Небольшая катушка тесла своими руками. Карманный трансформатор тесла своими руками

Многие из нас восхищаются гением Николы Тесла, который еще в 19 веке сделал такие открытия, что до сих пор не всё его научное наследие исследовано и понято. Одно из его изобретений получило название катушка Тесла или трансформатор Тесла. Подробнее про неё можно прочитать . А здесь мы рассмотрим, как изготовить простую катушку Тесла в домашних условиях.

Что нужно для изготовления катушки Тесла?

Чтобы изготовить катушку Тесла дома, за своим рабочим столом или даже на кухне, нам сначала необходимо запастись всем необходимым.
Итак, предварительно мы должны найти или приобрести следующее.
Из инструментов нам потребуется:

  • Паяльник
  • Клеевой пистолет
  • Дрель с тонким сверлом
  • Ножовка
  • Ножницы
  • Изолента
  • Маркер

Для сбора самой катушки Тесла необходимо подготовить следующее:

  • Кусок толстой полипропиленовой трубы диаметром 20 мм.
  • Медная проволока диаметром 0,08-0.3 мм.
  • Кусок толстого провода
  • Транзистор типа КТ31117Б или 2N2222A (можно КТ805, КТ815, КТ817)
  • Резистор 22 кОм (можно от 20 до 60 кОм брать резисторы)
  • Источник питания (Крона)
  • Шарик для пинг-понга
  • Кусок пищевой фольги
  • Основание, на чём будет крепиться изделие - кусок доски или пластика
  • Провода для соединения нашей схемы

Подготовив все необходимое приступаем у изготовлению катушки Тесла.

Инструкция по изготовлению катушки Тесла

Самым трудоёмким процессом изготовления катушки Тесла в домашних условиях будет намотка вторичной обмотки L2. Это наиболее значимый элемент в трансформаторе Тесла. И намотка — трудоемких процесс, требующий аккуратности и внимания.

Приготовим основу. Для этого нам подойдет ПВХ труба диаметром от 2-х см.

Отметим на трубе необходимую длину - примерно от 9 до 20 см. Желательно соблюдать пропорцию 4-5:1. Т.е. если у вас труба диаметром 20 мм, то её длина составит от 8 до 10 см.

Затем отпилим ножовкой по оставленной маркером метке. Срез должен быть ровным и перпендикулярным к трубе, т. к. мы затем будем приклеивать эту трубу к доске, а сверху будет приклеен шарик.

Торец трубы надо зашкурить наждачной бумагой с обеих сторон. Необходимо убрать стружку, оставшуюся от отпиливания куска трубы, а также выровнять поверхность для приклеивания её к основе.

С двух концов трубы надо просверлить по одному отверстию. Диаметр этих отверстий должен быть такой, чтобы проволока, которую мы будем использовать при намотке, свободно прошла туда. Т.е. это должны быть маленькие отверстия. Если у вас нет такого тонкого сверла, то можно пропаять трубу, используя тонкий гвоздик, нагревая его на плите.

Пропускаем конец проволоки для намотки в трубу.

Фиксируем этот конец провода с помощью клеевого пистолета. Фиксацию производим с внутренней сторона трубы.

Начинаем намотку проволоки. Для этого можно использовать медную проволоку с изоляцией диаметром от 0,08 до 0,3 мм. Намотка должна быть плотной, аккуратной. Не допускайте перехлёстов. Количество витков от 300 до 1000, в зависимости от вашей трубы и диаметра проволоки. В нашем варианте применяется проволока 0,08 мм. диаметром и 300 витков намотки.

После того, как намотка закончена, обрежьте проволоку, оставив кусок сантиметров 10.

Проденьте проволоку в отверстие и закрепите с внутренней стороны с помощью капельки клея.

Теперь надо приклеить изготовленную катушку к основе. В качестве основы можно взять небольшую доску или кусок пластика размером 15-20 см. Для приклеивания катушки надо аккуратно намазать её торец.

Затем присоединяем вторичную обмотку катушки на свое место на основе.

Затем к основе приклеиваем транзистор, выключатель и резистор. Таким образом все элементы фиксируем на доске.

Делаем катушку L1. Для этого нам потребуется толстая проволока. Диаметр — от 1 мм. и больше, в зависимости от вашей катушки. В нашем случае толщины в 1 мм. проволоки будет достаточно. Берем остаток трубы и наматываем на него 3 витка толстой проволоки в изоляции.

Потом надеваем катушку L1 на L2.

Собираем все элементы катушки Тесла по по этой схеме.


Схема простой катушки Тесла

Все элементы и провода крепим к основе с помощью клеевого пистолета. Батарейку «Крона» также приклеиваем, чтобы ничего не болталось.

Теперь нам предстоит изготовить последний элемент трансформатора Тесла - излучатель. Его можно сделать из теннисного шарика, обернутого пищевой фольгой. Для этого берем кусок фольги и просто оборачиваем в неё шарик. Обрезаем лишнее, чтобы шарик был ровно завернут в фольгу и ничего не торчало.

Присоединяем шарик в фольге к верхнему проводу катушки L2, просовывая провод внутрь фольги. Закрепляем место присоединения кусочком изоленты и приклеиваем шарик к верхушке L2.

Вот и всё! Мы изготовили катушку Тесла своими руками! Так выглядит это устройство.

Теперь осталось только проверить работоспособность изготовленного нами трансформатора Тесла. Для этого надо включить устройство, взять в руки люминесцентную лампу и поднести к катушке. Мы должны увидеть, как загорается и горит поднесенная лампа прямо в руках!

