Что называют силой архимеда. Вычисление силы архимеда

ЗАКОН АРХИМЕДА –закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.

Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается можем поднять на суше; то же явление наблюдается, когда по каким-либо причинам выброшенным на берегу оказывается кит – вне водной среды животное не может передвигаться – его вес превосходит возможности его мышечной системы. В то же время легкие тела сопротивляются погружению в воду: чтобы утопить мяч размером с небольшой арбуз требуется и сила, и ловкость; погрузить мяч диаметром полметра скорее всего не удастся. Интуитивно ясно, что ответ на вопрос – почему тело плавает (а другое – тонет), тесно связан с действием жидкости на погруженное в нее тело; нельзя удовлетвориться ответом, что легкие тела плавают, а тяжелые – тонут: стальная пластинка, конечно, утонет в воде, но если из нее сделать коробочку, то она может плавать; при этом ее вес не изменился. Чтобы понять природу силы, действующей на погруженное тело со стороны жидкости, достаточно рассмотреть простой пример (рис. 1).

Кубик с ребром a погружен в воду, причем и вода, и кубик неподвижны. Известно, что давление в тяжелой жидкости увеличивается пропорционально глубине – очевидно, что более высокий столбик жидкости более сильно давит на основание. Гораздо менее очевидно (или совсем не очевидно), что это давление действует не только вниз, но и в стороны, и вверх с той же интенсивностью – это закон Паскаля.

Если рассмотреть силы, действующие на кубик (рис. 1), то в силу очевидной симметрии силы, действующие на противоположные боковые грани, равны и противоположно направлены – они стараются сжать кубик, но не могут влиять на его равновесие или движение. Остаются силы, действующие на верхнюю и на нижнюю грани. Пусть h – глубина погружения верхней грани, r – плотность жидкости, g – ускорение силы тяжести; тогда давление на верхнюю грань равно

r · g · h = p 1

а на нижнюю

r · g (h+a ) = p 2

Сила давления равна давлению, умноженному на площадь, т.е.

F 1 = p 1 · a \up122, F 2 = p 2 · a \up122 , где a – ребро кубика,

причем сила F 1 направлена вниз, а сила F 2 – вверх. Таким образом, действие жидкости на кубик сводится к двум силам – F 1 и F 2 и определяется их разностью, которая и является выталкивающей силой:

F 2 – F 1 =r · g · (h+a ) a \up122 – r gha ·a 2 = pga 2

Сила – выталкивающая, так как нижняя грань, естественно, расположена ниже верхней и сила, действующая вверх, больше, чем сила, действующая вниз. Величина F 2 – F 1 = pga 3 равна объему тела (кубика) a 3 , умноженному на вес одного кубического сантиметра жидкости (если принять за единицу длины 1 см). Другими словами, выталкивающая сила, которую часто называют архимедовой силой, равна весу жидкости в объеме тела и направлена вверх. Этот закон установил античный греческий ученый Архимед , один из величайших ученых Земли.

Если тело произвольной формы (рис. 2) занимает внутри жидкости объем V , то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела – («жидкости все равно на что давить»).

Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V – тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V . Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V , т.е. pgV .

Сделав мысленно обратную замену – поместив в объеме V данное тело и отметив, что эта замена никак не скажется на распределении сил давления на поверхность объема V , можно сделать вывод: на погруженное в покоящуюся тяжелую жидкость тело действуют направленная вверх сила (архимедова сила), равная весу жидкости в объеме данного тела.

Аналогично можно показать, что если тело частично погружено в жидкость, то архимедова сила равна весу жидкости в объеме погруженной части тела. Если в этом случае архимедова сила равна весу, то тело плавает на поверхности жидкости. Очевидно, что если при полном погружении архимедова сила окажется меньше веса тела, то оно утонет. Архимед ввел понятие «удельного веса» g , т.е. веса единицы объема вещества: g = pg ; если принять, что для воды g = 1 , то сплошное тело из вещества, у которого g > 1 утонет, а при g < 1 будет плавать на поверхности; при g = 1 тело может плавать (зависать) внутри жидкости. В заключение заметим, что закон Архимеда описывает поведение аэростатов в воздухе (в покое при малых скоростях движения).

Владимир Кузнецов

Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа) . Сила называется силой Архимеда :

где - плотностьжидкости (газа), - ускорение свободного падения, а - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плаваетна поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена кцентру тяжестиэтого объёма.

Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давленийна примере прямоугольного тела.

где P A , P B - давления в точках A и B , ρ - плотность жидкости, h - разница уровней между точками A и B , S - площадь горизонтального поперечного сечения тела, V - объём погружённой части тела.

18. Равновесие тела в покоящейся жидкости

Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела. P выт = ρ ж gV погр

Для однородного тела плавающего на поверхности справедливо соотношение

где: V - объем плавающего тела; ρ m - плотность тела.

Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь гидравлической сущности этой теории.

Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние называется остойчивостью . Вес жидкости, взятой в объеме погруженной части судна называют водоизмещением , а точку приложения равнодействующей давления (т.е. центр давления) - центром водоизмещения . При нормальном положении судна центр тяжести С и центр водоизмещения d лежат на одной вертикальной прямой O"-O" , представляющей ось симметрии судна и называемой осью плавания (рис.2.5).

Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна KLM вышла из жидкости, а часть K"L"M" , наоборот, погрузилось в нее. При этом получили новое положении центра водоизмещения d" . Приложим к точке d" подъемную силу R и линию ее действия продолжим до пересечения с осью симметрии O"-O" . Полученная точка m называется метацентром , а отрезок mC = h называется метацентрической высотой . Будем считать h положительным, если точка m лежит выше точки C , и отрицательным - в противном случае.

Рис. 2.5. Поперечный профиль судна

Теперь рассмотрим условия равновесия судна:

1)если h > 0, то судно возвращается в первоначальное положение; 2)если h = 0, то это случай безразличного равновесия; 3) если h <0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее опрокидывание судна.

Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, тем больше будет остойчивость судна.

Выталкивающая сила, действующая на погруженное в жидкость тело, равна весу вытесненной им жидкости.

«Эврика!» («Нашел!») - именно этот возглас, согласно легенде, издал древнегреческий ученый и философ Архимед, открыв принцип вытеснения. Легенда гласит, что сиракузский царь Герон II попросил мыслителя определить, из чистого ли золота сделана его корона, не причиняя вреда самому царскому венцу. Взвесить корону Архимеду труда не составило, но этого было мало - нужно было определить объем короны, чтобы рассчитать плотность металла, из которого она отлита, и определить, чистое ли это золото.

Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну - и вдруг заметил, что уровень воды в ванне поднялся. И тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему. Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый побежал докладывать о своей победе в царский дворец, даже не потрудившись одеться.

Однако, что правда - то правда: именно Архимед открыл принцип плавучести . Если твердое тело погрузить в жидкость, оно вытеснит объем жидкости, равный объему погруженной в жидкость части тела. Давление, которое ранее действовало на вытесненную жидкость, теперь будет действовать на твердое тело, вытеснившее ее. И, если действующая вертикально вверх выталкивающая сила окажется больше силы тяжести, тянущей тело вертикально вниз, тело будет всплывать; в противном случае оно пойдет ко дну (утонет). Говоря современным языком, тело плавает, если его средняя плотность меньше плотности жидкости, в которую оно погружено.

Закон Архимеда можно истолковать с точки зрения молекулярно-кинетической теории . В покоящейся жидкости давление производится посредством ударов движущихся молекул. Когда некий объем жидкости вымещается твердым телом, направленный вверх импульс ударов молекул будет приходиться не на вытесненные телом молекулы жидкости, а на само тело, чем и объясняется давление, оказываемое на него снизу и выталкивающее его в направлении поверхности жидкости. Если же тело погружено в жидкость полностью, выталкивающая сила будет по-прежнему действовать на него, поскольку давление нарастает с увеличением глубины, и нижняя часть тела подвергается большему давлению, чем верхняя, откуда и возникает выталкивающая сила. Таково объяснение выталкивающей силы на молекулярном уровне.

Такая картина выталкивания объясняет, почему судно, сделанное из стали, которая значительно плотнее воды, остается на плаву. Дело в том, что объем вытесненной судном воды равен объему погруженной в воду стали плюс объему воздуха, содержащегося внутри корпуса судна ниже ватерлинии. Если усреднить плотность оболочки корпуса и воздуха внутри нее, получится, что плотность судна (как физического тела) меньше плотности воды, поэтому выталкивающая сила, действующая на него в результате направленных вверх импульсов удара молекул воды, оказывается выше гравитационной силы притяжения Земли, тянущей судно ко дну, - и корабль плывет.

