Что такое проскок пламени. Большая энциклопедия нефти и газа

Сжигание газа производится в газовых горелках. В зоне горения, при устойчивом пламени, устанавливается динамическое равновесие между стремлением пламени продвинуться навстречу движению газовоздушной смеси и стремлением потока продвинуть пламя от устья горелки в топку.

Отрыв и проскок пламени в горелку являются пределами устойчивости работы горелок. Перемещение фронта пламени в направлении движения, полное отделение пламени от горелки и последующее его погасание можно наблюдать при большой скорости движения газовоздушной смеси. Это явление называется отрывом пламени. Если уменьшается подача и скорость выхода газовоздушной смеси нарушается стабильное горение, в результате чего пламя начинает втягиваться в горелку. При горении газовоздушной смеси внутри горелки, может произойти проскок пламени.

Необходимо для поддержания устойчивого горения обеспечивать необходимое соотношение между скоростями распространения пламени и поступления газовоздушной смеси к месту ее горения. Также большое влияние на устойчивость пламени имеет соотношение объемов газа и воздуха в газовоздушной смеси, чем больше газа, тем устойчивее будет пламя.

Если пламя проскакивает, горение газа происходит внутри горелки, что приводит к неполному сгоранию газа и образованию оксида углерода или даже погасанию пламени. Если горение газа происходит внутри горелки, горелка раскаляется и может выйти из строя. А при отрывном пламени газовоздушная смесь поступает в окружающее пространство, а это может привести к взрыву газовоздушной смеси. Очень важно обеспечить стабильное горение газа, чтобы создать условия его безопасного использования.

Устойчивость пламени газовоздушной смеси обеспечивается по средствам специальных устройств. Для удержания устойчивого пламени необходимо придерживаться таких условий:

- поддержание скорости выхода газовоздушной смеси в безопасных пределах;

- поддержание температуры в зоне горения не ниже температуры воспламенения газовоздушной смеси.

При попадании вместо газовоздушной смеси в горелку чистого газа пламя будет наиболее устойчиво, потому что в чистом газе пламя не распространяется и проскок пламени не возникает. При резком увеличении скорости выхода газа есть вероятность отрыва пламени, но это менее вероятно, чем при подаче газовоздушной смеси. Регулировать расход чистого газа в горелке можно в достаточно широких пределах.

При подаче газовоздушной смеси, с содержанием воздуха 50-60 % от теоретически необходимого для полного сжигания газа, обеспечивается горение менее устойчивое. Заранее подготовленные газовоздушные смеси для полного сжигания газа обеспечивают наименьшее горение пламени. Чем меньше воздуха содержится в газовоздушной смеси, тем устойчивее процесс его сгорания.

Добить стабилизации пламени, при сжигании полностью подготовленной газовоздушной смеси, можно с помощью специальных устройств (рис. 1).

Например, проскок пламени предотвращается, если сузить выходное отверстие для газовоздушной смеси, при этом увеличивающаяся скорость выхода смеси не позволяет произойти проскоку. Пламя не распространяется через узкие щели плоской стабилизирующей решетки (рис. 1, г), из-за быстрого охлаждения в них газовоздушной смеси. Предотвратить проскок пламени в горелку можно с помощью выходного отверстия в виде мелкой решетки. При охлаждении выходного отверстия носика горелки можно снизить вероятность проскока пламени, скорость распространения пламени в этом месте снижается, и температура смеси становится ниже температуры воспламенения.

С помощью установки различных устройств предотвращают отрыв пламени от горелки. Например, у устья горелки помещают небольшую дежурную горелку с устойчивым факелом для постоянного поджигания выходящей из горелки газовоздушной смеси, либо на поду печи выполняют горку из битого огнеупорного кирпича (рис. 1, в).

Широко используются при стабилизации горения огнеупорные тоннели. Газовоздушная смесь поступает из кратера горелки в цилиндрический тоннель (рис. 1, а, б) диаметр которого в 2-3 раза больше диаметра кратера горелки. Резкое расширении тоннеля вокруг корневой части факела создается разрежение, и вызывает обратное движение части раскаленных продуктов горения. За счет этого температура газовоздушной смеси в корне факела повышается и обеспечивается устойчивая зона зажигания. Такой же эффект достигается при размещении на выходе из горелки плохо обтекаемого тела (рассекающий стабилизатор (рис.1, в).

Пользовательского поиска

Что представляют собой «проскок» пламени в горелку и отрыв его от горелки и как их предупреждают?