Это означает, что всё получилось и всё работает! Вы стали обладателем собственноручно изготовленной катушки Тесла. Если вдруг возникли проблемы, то проверьте напряжение на батарейке. Часто, если батарейка долго где-то лежала, она уже не работает как положено.
Но надеемся, что у вас все получилось! Можно попробовать менять количества витков на вторичной обмотки катушки L2, а также и количество витков и толщину провода на катушке L1. Источник питания может также быть различным от 6 до 15 В. для таких небольших катушкек. Пробуйте, экспериментируйте! И у вас всё получится!

Никола Тесла - легендарная личность, причем о смысле некоторых его изобретений спорят и по сей день. В мистику мы вдаваться не будем, а поговорим лучше о том, как сделать кое-что эффектное по «рецептам» Теслы. Это катушка Тесла. Увидев ее один раз, вы никогда не забудете это невероятное и удивительное зрелище!

Общие сведения

Если говорить о простейшем таком трансформаторе (катушке), то он состоит из двух катушек, у которых нет общего сердечника. На первичной обмотке должно быть не менее десятка витков толстой проволоки. На вторичную наматывают уже минимум 1000 витков. Учтите, что катушка Тесла обладает таким который в 10-50 раз больше, чем отношение количества витков на второй обмотке к первой.

На выходе напряжение такого трансформатора может превышать несколько миллионов вольт. Именно это обстоятельство и обеспечивает возникновение зрелищных разрядов, длина которых может достигать сразу нескольких метров.

Когда возможности трансформатора были впервые продемонстрированы публике?

В городке Колорадо Спрингс однажды полностью сгорел генератор на местной электростанции. Причина была в том, что ток от него шел на питание первичной обмотки В ходе этого гениального эксперимента ученый впервые доказал сообществу, что существование стоячей электромагнитной волны - реальность. Если вашей мечтой является катушка Тесла, своими руками сложнее всего сделать именно первичную обмотку.

Вообще, смастерить ее самому не так уж и сложно, но куда труднее придать готовому изделию визуально привлекательный облик.

Простейший трансформатор

Сперва вам придется где-то отыскать источник высокого напряжения, причем минимум на 1,5 кВ. Впрочем, лучше всего сразу рассчитывать на 5 кВ. Затем крепим все это к подходящему конденсатору. Ежсли его емкость будет излишне велика, можно немного поэкспериментировать с диодными мостами. После этого делаете так называемый искровой промежуток, ради эффекта от которого и создается вся катушка Тесла.

Сделать его просто: берем пару проводов, а затем так скручиваем их изолентой, чтобы заголенные концы смотрели в одну сторону. Очень аккуратно регулируем зазор между ними, чтобы пробой был при напряжении чуть выше такового для источника питания. Не беспокойтесь: так как ток переменный, то на пике напряжение всегда будет немного выше заявленного. После этого всю конструкцию можно подключать к первичной обмотке.

В этом случае для изготовления вторичной можно намотать всего 150-200 витков на любую картонную втулку. Если все сделаете правильно, то получится неплохой разряд, а также заметная его ветвистость. Очень важно хорошо заземлить вывод со второй катушки.

Вот такая получилась простейшая катушка Тесла. Своими руками сделать ее сможет каждый, кто имеет хотя бы минимальные познания в электрике.

Конструируем более «серьезное» устройство

Все это хорошо, но как устроен трансформатор, который не стыдно показать даже на какой-нибудь выставке? Сделать более мощное устройство вполне реально, но для этого нужно будет намного больше поработать. Сперва предупредим, что для проведения таких опытов у вас должна быть очень надежная проводка, иначе беды не избежать! Итак, что нужно брать в расчет? Катушки Тесла, как мы уже и говорили, нуждаются в действительно высоком напряжении.

Оно должно быть минимум 6 кВ, иначе красивых разрядов вам не видать, да и настройки будут постоянно сбиваться. Кроме того, искровик нужно делать только из цельнолитых кусков меди, причем ради вашей же собственной безопасности их следует максимально прочно зафиксировать в одном положении. Мощность всего «хозяйства» должна быть минимум 60 Вт, но лучше брать 100 и больше. Если это значение ниже, то у вас точно не получится действительно зрелищная катушка Тесла.

Очень важно! И конденсатор, и первичная обмотка обязательно должны в конечном счете образовать специфический колебательный контур, входящий в состояние резонанса со вторичной обмоткой.

Имейте в виду, что обмотка может резонировать сразу в нескольких различных диапазонах. Опыты показали, что имеет место частота 200, 400, 800 или 1200 кГц. Как правило, все это зависит от состояния и месторасположения первичной обмотки. Если у вас нет то придется экспериментировать с емкостью конденсатора, а также менять количество витков на обмотке.

Еще раз напоминаем, что нами обсуждается бифилярная катушка Тесла (с двумя катушками). Так что к вопросу намотки следует подходить серьезно, ведь иначе ничего толкового из затеи не выйдет.

Некоторые сведения о конденсаторах

Сам конденсатор лучше брать не слишком выдающейся емкости (чтобы он успевал вовремя накопить заряд) или же использовать диодный мост, предназначенный для выпрямления переменного тока. Сразу заметим, что использование моста более оправдано, так как можно применять конденсаторы практически любой емкости, но при этом придется брать специальный резистор для разрядки конструкции. Током от него бьет очень (!) сильно.

Заметим, что катушка Тесла на транзисторе нами не рассматривается. Ведь вы попросту не найдете транзисторов с нужными характеристиками.

Важно!

Вообще, еще раз напоминаем: перед тем как собрать катушку Тесла, проверьте состояние всей проводки в доме или квартире, позаботьтесь о наличии качественного заземления! Это может показаться занудным увещеванием, но с таким напряжением не шутят!