На поверхность твердого тела, погруженного в жидкость, действуют, как мы знаем, силы давления. Так как давление увеличивается с глубиной погружения, то силы давления, действующие на нижнюю часть тела и направленные вверх, больше, чем силы, действующие на верхнюю его часть и направленные вниз, и мы можем ожидать, что равнодействующая сил давления будет направлена вверх. Опыт подтверждает это предположение.

Рис. 258. Если груз погружен в воду, показание динамометра уменьшается

Рис. 259. Пробка, погруженная в воду, натягивает нитку

Если, например, гирю, подвешенную к крючку динамометра, опустить в воду, то показание динамометра уменьшится (рис. 258).

Равнодействующая сил давления на тело, погруженное в жидкость, называется выталкивающей силой. Выталкивающая сила может быть больше силы тяжести, действующей на тело; например, кусок пробки, привязанный к дну сосуда, наполненного водой, стремясь всплыть, натягивает нитку (рис. 259). Выталкивающая сила возникает и в случае частичного погружения тела. Кусок дерева, плавающий на поверхности воды, не тонет именно благодаря наличию выталкивающей силы, направленной вверх.

Если тело, погруженное в жидкость, предоставить самому себе, то оно тонет, остается в равновесии или всплывает на поверхность жидкости в зависимости от того, меньше ли выталкивающая сила силы тяжести, действующей на тело, равна ей или больше ее. Выталкивающая сила зависит от рода жидкости, в которую, погружено тело. Например, кусок железа тонет в воде, но плавает в ртути; значит, в воде выталкивающая сила, действующая на этот кусок меньше, а в ртути - больше силы тяжести.

Найдем выталкивающую силу, действующую на твердое тело, погруженное в жидкость.

Рис. 260. а) Тело находится в жидкости, б) Тело заменено жидкостью

Выталкивающая сила, действующая на тело (рис. 260 а), есть равнодействующая сил давления жидкости на его поверхность. Представим себе, что тело удалено и его место занято той же жидкостью (рис. 260, б). Давление на поверхность такого мысленно выделенного объёма будет таким же, каким было давление на поверхность самого тела. Значит, и равнодействующая сила давления на тело (выталкивающая сила) равна равнодействующей сил давления на выделенный объем жидкости. Но выделенный объем жидкости находится в равновесии. Силы, действующие на него, - это сила тяжести и выталкивающая сила (рис. 261, а). Значит, выталкивающая сила равна по модулю силе тяжести, действующей на выделенный объем жидкости, и направлена вверх. Точкой приложения этой силы должен быть центр тяжести выделенного объема. В противном случае равновесие нарушилось бы, так как сила тяжести и выталкивающая сила образовали бы пару сил (рис. 261, б). Но, как уже сказано, выталкивающая сила для выделенного объема совпадает с выталкивающей силой тела. Мы приходим, таким образом, к закону Архимеда:

Выталкивающая сила, действующая на тело, погруженное в жидкость, равна по модулю силе тяжести, действующей на жидкость в объеме, занимаемом телом (вытесненный объем), направлена вертикально вверх и приложена в центре тяжести этого объема. Центр тяжести вытесненного объема называют центром давления.

Рис. 261. а) Равнодействующая сил давления на поверхность погруженного тела равна силе тяжести, действующей на жидкость, объем которой равен объему тела, б) Если бы точка приложения равнодействующей силы не совпадала с центром тяжести вытесненного объема жидкости, то получилась бы пара сил и равновесие этого объема было бы невозможным

Для тела, имеющего простую форму, можно вычислить выталкивающую силу, рассмотрев силы давления на его поверхность. Пусть, например, тело, погруженное в жидкость, имеет форму прямого параллелепипеда и расположено так, что две его противолежащие грани горизонтальны (рис. 262). Площадь его основания обозначим через , высоту - через , а расстояние от поверхности до верхней грани - через .