Газовоздушная смесь, выходящая в действующую топку из горелки, быстро подогревается до температуры воспламенения и загорается. Зона или слой истекающей смеси, в котором начинается горение, имеет форму вытянутой дуги или конуса и называется фронтом воспламенения или горения.

Передача тепла, требуемого для воспламенения смеси, идет из топки нормально к фронту воспламенения. Сама же смесь выходит с некоторой скоростью из горелки в топку навстречу фронту распространения пламени. Скорость распространения пламени зависит от состава газовой смеси, содержания в ней воздуха, температуры, характера вытекания смеси из горелки.

При увеличении содержания первичного воздуха в смеси скорость распространения пламени возрастает и при содержании воздуха около 90% становится наибольшей. Сильно возрастает она также с ростом температуры и при вихреобразном (турбулентном) выходе смеси.

Скорость самой газовоздушной смеси зависит от количества смеси и размеров горелки. Для данных размеров она тем больше, чем больше газа подается в горелку и чем больше содержание подаваемого в нее или инжектируемого воздуха в газовоздушной смеси.

Скорость смеси должна превышать скорость нормального распространения фронта пламени. В этом случае между нормальной составляющей скорости смеси и нормальной скоростью распространения пламени установится равновесие.

Нарушение равновесия может вызвать затягивание горения в горелку - «проскок» в нее пламени или отрыв пламени от горелки и погасание. Проскок пламени в горелку, заполненную газовоздушной смесью (инжекционная горелка), может вызвать хлопки, а при неблагоприятных условиях горение в ней и перегрев горелки либо даже взрыв и разрушение.

Не бывает проскоков пламени в диффузионных горелках, так как внутри них находится только газ без примеси воздуха.

Наиболее опасны в отношении проскока пламени периоды розжига и отключения горелки, а также значительных изменений ее нагрузки. Во избежание проскока пламени в горелку розжиг горелок производят при закрытой подаче воздуха; при увеличении нагрузки работающей горелки сначала прибавляют подачу газа и после этого увеличивают тягу и подачу воздуха; при снижении нагрузки, наоборот, сначала уменьшают подачу воздуха и лишь после этого убавляют тягу и подачу газа.

Отрыв пламени от горелок также опасен из-за возможного загазования топки и газоходов котла при погасании факела.

Отрыв пламени от горелки наиболее вероятен при неправильном розжиге горелок, а во время работы - при внезапном увеличении давления газа или резком увеличении подачи воздуха. Во избежание отрыва пламени не следует перегружать газовые горелки, т. е. повышать более указанного в производственной инструкции давление подаваемых газа и воздуха.

Во время работы горелок необходимо поддерживать нормальное положение факела в объеме топки и относительно горелки и цвет факела в соответствии с указаниями инструкции.