Обязательно нужно очень надежно изолировать обмотки друг от друга, так как в противном случае пробитие вам будет гарантировано. На вторичной обмотке желательно делать изоляцию между слоями витков, так как любая более-менее глубокая царапина на проволоке будет украшена небольшой, но чрезвычайно опасной короной разряда. А сейчас - за дело!

Приступаем к работе

Как можно заметить, элементов для сборки вам потребуется не так уж и много. Вот только нужно помнить, что для правильной работы устройства нужно не только правильно собрать, но и правильно настроить! Однако обо всем по порядку.

Трансформаторы (МОТы) можно демонтировать из любой старой микроволновки. Это практически стандартный но у него есть одно важное отличие: его сердечник практически всегда работает в режиме насыщения. Таким образом, весьма компактное и простое устройство вполне может выдавать вплоть до 1,5 кВ. К сожалению, есть у них и специфические недостатки.

Так, величина тока холостого хода равна приблизительно трем-четырем амперам, да и нагрев даже в простое очень велик. У среднестатистической микроволновки МОТ выдает порядка 2-2,3 кВ, а равна приблизительно 500-850 мА.

Характеристики МОТов

Внимание! У этих трансформаторов первичная обмотка начинается снизу, тогда как вторичная расположена наверху. Такая конструкция обеспечивает лучшую изоляцию всех обмоток. Как правило, на «вторичке» находится накальная обмотка от магнетрона (приблизительно 3,6 Вольт). Между двумя слоями металла внимательный мастер может заметить пару каких-то металлических перемычек. Это магнитные шунты. Для чего они нужны?

Дело в том, что они замыкают на себе некоторую часть того магнитного поля, которое создает первичная обмотка. Это сделано для стабилизации поля и самого тока на второй обмотке. Если их нет, то при малейшем замыкании вся нагрузка идет на «первичку», а ее сопротивление совсем невелико. Таким образом, эти небольшие детали защищают трансформатор и вас, так как предотвращают многие неприятные последствия. Как ни странно, их все же лучше удалить? Почему?

Помните, что в микроволновой печи проблема с перегревом сего важного устройства решается путем установки мощных вентиляторов. Если же у вас трансформатор, в котором нет шунтов, то его мощность и тепловыделение значительно выше. У всех импортных микроволновых печей они чаще всего обстоятельно залиты эпоксидной смолой. Так почему же их нужно удалить? Дело в том, что в этом случае значительно снижается «просадка» тока под нагрузкой, что для наших целей очень важно. Как же быть с перегревом? Рекомендуем поместить МОТ в

Кстати, плоская катушка Тесла вообще обходится без ферромагнитного сердечника и трансформатора, но нуждается в подаче тока еще большего напряжения. Из-за этого испытывать что-то подобное в домашних условиях настоятельно не рекомендуется.

Еще раз о технике безопасности

Маленькое дополнение: на вторичной обмотке напряжение такое, что поражение током при ее пробое приведет к гарантированной смерти. Помните, что схема катушки Тесла предполагает силу тока 500-850 А. Максимальное значение этой величины, которое еще оставляет шанс на выживание, равно… 10 А. Так что при работе ни на секунду не забывайте о простейших мерах предосторожности!

Где и за сколько купить комплектующие?

Увы, но есть и некоторые плохие новости: во-первых, приличный МОТ стоит минимум две тысячи рублей. Во-вторых, отыскать его на прилавках даже специализированных магазинов практически нереально. Есть надежда разве что на развалы и «блошиные рынки», по которым придется немало побегать в поисках искомого.

Если есть возможность, обязательно используйте МОТ от старой советской микроволновой печи «Электроника». Он не так компактен, как импортные аналоги, но зато и работает в режиме обычного трансформатора. Его промышленное обозначение - ТВ-11-3-220-50. Мощность он имеет приблизительно 1,5 кВт, на выходе выдает около 2200 Вольт, сила же тока равна 800 мА. Короче говоря, параметры весьма приличные даже для нашего времени. Кроме того, у него есть дополнительная обмотка на 12 В, идеальная в качестве источника питания для вентилятора, который будет охлаждать искровик Теслы.

Что еще нужно использовать?

Качественные высоковольтные конденсаторы из керамики серий К15У1, К15У2, ТГК, КТК, К15-11, К15-14. Отыскать их сложно, так что лучше иметь в хороших друзьях профессиональных электриков. Как же быть с фильтром ВЧ? Понадобятся две катушки, которые могут надежно отфильтровать высокие частоты. В каждой из них должно быть не менее 140 витков качественного медного провода (в лаке).

Некоторые сведения об искровике

Искровик предназначен для возбуждения колебаний в контуре. Если его в схеме не будет, то питание пойдет, а вот резонанс - нет. Кроме того, блок питания начинает «пробивать» через первичную обмотку, что практически гарантированно приводит к короткому замыканию! Если искровик не замкнут, высоковольтные конденсаторы не могут заряжаться. Как только происходит его замыкание, в контуре начинаются колебания. Именно для предотвращения некоторых проблем используют дросселя. Когда искровик замыкается, дроссель предотвращает утечку тока от блока питания, а уж потом, когда контур будет разомкнут, начинается ускоренная зарядка конденсаторов.

Характеристика устройства

Напоследок мы скажем еще несколько слов о самом трансформаторе Теслы: для первичной обмотки вы вряд ли сможете отыскать медный провод нужного диаметра, так что проще использовать медные трубки от холодильного оборудования. Число витков - от семи до девяти. На «вторичку» нужно намотать не менее 400 (до 800) витков. Точное количество определить невозможно, так что придется ставить опыты. Один выход подключается к ТОРу (излучателю молний), а второй очень (!) надежно заземляется.

