащих радикалы третьей степени, бывает полезно пользоваться следующими тождествами: Решить уравнение: Решение: Возведем обе части этого уравнения в третью степень и воспользуемся выше приведённым тождеством: Заметим, что выражение, стоящее в скобках, равно 1, что следует из первоначального уравнения. Учитывая это и приводя подобные члены, получим: Раскроем скобки, приведем подобные члены и решим квадратное уравнение. Его корни х=5 и х=-25/2. Если считать (по определению), что корень нечетной степени можно извлекать и из отрицательных чисел, то оба полученных числа являются решениями исходного уравнения. Ответ:5,-25/2


Уравнение с параметром При каких значениях а уравнение имеет два корня, один из которых больше 1, а другой меньше? Решение: Рассмотрим функцию: и построим эскиз её графика. При а=0 функция становится линейной и двух пересечений с осью Ох(корней уравнения у=0) иметь не может. При а>0 графиком функции является парабола, ветви которой направлены вверх. Необходимым и достаточным условием существования корней таких, что а в этом случае является единственное условие: Если же а 0 графиком функции является парабола, ветви которой направлены вверх. Необходимым и достаточным условием существования корней таких, что а в этом случае является единственное условие: Если же а">


Графический способ решения систем уравнений Система уравнений состоит из двух или более алгебраических уравнений. Решение системы называется такой набор значений переменных, который при подстановке обращает каждое уравнение системы в числовое или буквенное тождество. Решить систему - значит найти все её решения или доказать что их нет.


Графическое решение систем Графический способ решения систем уравнений состоит в следующем: Строятся графики каждого уравнения системы; Определяются точки пересечения графиков; Записывается ответ: координаты точек пересечения построенных графиков. Графический способ решения систем уравнений в большинстве случаев не дает точного решения системы, однако он может быть полезен для наглядной иллюстрации рассуждений.




Равносильность уравнений Равносильными (эквивалентными) уравнения называются в том случае, если все корни первого уравнения являются корнями второго уравнения, а все корни второго уравнения – корнями первого. Равносильные преобразования уравнения – это преобразования, приводящие к равносильному уравнению: 1)Прибавление одновременно к обеим частям уравнения любого числа (в частности, перенос слагаемых из одной части уравнения в другую с изменением знака) 2) Умножение (и деление) обеих частей уравнения одновременно на любое число, отличное от нуля. Кроме того, для уравнений в области действительных чисел: 3) Возведением обеих частей уравнения в любую нечетную степень 4) Возведение обеих частей уравнения при условии, что они неотрицательны, в любую четную натуральную степень



Показательные уравнения. Показательным называют уравнение, в котором неизвестное входит только в показатели степеней при постоянных основаниях. Показательное уравнение вида равносильно уравнению Имеются два основных метода решения показательных уравнений: 1)приведение уравнения к виду,а затем к виду; 2) введение новой переменной. Пример: Решим уравнение:


Список используемой литературы: Д.И.Аверьянов – «Большой справочник для поступающих в ВУЗы» 1998г. В.К.Егерев- «Сборник задач по математике для поступающих в ВУЗы под редакцией М.И.Сканави». 1997г. Ю.Н.Макарычев – «Алгебра. Дополнительные главы к школьному учебнику. 8 класс.» 2003г. Ю.Н.Макарычев – «Алгебра. Дополнительные главы к школьному учебнику. 9 класс.» 2003г.


Презентацию подготовили: Шманова Виктория Деева Александра 11 класс МОУ «СОШ 1» г. Шумиха 2007г. подробная информация по тел