Стабилизация газового пламени
Сжигание газа осуществляют в газовых горелках. При устойчивом горении в зоне горения устанавливается динамическое равновесие между стремлением пламени продвинуться навстречу движению газовоздушной смеси и стремлением потока продвинуть пламя от устья горелки в топку.
Пределами устойчивости работы горелок являются отрыв и проскок пламени в горелку. При большой скорости движения газовоздушной смеси наблюдается перемещение фронта пламени в направлении движения, полное отделение пламени от горелки и последующее его погасание. Это явление называется отрывом пламени. При уменьшении подачи и скорости выхода газовоздушной смеси стабильное горение нарушается и пламя начинает втягиваться в горелку. Когда горение газовоздушной смеси происходит внутри горелки, возникает проскок пламени.
Итак, для поддержания устойчивого горения необходимо обеспечить определенное соотношение между скоростью распространения пламени и скоростью поступления газовоздушной смеси к месту ее горения. На устойчивость пламени оказывает влияние также соотношение объемов газа и воздуха в газовоздушной смеси, причем, чем больше газа, тем устойчивее пламя.
При проскоке пламени горение газа происходит внутри горелки. Это приводит к неполному сгоранию газа и образованию оксида углерода или даже погасанию пламени. Горение газа внутри горелки приводит к тому, что она раскаляется и может выйти из строя. При отрыве пламени газовоздушная смесь поступает в окружающее пространство, что может привести к взрыву газовоздушной смеси. По этому обеспечение стабильного горения газа - важнейшее условие его безопасного использования.
Стабилизацию пламени газовоздушной смеси можно обеспечить с помощью специальных устройств. Необходимые условия при этом: поддержание скорости выхода газовоздушной смеси в безопасных пределах; поддержание температуры в зоне горения не ниже температуры воспламенения газовоздушной смеси.
Когда в горелку поступает не газовоздушная смесь, а чистый газ, пламя наиболее устойчиво. Объясняется это тем, что в чистом газе пламя не распространяется и проскок пламени не возникает. Однако при резком увеличении скорости выхода газа может произойти отрыв пламени, но и он менее вероятен, чем при подаче газовоздушной смеси. При подаче чистого газа в горелку его расход можно регулировать в достаточно широких пределах.
Если же к факелу подается газовоздушная смесь, содержащая 50-60 % воздуха от теоретически необходимого для полного сжигания газа, то горение такой смеси будет менее устойчивым. Наименее устойчиво горение заранее подготовленных для полного сжигания газа газовоздушных смесей. Итак, чем меньше воздуха содержится в газовоздушной смеси, тем устойчивее процесс его сгорания.
Стабилизация пламени при сжигании полностью подготовленной газовоздушной смеси достигается с помощью специальных устройств. Например, проскок пламени предотвращается, если сузить выходное отверстие для газовоздушной смеси. Увеличивающаяся при этом скорость выхода смеси не позволяет произойти проскоку. Пламя не распространяется через узкие щели плоской стабилизирующей решетки, так как в них газовоздушная смесь быстро охлаждается. Если выходное отверстие выполнено в виде мелкой решетки, то это тоже предотвращает проскок пламени в горелку. Вероятность проскока пламени можно снизить, если охлаждать выходное отверстие носика горелки. Скорость распространения пламени в этом месте снижается, и температура смеси становится ниже температуры воспламенения.
Отрыв пламени от горелки предотвращенают установкой различных устройств. Например, у устья горелки помещают небольшую дежурную горелку с устойчивыи факелом для постоянного поджигания выходящей из горелки газовоздущной смеси, либо на поду печи выполняют горку из битого огнеупорного кирпича.
Наибольшее распространение получила стабилизация горения с помощью огнеупорных тоннелей. Газовоздушная смесь поступает из кратера горелки в цилиндрический тоннель диаметр которого в 2-3 раза больше диаметра кратера горелки. При резком расширении тоннеля вокруг корневой части факела создается разрежение, что вызывает обратное движение части ракаленных продуктов горения. За счет этого температура газовоздушной смеси в корне факела повышается и обеспечивается устойчивая зона зажигания. Такой же эффект достигается при размещении на выходе из горелки плохо обтекаемого тела (рассекающий стабилизатор).

а) Проскок пламени (обратный удар) – это проникновение пламени внутрь горелки. Такое явление происходит в том случае, когда скорость истечения газовоздушной смеси из горелки меньше скорости распространения пламени. Чаще всего проскок происходит при неправильном зажигании и выключении горелки, а также при быстром снижении ее производительности. Проскок пламени может быть только у горелок с предварительным смешением газа и воздуха.

б) Метод борьбы: охлаждение туннеля горелки.

Причины проскока и отрыва пламени.

Причины проскока пламени в горелку – понижение давление газа или воздуха, уменьшение производительности горелки ниже значений, указанных в паспорте

Причины отрыва пламени от горелки – резкое повышение давления газа или воздуха, нарушение соотношения расходов газ - воздух, резкое увеличение разрежения на выходе из топки, увеличение производительности горелки выше значений, указанных в паспорте.

Типы стабилизаторов пламени.

а) Стабилизаторы газового пламени. Наиболее распространенными стабилизаторами пламени являются туннели конической и цилиндрической формы, применяемые при установке горелок различных типов. В туннелях стабилизацию пламени обеспечивают высокая температура и большая излучающая способность поверхности туннеля. Кроме того, в туннелях создаются зоны обратных токов (рециркуляции) или завихрений части продуктов горения, имеющих высокую температуру и способствующих воспламенению вытекающей из горелки газовоздушной смеси.

б) Газовые котлы отопления

Экологические проблемы при горении газов и других видов топлива.

В газовых выбросах присутствуют оксиды азота и серы. При растворении в атмосферном воздухе образуются кислотные осадки, что приводит к подкислению снежного и почвенного покрова, выпадению нитратов и сульфатов.

Что касается вредных влияний на почву, совокупная площадь нарушенных почв от воздействия выбросов горящих факелов составляет около 100 тыс. га. Вблизи факелов при воздействии высоких температур происходит практически полное выжигание.

Для лесных экосистем наиболее характерны такие негативные последствия, как сокращение лесов, повышение риска пожаров лесов вблизи факелов, снижение численности животных, насекомых и микроорганизмов.

Образование сажи и оксида углерода при горении.