Из чего сделать излучатель? Используйте для этого обыкновенную вентиляционную гофру. Перед тем как сделать катушку Тесла, фото которой есть здесь же, обязательно подумайте, как сконструировать ее более оригинальной. Ниже есть несколько советов.

В завершение…

Увы, но никакого практического применения у этого эффектного устройства нет и по сию пору. Кто-то показывает опыты в институтах, кто-то зарабатывает на этом, устраивая парки «чудес электричества». В Америке один весьма чудной товарищ пару лет назад так и вовсе соорудил из катушки Тесла… рождественскую елку!

Чтобы сделать ее красивее, он наносил различные вещества на излучатель молний. Имейте в виду: борная кислота дает зеленый цвет, марганец делает «елку» синей, а литий придает ей малиновый окрас. До сих пор идут споры об истинном назначении изобретения гениального ученого, но сегодня это - обычный аттракцион.

Вот как сделать катушку Тесла.

Знаменитый изобретатель Никола Тесла имеет немало заслуг перед наукой и техникой, но только одно изобретение носит его имя. Это резонансный трансформатор, известный также как« катушка Теслы».

Трансформатор Теслы состоит из первичной и вторичной обмоток, схемы, обеспечивающей питание первичной обмотки на резонансной частоте вторичной, и, опционально, дополнительной емкости на высоковольтном выходе вторичной обмотки. Острие, укрепленное на дополнительной емкости, повышает напряженность электрического поля, облегчая пробой воздуха. Дополнительная емкость снижает рабочую частоту, уменьшая нагрузку на транзисторы, и, по некоторым данным, повышает длину разрядов. В качестве каркаса вторичной обмотки используется кусок канализационной ПВХ-трубы. Вторичная обмотка состоит примерно из 810 витков эмалированного провода диаметром 0,45 мм. Первичная обмотка состоит из восьми витков провода сечением 6 мм2. Схема питания основана на принципе автоколебаний и построена на силовых транзисторах.

Суть изобретения Теслы проста. Если питать трансформатор током с частотой, равной резонансной для его вторичной обмотки, напряжение на выходе возрастает в десятки и даже сотни раз. Фактически оно ограничено электрической прочностью окружающего воздуха (или иной среды) и самого трансформатора, а также потерями на излучение радиоволн. Наиболее известна катушка в области шоу-бизнеса: она способна метать молнии!

Форма и содержание

Трансформатор выглядит весьма необычно — он словно специально сконструирован для шоу-бизнеса. Вместо привычного массивного железного сердечника с толстыми обмотками — длинная полая труба из диэлектрика, на которую провод намотан всего в один слой. Такой странный вид вызван необходимостью обеспечить максимальную электрическую прочность конструкции.

Кроме необычного внешнего вида, трансформатор Теслы имеет еще одну особенность: в нем обязательно есть некая система, создающая в первичной обмотке ток именно на резонансной частоте вторичной. Сам Тесла использовал так называемую искровую схему (SGTC, Spark Gap Tesla Coil). Ее принцип заключается в зарядке конденсатора от источника питания с последующим подключением его к первичной обмотке. Вместе они создают колебательный контур.

Емкость конденсатора и индуктивность обмотки подбираются так, чтобы частота колебаний в этом контуре совпадала с необходимой. Коммутация осуществляется с помощью искрового промежутка: как только напряжение на конденсаторе достигает определенного значения, в промежутке возникает искра, замыкающая контур. Часто можно увидеть утверждения, что «искра содержит полный спектр частот, так что там всегда есть и резонансная, за счет чего и работает трансформатор». Но это не так — без правильного подбора емкости и индуктивности действительно высокого напряжения на выходе не получить.

Решив сделать свой трансформатор Теслы, мы остановились на более прогрессивной схеме — транзисторной. Транзисторные генераторы потенциально позволяют получить любую форму и частоту сигнала в первичной обмотке.

Выбранная нами схема состоит из микросхемы драйвера силовых транзисторов, маленького трансформатора для развязки этого драйвера от питающего напряжения 220 В и полумоста из двух силовых транзисторов и двух пленочных конденсаторов. Трансформатор мотается на кольце из феррита с рабочей частотой не менее 500 кГц, на нем делается три обмотки по 10−15 витков провода. Очень важно подключить транзисторы к обмоткам трансформатора так, чтобы они работали в противофазе: когда один открыт, другой закрыт.

Нужная частота возникает за счет обратной связи со вторичной обмоткой (схема основана на автоколебаниях). Обратная связь может осуществляться двумя способами: с помощью или трансформатора тока из 50−80 витков провода на таком же ферритовом кольце, как и разделительный трансформатор, через которое проходит провод заземления нижней части вторичной обмотки, или… просто кусочка проволоки, которая выполняет роль антенны, улавливающей испускаемые вторичной обмоткой радиоволны.

Мотаем на ус

В качестве каркаса первичной обмотки мы взяли канализационную трубу из ПВХ диаметром 9 см и длиной 50 см. Для намотки используем эмалированный медный провод диаметром 0,45 мм. Каркас и катушку обмоточного провода размещаем на двух параллельных осях. В качестве оси каркаса выступал кусок ПВХ-трубы меньшего диаметра, а роль оси катушки с проводом выполнила завалявшаяся в редакции стрела от лука.

Существуют три варианта первичной обмотки: плоская спираль, короткая винтовая и коническая обмотка. Первая обеспечивает максимальную электрическую прочность, но в ущерб силе индуктивной связи. Вторая, напротив, создает наилучшую связь, но чем она выше — тем больше шансов, что произойдет пробой между нею и вторичной обмоткой. Коническая обмотка — промежуточный вариант, позволяющий получить наилучший баланс между индуктивной связью и электрической прочностью. Рекордные напряжения мы получить не рассчитывали, так что выбор пал на винтовую обмотку: она позволяет добиться максимального КПД и проста в изготовлении.

В качестве проводника взяли провод питания аудиоаппаратуры с сечением 6 мм², восемь витков которого намотали на отрезок ПВХ-трубы большего диаметра, чем у каркаса вторичной обмотки, и закрепили обычной изолентой. Такой вариант нельзя считать идеальным, ведь ток высокой частоты течет лишь по поверхности проводников (скин-эффект), так что правильнее делать первичную обмотку из медной трубы. Но наш способ прост в изготовлении и при не слишком больших мощностях вполне работает.

Управление

Для обратной связи мы изначально планировали использовать трансформатор тока. Но он оказался неэффективным при малых мощностях катушки. А в случае антенны сложнее обеспечить первоначальный импульс, который запустит колебания (в случае трансформатора через его кольцо можно пропустить еще один провод, на который на долю секунды замыкать обычную батарейку). В итоге у нас получилась смешанная система: один выход трансформатора был подключен к входу микросхемы, а провод второго не был ни к чему подключен и служил антенной.

Короткие замыкания, пробитие транзисторов и прочие неприятности изначально предполагались очень даже возможными, так что дополнительно был изготовлен пульт управления с амперметром переменного тока на 10 А, автоматическим предохранителем на 10 А и парой «неонок»: одна показывает, есть ли напряжение на входе в пульт, а другая — идет ли ток к катушке. Такой пульт позволяет удобно включать и выключать катушку, отслеживать основные параметры, а также дает возможность многократно снизить частоту походов к щитку для включения «выбитых» автоматов.

Последняя опциональная деталь трансформатора — дополнительная емкость в виде проводящего шара или тора на высоковольтном выходе вторичной обмотки. Во многих статьях можно прочесть, что она способна существенно удлинить разряд (кстати, это широкое поле для экспериментов). Мы сделали такую емкость на 7 пФ, собрав вместе две стальные чашки-полусферы (из магазина IKEA).

Сборка

Когда все компоненты изготовлены, конечная сборка трансформатора не составляет никакой проблемы. Единственная тонкость — заземление нижнего конца вторичной обмотки. Увы, не во всех отечественных домах есть розетки с отдельными контактами земли. А там, где есть, эти контакты не всегда реально подключены (проверить это можно с помощью мультиметра: между контактом и проводом фазы должно быть около 220 В, а между ним и нулевым проводом — почти нуль).

Если у вас такие розетки есть (у нас в редакции нашлись), то заземлять нужно именно с их помощью, используя для подключения катушки соответствующую вилку. Часто советуют заземлять на батарею центрального отопления, но это категорически не рекомендуется, поскольку в некоторых случаях может привести к тому, что батареи в доме будут бить током ни о чем не подозревающих соседей.

Но вот наступает ответственный момент включения… И сразу же появляется первая жертва молнии — транзистор схемы питания. После замены выясняется, что схема в принципе вполне работоспособна, хотя и на небольших мощностях (200−500 Вт). При выходе на проектную мощность (порядка 1−2 кВт) транзисторы взрываются с эффектной вспышкой. И хотя эти взрывы не представляют опасности, режим «секунда работы — 15 минут замены транзистора» не является удовлетворительным. Тем не менее с помощью этого трансформатора вполне можно почувствовать себя в роли Зевса-громовержца.

Благородные цели

Хотя в наше время трансформатор Теслы, по крайней мере в его исходном виде, чаще всего находит применение в разнообразных шоу, сам Никола Тесла создавал его для куда более важных целей. Трансформатор является мощным источником радиоволн с частотой от сотни килогерц до нескольких мегагерц. На основе мощных трансформаторов Теслы планировалось создание системы радиовещания, беспроводного телеграфа и беспроводной телефонии.

Но наиболее грандиозный проект Теслы, связанный с использованием его трансформатора, — создание глобальной системы беспроводного энергоснабжения. Как он считал, достаточно мощный трансформатор или система трансформаторов сможет в глобальном масштабе менять заряд Земли и верхних слоев атмосферы.

В такой ситуации установленный в любой точке планеты трансформатор, имеющий такую же резонансную частоту, как и передающий, будет источником тока, и линии электропередач станут не нужны.

Именно стремление создать систему беспроводной передачи энергии погубило знаменитый проект Wardenclyff. Инвесторы были заинтересованы в появлении только окупаемой системы связи. А передатчик энергии, которую мог бы неконтролируемо принимать любой желающий по всему миру, напротив, грозил убытками электрическим компаниям и производителям проводов. А один из основных инвесторов был акционером Ниагарской ГЭС и заводов по производству меди…

В этой статье я расскажу о собранном мной устройстве-трансформаторе Тесла и об интересных эффектах, которые в нём наблюдались в процессе его работы.

Сразу хочу расставить точки над "и", данное устройство работает с высокими напряжениями, поэтому соблюдение элементарных правил техники безопасности ОБЯЗАТЕЛЬНО! Несоблюдение правил ведет к серьёзным травмам, помните это! Еще хочу отметить, что основную опасность в этом устройстве представляет ИСКРОВИК (разрядник), который в ходе своей работы является источником излучений широкого спектра в том числе и рентгеновского, помните об этом!