Оксид углерода содержится в продуктах сгорания из перечисленных веществ в наибольшем количестве. Схема образования и выгорания СО имеет следующий характер: на начальном участке выгорания идёт накопление СО, а затем его окисление по длине факела или камеры сгорания. Высокие концентрации СО сохраняются, если происходит «замораживание» продуктов сгорания, т.е. быстрое охлаждение в результате расширения или соприкосновения с относительно холодными поверхностями теплообмена.

(В атмосфере оксид углерода окисляется до диоксида.)

Сажа обнаруживается в продуктах сгорания углеводородных газов при низком качестве смесеобразования и при значительном недостатке кислорода в зоне горения, а также вследствие резкого локального охлаждения пламени. Причина образования сажи заключается в том, что под воздействием высокой температуры углеводородные молекулы полностью разрушаются. Более лёгкие атомы водорода диффундируют в богатый кислородный слой и окисляются. А атомы углерода образуют аморфные частицы сажи.

Образование оксидов азота при сжигании газов.

Оксиды азота образуются в промышленных печах при высоких температурах 1800-2000 °С. Обычно концентрация оксида NO при выходе из дымовой трубы превышает в 1000-20000 раз ПДК. После выхода из дымовой трубы оксид азота переходит в диоксид NO 2 по двум реакциям:

1 В корне дымового факела протекает окисление кислородом

2NO + O 2 = 2NO 2

2 При низких концентрациях окисление идет за счет атмосферного воздуха

NO + O 3 = NO 2 + O 2 .

39. Тепловой механизм Я.Б. Зельдовича образования NO при горении

Высокотемпературный механизм окисления азота в зоне горения был предложен Я. Б. Зельдовичем в середине 1940-х годов и считается основным механизмом образования оксидов азота при горении. Этот механизм включает следующие элементарные стадии:

к которым добавляется реакция (Фенимор и Джонс, 1957):

Совокупность реакций (1-3) называется расширенным механизмом Зельдовича. В силу того что энергия тройной связи в молекуле N 2 составляет около 950 кДж/моль, реакция (1) имеет большую энергию активации и может проходить с заметной скоростью только при высоких температурах. Поэтому этот механизм играет важную роль в случае высоких температур в зоне реакции, например, при горении околостехиометрических смесей или при диффузионном горении. Считается, что повышение максимальной температуры в зоне горения свыше 1850 К приводит к недопустимо высоким выбросам NO x , и одним из основных способов снижения выбросов по тепловому механизму является недопущение образования очагов высокой температуры во фронте пламени.

Образование канцерогенных ПАУ при горении.

Полициклические ароматические углеводороды – нежелательный побочный продукт сжигания ископаемого топлива, в первую очередь угля и нефтепродуктов. Уголь считается смесью огромного количества поликонденсированных ароматических бензольных ядер с минимальным содержанием водорода. При сжигании этих веществ в печах, электростанциях, двигателях внутреннего сгорания эти соединения разлагаются. При низких температурах сгорания и недостаточном поступлении атмосферного кислорода образуется очень реактивный ацетилен, равно как и различные алифатические фрагменты углеводородов. Ацетилен полимеризуется в бутадиен, который в дальнейшем образует ядро ароматического углеводорода. При добавлении его к существующим ароматическим ядрам возникает ПАУ, например пирен, из которого путем добавления еще одной молекулы бутадиена выделяется наиболее известный канцероген – бензо[а]пирен (БаП). При сжигании при высокой температуре и обильном поступлении атмосферного кислорода образуется мало ПАУ, потому что практически весь углерод сгорает, превращаясь в оксид углерода.

При неполном сгорании возникают частички углерода – сажа. Можно предположить, что образующиеся ПАУ, адсорбированные на поверхности частичек сажи и дыма, вместе с ними попадают в окружающую нас среду. Сажа, твердые частички дыма и выхлопных газов содержатся в дорожной пыли, смоге больших городов, пыльном воздухе коксовых заводов. Вместе с пылью они попадают на одежду, кожу, в дыхательные пути. Сегодня известно уже несколько сот различных полициклических ароматических веществ: несколько десятков из них – канцерогены. Однако их действие неодинаково и зависит от строения соответствующего вещества.

Устойчивость горения является существенным фактором, опре­деляющим надежность работы газовых горелок. В практике сжига­ния газа часто приходится сталкиваться с нарушением устойчивой работы горелок, вызываемым либо отрывом пламени от насадка горелки, либо проскоком пламени в ее смесительную часть.

Пламя сохраняет устойчивость, т. е. остается неподвижным от­носительно насадка горелки, в тех случаях, когда в зоне горения устанавливается равновесие между стремлением пламени продви­нуться навстречу потоку газовоздушной смеси и стремлением по­тока отбросить пламя от горелки. Однако такое равновесие наблю­дается в очень узком диапазоне скоростей выхода газовоздушной смеси из горелки.