Начнём. Расскажу кратко о конструкции "моего" трансформатора Тесла, в простонародье "катушка тесла". Это устройство выполнено на простой элементной базе, доступной каждому желающему, Блок схема устройства приведена ниже.

Как видите я не стал изобретать велосипед и решил придерживаться классической схемы трансформатора Тесла, единственное что добавлено в классическую схему -это электронный преобразователь напряжения -роль которого повысить напряжение с 12 Вольт до 10 тысяч вольт! Кстати данный преобразователь напряжения может собрать и домохозяйка. В высоковольтной части схемы применяются следующие элементы: Диод VD является высоковольтным марки 5ГЕ200АФ- он имеет высокое сопротивление-это очень важно! Конденсаторы С1 и С2 имеют номинал 2200пФ каждый рассчитан на напряжение 5 кВ в итоге мы получаем суммарную ёмкость 1100пФ и напряжение накапливаемое 10 кВ, что очень для нас хорошо! Хочу заметить что емкость подбирается опытным путём, от неё зависит время длительности импульса в первичной катушки, ну и конечно от самой катушки. Время импульса должно быть меньше времени жизни электронных пар в проводнике первичной катушки трансформатора "Тесла", иначе мы будем иметь низкий эффект и энергия импульса будет тратится на нагрев катушки- что нам не нужно! Ниже показана собранная конструкция устройства.

Особого внимания заслуживает конструкция разрядника "искровика" , большинство современных схем трансформатора тесла имеют особую конструкцию искровика с приводом электродвигателя, где частота разрядов регулируется скоростью вращения, но я решил не придерживаться этой тенденции, так как там есть много отрицательных моментов. Я пошел по классической схеме разрядника. Технический рисунок разрядника приведён ниже.

Дешевый и практичный вариант не шумит и не светится, объясню почему. Данный разрядник выполнен из пластин меди толщиной 2-3 мм размерами 30х30 мм (для выполнения роли радиатора, так как дуга является источником тепла) с резьбой под болты в каждой пластине. Для устранения раскручивания болта при разряде и осуществления хорошего контакта необходимо применить пружину между болтом и пластиной. Для гашения шума при разряде сделаем специальную камеру, где будет происходить горение дуги, у меня камера сделана из куска трубы полиэтиленовой водопроводной (которая не содержит армировку) кусок трубы зажимается плотно межу двумя пластинами и желательно использовать герметизацию, например у меня специальный двусторонний скотч для утепления. Регулировка зазора выполняется вкручиванием и выкручиванием болта, позже объясню для чего.

Первичная катушка устройства. Первичная катушка устройства выполнена и медного провода типа ПВ 2,5мм.кв и тут возникает вопрос: "Для чего такой толстый провод?" Объясняю. Трансформатор Тесла это особое устройств, можно сказать аномальное, которое не относится по типу к обычных трансформаторам, где совсем другие законы. У обычного силового трансформатора важным значением в его работе является самоиндукция (противо ЭДС) которая компенсирует часть тока, при нагрузке обычного силового трансформатора противо ЭДС понижается и соответственно повышается ток, если мы уберем противо ЭДС с обычных трансформаторов, то они вспыхнут как свечки. А в трансформаторе Тесла всё наоборот- самоиндукция-наш враг! Поэтому что бы бороться с этим недугом - мы применяем толстый провод у которого маленькая индуктивность, а соответственно маленькая самоиндукция. Нам нужен мощный электромагнитный импульс и мы его получаем применяя данный тип катушки. Первичная катушка выполнена в виде спирали Архимеда в одной плоскости в количестве 6 витков, максимальный диаметр большого витка в моей конструкции 60 мм.

Вторичная катушка устройства- обычная катушка намотанная на полимерной водопроводной трубе (без армировки) диаметром 15 мм. Намотка катушки осуществляется эмаль проводом 0.01мм.кв виток в витку, в моём устройстве количество витков составляет 980 шт. Намотка вторичной катушки требует терпения и выдержки, у меня на это ушло около 4х часов.

Итак, устройство собрано! Теперь немного о регулировки устройства, устройство представляет собой два LC контура - первичный и вторичный! Для правильной работы устройства -необходимо ввести систему в резонанс, а именно в резонанс контуры LC. Фактически система вводится в резонанс автоматически, из-за широкого спектра частот электрической дуги, некоторые из которых совпадают с импедансом системы, так что нам остаётся сделать так, что бы оптимизировать дугу и выровнять частоты по мощности в ней- делается это очень просто - регулируем зазор разрядника. Регулировку разрядника нужно производить до появления наилучших результатов в виде длинны дуги. Изображение работающего устройства расположено ниже.

Итак устройство собрали и запустили- теперь оно у нас работает! Теперь мы можем производить свои наблюдения и изучать их. Хочу сразу предупредить: хоть токи высокой частоты являются безвредными для организма человека (в плане трансформатора Тесла), но световые эффекты вызванные ими могут влиять на роговицу глаза и вы рискуете получить ожог роговицы, так как спектр излучаемого света смещен в сторону ультрафиолетового излучения. Еще одна опасность, которая подстерегает при использовании трансформатора Тесла - это переизбыток озона в крови, которая может повлечь за собой головные боли, так как при работе устройство производятся большие порции этого газа, помните это!

Приступим к наблюдению за работающей катушкой Тесла. Наблюдения лучше всего производить в полной темноте, так вы более всего ощутите красоту всех эффектов которые просто поразят необычностью и таинственностью. Я производил наблюдения в полной темноте, ночью и часами мог любоваться свечением, которое производило устройство, за что и поплатился на следующее утро: у меня болели глаза как после ожога от электросварки, но это мелочи, как говориться: "наука требует жертв". Как только я в первый раз включил устройство я заметил красивое явление- это светящийся фиолетовый шар который находился посередине катушки, в процессе регулировки искрового промежутка я заметил что шар смещается в верх или в низ в зависимости от длинны промежутка, единственное на данный момент моё объяснение явление импеданса во вторичной катушке, что и вызывает данный эффект. Шар состоял из множества фиолетовых микро дуг, который выходили из одной области катушки и входили в другую, образовывая при этом сферу. Так как вторичная катушка устройства не заземлена, то наблюдался интересный эффект- фиолетовые свечения по обоим концам катушки. Я решил проверить как себя ведёт устройство при замкнутой вторичной катушке и заметил еще одну интересную вещь: усиление свечения и увеличение дуги происходящей от катушки во время прикосновения к ней - эффект усиления на лицо. Повторение эксперимента Теслы, в котором светятся газоразрядные лампы в поле трансформатора. При вводе обычной энергосберегающей газоразрядной лампы в поле трансформатора -она начинает светится, яркость свечение составляет примерно 45% от полной её мощности это примерно 8 Вт, при этом потребляемая мощность всей системы составляет 6 Вт. Для заметки: вокруг работающего устройства возникает высокочастотное электрическое поле которое имеет потенциал примерно 4кВ/см.кв. Так же наблюдается интересный эффект:так называемый щеточный разряд, светящийся фиолетовый разряд в виде густой щётки с частыми иглами размером до 20мм, напоминающие пушистый хвост животного. Этот эффект вызван высокочастотными колебаниями молекул газа в поле проводника, в процессе высокочастотных колебаний происходит разрушение молекул газа и образование озона, а остаточная энергия проявляется в виде свечения в ультрафиолетовом диапазоне. Наиболее яркое проявлением эффекта щетки возникает при использовании колбы с инертным газом, в моём случае использовал колбу от газоразрядной лампы ДНАТ, в которой содержится Натрий (Na) в газообразном состоянии, при этом возникает яркий эффект щетки, который похож на горение фитиля только при очень частых образованиях искр, данный эффект очень красив.

Результаты проведённой работы: Работа устройства сопровождается различными интересными и красивыми эффектами, которые в свою очередь заслуживают более тчательного изучения, известно что устройство генерирует электрическое поле высокой частоты, что является причиной образования большого количества озона, как побочный продукт ультрафиолетовое свечение. Особая конфигурация устройства даёт повод задуматься о принципах его работы, есть только догадки и теории о работе данного устройства, но объективной информации так и не было выдвинуто, так же как и не было досконального изучения данного устройства. В настоящий момент трансформатор Тесла собирается энтузиастами и используется лишь для развлечения по большей части, хотя устройство по моему мнению является ключем для понимания фундаментальной основы вселенной, которую знал и понимал Тесла. Использование трансформатора Тесла для развлечения - это все равно что забивать гвозди микроскопом... Сверх единичный эффект устройства..? возможно..., но у меня пока нет нужного оборудования для определения данного факта.

Мы можем увидеть и приобрести в магазин миниатюрную катушку Тесла в виде игрушки или декоративного светильника. Принцип действия такой же как у самого Тесла. Не чем не отличается, кроме масштабов и напряжения.

Давайте попробуем сделать катушку Тесла в домашних условиях.

— это резонансный трансформатор. В основном это LC схемы, настроенные на одну резонансную частоту.

Высоковольтный трансформатор используется для зарядки конденсатора.

Как только конденсатор достигает достаточного уровня заряда, он разряжается на разрядник и там проскакивает искра. Происходит короткое замыкание первичной обмотки трансформатора и в ней начинаются колебания.

Поскольку ёмкость конденсатора фиксирована, схема настраивается путем изменения сопротивления первичной обмотки, изменяя точку подключения к ней. При правильной настройке, очень высокое напряжение будет в верхней части вторичной обмотки, что приведет к впечатляющим разрядам в воздухе. В отличие от традиционных трансформаторов, соотношение витков между первичной и вторичной обмотками практически не влияет на напряжение.

Этапы строительства

Спроектировать и построить катушку Тесла довольно легко. Для новичка это кажется сложной задачей (мне это тоже казалось сложным), но можно получить рабочую катушку, следуя инструкциям в этой статье и проделав небольшие расчеты. Конечно, если вы хотите очень мощную катушку, нет никакого способа кроме изучения теории и проведения множества расчетов.

Вот основные шаги, с которых следует начать:

  1. Выбор источника питания. Трансформаторы которые используются в неоновых вывесках, вероятно, лучше всего подойдут для начинающих, так как они относительно дешевые. Я рекомендую трансформаторы с выходным напряжением не меньше чем 4кВ.
  2. Изготовление разрядника. Это могут быть просто два винта, вкрученных в паре миллиметров друг от друга, но я рекомендую приложить немного больше усилий. Качество разрядника сильно влияет на производительность катушки.
  3. Расчет ёмкости конденсатора. Используя формулу ниже, рассчитайте резонансную емкость для трансформатора. Значение конденсатора должно быть примерно в 1,5 раза больше этого значения. Вероятно, лучшим и наиболее эффективным решение будет сборка конденсаторов. Если вы не хотите тратить деньги, можете попробовать изготовить конденсатор сами, но он может не работать, а его емкость трудно определить.
  4. Изготовление вторичной обмотки. Используйте 900-1000 витков эмалированной медной проволоки 0,3-0,6мм. Высота катушки обычно равна 5 её диаметрам. Водосточная труба из ПВХ, возможно, не самый лучший, но доступный материал для катушки. Полый металлический шар прицеплен к верхней части вторичной обмотки, а её нижняя часть заземлена. Для этого желательно использовать отдельное заземление, т.к. при использовании общедомового заземления есть шанс испортить другие электроприборы.
  5. Изготовление первичной обмотки. Первичная обмотка может быть сделана из толстого кабеля, или ещё лучше из медной трубки. Чем толще трубка, тем меньше резистивных потерь. 6 миллиметровой трубы вполне достаточно для большинства катушек. Помните, что толстые трубы намного сложнее сгибать и медь трескается при многочисленных перегибах. В зависимости от размера вторичной обмотки, от 5 до 15 витков с шагом от 3 до 5 мм должно хватить.
  6. Соедините все компоненты, настройте катушку, и все готово!