Отрыв пламени возникает, когда скорость истечения газовоз­душной смеси превосходит скорость распространения пламени и оно, отрываясь от горелки, полностью или частично гаснет. Он мо­жет происходить и при розжиге или выключении горелок, а во время работы - из-за быстрого изменения нагрузки или при чрез­мерном увеличении разрежения в топке и может иметь место у всех типов горелок.

Отрыв пламени приводит к загазованию топки и газоходов, а также к накоплению в помещении газов. Это может повлечь за собой взрыв в топочной камере или газоходах агрегата с после­дующими серьезными разрушениями.

Проскок пламени (обратный удар) -это проникновение пла­мени внутрь горелки. Такое явление происходит в том случае, когда скорость истечения газовоздушной смеси из горелки меньше скорости распространения пламени. Чаще всего проскок происхо­дит при неправильном зажигании и выключении горелки, а также при быстром снижении ее производительности. В результате про­скока может произойти перегрев горелки или хлопок внутри нее, а также прекращение горения и загазование помещения. Проскок пламени может быть только у горелок с предварительным смеше­нием газа и воздуха.

На рис. 5 в качестве примера даны кривые, показывающие пре­делы-отрыва и проскока пламени при сжигании природного газа в зависимости от величины избытка воздуха для инжекционной го­релки среднего давления с диаметром насадка 35 мм. Приведенные кривые соответствуют пределам устойчивого горения при работе горелки в атмосферных условиях, т. е. без стабилизации горения, и при сжигании газа в топочной камере со стабилизатором. Кри­вая 2 показывает, при каких скоростях шсм наблюдается для раз­

Личных газовоздушных смесей отрыв пламени от устья горелки, а кривая / - при каких скоростях наблюдается проскок пламени. Из рисунка видно, что при коэффициенте избытка воздуха аг=1,1 горелка может работать только в узком диапазоне скоростей - от 1,15 до 1,75 м/сек.

Уменьшение содержания первичного воздуха в смеси расширяет пределы устойчивого горения, так как возрастает значение скоро­сти, при которой наступает отрыв, и уменьшается значение скоро­сти, когда наступает проскок пламени. Таким образом, область устойчивого горения газа в горелке располагается между кривыми

Проскока и отрыва пламени. Следовательно, от ширины этой зоны зависит диапазон регули­рования газовой горелки.

На рис. 5 приведены пре­дельные кривые устойчивого горения при работе этой же горелки, снабженной стабили­затором в виде керамического туннеля. Кривая 3 характери­зует проскок пламени. Отрыв пламени в этом случае вообще не получен при имевшемся дав­лении газа. Известно, что от­рыв пламени в керамических туннелях наступает при скоро­стях выхода газовоздушной смеси свыше 100 м/сек, а эти горелки обычно работают со скоростями порядка 30 м/сек.

Очевидно, что диапазон скоростей устойчивой работы горелки со стабилизатором значительно возрос. При избытке воздуха (аг=1,1) горелка может работать в диапазоне скоростей от

2,0 м/сек до максимально достижимых значений. Если в первом случае диапазон устойчивой работы горелки П составлял всего 1: 1,5, то во втором случае он превышает 1: 10.

Существенное влияние на надежность работы многофакельных горелок, особенно частичного предварительного смешения, оказы­вает величина расстояния между отверстиями, при которой проис­ходит надежное зажигание факелов друг от друга. В то же время уменьшение расстояния между отверстиями может привести к слиянию факелов, что затруднит подвод вторичного воздуха к ним. Следовательно, расстояния между газовыпускными отвер­стиями в горелке следует выбирать так, чтобы, с одной стороны, было обеспечено надежное зажигание факелов друг от друга, а с другой - отсутствовало слияние факелов.

В табл. 3 для горелок низкого давления приведены максималь­ные и минимальные расстояния между отверстиями, при которых

Обеспечивается надежное зажигание факелов и отсутствует их слияние для сланцевого газа (<2Н=3400 ккал/м3), природного газа (фн=8500 ккал/м3) и их смесей (фн=6000-^-7500 ккал/м3).

Таблица 3

Значения максимальных и минимальных расстояний между осями горелочных отверстий для нормального распространения и горения пламенн

Диаметр горе - лочного отвер­стия, мм

Тепловая на­грузка,

Млн. ккал/(м2-ч)

Максимальные расстоя­ния, обеспечивающие беглость огня при зажигании, мм

Минимальные расстоя­ния, обеспечивающие отсутствие слияния факелов, мм