Перед тем как начать делать катушку Тесла настоятельно рекомендуется ознакомиться с правилами ТБ и работы с высокими напряжениями!

Также обратите внимание, что не были упомянуты схемы защиты трансформатора. Они не были использованы, и пока проблем нет. Ключевое слово здесь — пока.

Катушка делалась в основном из тех деталей, которые были в наличии.
Это были:
4кВ 35mA трансформатор от неоновой вывески.
0.3мм медная проволока.
0.33μF 275V конденсаторы.
Пришлось докупить 75мм водосточную трубу ПВХ и 5 метров 6мм медной трубки.

Вторичная обмотка


Вторичная обмотка сверху и снизу покрыта пластиковой изоляцией, для предотвращения пробоя

Вторичная обмотка была первым изготовленным компонентом. Я намотал около 900 витков провода вокруг сливной трубы высотой около 37см. Длина использованного провода была примерно 209 метров.

Индуктивности и емкости вторичной обмотки и металлической сферы (либо тороида) можно рассчитать по формулам которые можно найти на других сайтах. Имея эти данные можно рассчитать резонансную частоту вторичной обмотки:
L = [(2πf) 2 C] -1

При использовании сферы диаметром 14см, резонансная частота катушки равна примерно 452 кГц.

Металлическая сфера или тороид

Первой попыткой было изготовление металлической сферы путем обвертывания пластикового шара фольгой. Я не смог разгладить фольгу на шаре достаточно хорошо, и решил изготовит тороид. Я сделал небольшой тороид, обмотав алюминиевой лентой гофрированную трубу, свернутую в круг. Я не смог получить очень гладкий тороид, но он работает лучше, чем сфера из-за своей формы и за счет большего размера. Для поддержки тороида под него был подложен фанерный диск.

Первичная обмотка

Первичная обмотка состоит из медных трубок диаметром 6 мм, намотанных по спирали вокруг вторичной. Внутренний диаметр обмотки 17см, внешний 29см. Первичная обмотка содержит 6 витков с расстоянием 3 мм между ними. Из-за большого расстояния между первичной и вторичной обмоткой, они могут быть слабо связаны между собой.
Первичная обмотка вместе с конденсатором является LC генератором. Необходимая индуктивность может быть рассчитана по следующей формуле:
L = [(2πf) 2 C] -1
С — емкость конденсаторов, F-резонансная частота вторичной обмотки.

Но эта формула и калькуляторы основанные на ней дают лишь приблизительное значение. Правильный размер катушки должен быть подобран экспериментально, поэтому лучше сделать её слишком большой, чем слишком маленькой. Моя катушка состоит из 6 витков и подключена на 4 витке.

Конденсаторы

Сборка из 24 конденсаторов с гасящим резистором 10МОм на каждом

Так как у меня было большое количество мелких конденсаторов, я решил собрать их в один большой. Значение конденсаторов может быть рассчитано по следующей формуле:
C = I ⁄ (2πfU)

Значение конденсатора для моего трансформатора 27.8 нФ. Фактическое значение должно быть немного больше или меньше этого, так как быстрый рост напряжения в связи с резонансом может привести к поломке трансформатора и / или конденсаторов. Небольшую защиту от этого обеспечивают гасящие резисторы.

Моя сборка конденсаторов состоит из трех сборок с 24 конденсаторами в каждой. Напряжение в каждой сборке 6600 В, общая ёмкость всех сборок 41.3нФ.

Каждый конденсатор имеет свой 10 МОм гасящий резистор. Это важно, так как отдельные конденсаторы могут сохранять заряд в течение очень долгого времени после того, как питание было отключено. Как видно из рисунка ниже, номинальное напряжение конденсатора является слишком низким, даже для 4 кВ трансформатора. Чтобы хорошо и безопасно работать оно должно быть по крайней мере, 8 или 12 кВ.

Разрядник

Мой разрядник это просто два винта с металлическим шариком в середине.
Расстояние регулируется таким образом, что разрядник будет искрить только тогда, когда он является единственным подключенным к трансформатору. Увеличение расстояния между ними теоретически может увеличить длину искры, но есть риск разрушения трансформатора. Для большей катушки необходимо строить разрядник с воздушным охлаждением.

Характеристики

Колебательный контур
Трансформатор NST 4кВ 35мА
Конденсатор 3 × 24 275VAC 0.33μF
Разрядник: два шурупа и металлический шар

Первичная обмотка
Внутренний диаметр 17см
Диаметр трубки обмотки 6 мм
Расстояние между витками 3 мм
Длина трубки первичной обмотки 5м
Витки 6

Вторичная обмотка
Диаметр 7,5 см
Высота 37 см
Проволока 0.3мм
Длина провода около 209m
Витки: около 900