Равнодействующая сил давления жидкости составляется из сил давления на боковую поверхность параллелепипеда и на его основания. Силы действующие на боковые грани, взаимно уничтожаются, так как для противолежащих граней силы давления равны по модулю и противоположны по направлению. Давление на верхнее основание равно , на нижнее основание равно . Следовательно, силы давления на верхнее и на нижнее основания равны соответственно

причем сила направлена вниз, а сила - вверх. Таким образом, равнодействующая всех сил давления на поверхность параллелепипеда (выталкивающая сила) равна разности модулей сил и :

и направлена вертикально вверх. Но - это объем параллелепипеда, а - масса вытесненной телом жидкости. Значит, выталкивающая сила действительно равна по модулю силе тяжести, действующей на вытесненный объем жидкости.

Рис. 262. К вычислению выталкивающей силы

Рис. 263. Опытная проверка закона Архимеда при помощи «ведерка Архимеда»

Если тело, подвешенное к чашке весов, погрузить в жидкость, то весы показывают разность между весом тела и выталкивающей силой, т. е. весом вытесненной жидкости. Поэтому закону Архимеда придают иногда следующую формулировку: тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость.

Для иллюстрации справедливости этого вывода сделаем следующий опыт (рис. 263): пустое ведерко («ведерко Архимеда») и сплошной цилиндр , имеющий объем, в точности равный вместимости ведерка, подвесим к динамометру. Затем, подставив сосуд с водой, погрузим цилиндр в воду; равновесие нарушится, и растяжение динамометра уменьшится. Если теперь наполнить ведерко водой, то динамометр снова растянется до прежней длины. Потеря в весе цилиндра как раз равна весу воды в объеме цилиндра.

По закону равенства действия и противодействия выталкивающей силе, с которой жидкость действует на погруженное тело, соответствует сила, с которой тело действует на жидкость. Эта сила направлена вертикально вниз и равна весу жидкости, вытесненной телом. Следующий опыт демонстрирует сказанное (рис. 264). Неполный стакан с водой уравновешивают на весах. Затем в стакан погружают тело, подвешенное на штативе; при этом чашка со стаканом опускается, и для восстановления равновесия приходится добавить на другую чашку гирю, вес которой равен весу воды, вытесненной телом.

Рис. 264. Вес гири, которую нужно положить на левую чашку весов, равен весу воды, вытесненной телом

160.1. Найдите выталкивающую силу, действующую на погруженный в воду камень массы 3 кг, если его плотность равна .

160.2. Куб с ребром 100 мм погружен в сосуд, наполненный водой, поверх которой налит керосин так, что линия раздела обеих жидкостей проходит посередине ребра куба. Найдите выталкивающую силу, действующую на куб. Плотность керосина равна .

160.3 . Кусок пробки массы 10 г, обмотанный медной проволокой с поперечным сечением , остается в равновесии в воде, не погружаясь и не всплывая (табл. 1). Найдите длину проволоки.

160.4. Что произойдет с весами, находящимися в равновесии, если в стакане с водой, стоящий на чашке весов, погрузить палец, не прикасаясь пальцем ни к дну, ни к стенкам стакана?

160.5. К чашкам весов подвешены на нитках кусок меди и кусок железа массы 500 г каждый (табл. 1). Нарушится ли равновесие, если медь погрузить в воду, а железо - в керосин плотности . Гирю какой массы и на какую чашку весов нужно поставить, чтобы восстановить равновесие?

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Актуальность: Если внимательно присмотреться к окружающему миру, то можно открыть для себя множество событий, происходящих вокруг. Издревле человека окружает вода. Когда мы плаваем в ней, то наше тело выталкивает на поверхность какие-то силы. Я давно задаю себе вопрос: «Почему тела плавают или тонут? Вода выталкивает предметы?»

Моя исследовательская работа направлена на то, чтобы углубить полученные на уроке знания об архимедовой силе. Ответы на интересующие меня вопросы, используя жизненный опыт, наблюдения за окружающей действительностью, провести собственные эксперименты и объяснить их результаты, которые позволят расширить знания по данной теме. Все науки связаны между собой. А общий объект изучения всех наук - это человек «плюс» природа. Я уверен, что исследование действия архимедовой силы сегодня является актуальным.

Гипотеза: Я предполагаю, что в домашних условиях можно рассчитать величину выталкивающей силы действующей на погруженное в жидкость тело и определить зависит ли она от свойств жидкости, объема и формы тела.

Объект исследования: Выталкивающая сила в жидкостях.

Задачи:

Изучить историю открытия архимедовой силы;

Изучить учебную литературу по вопросу действия архимедовой силы;

Выработать навыки проведения самостоятельного эксперимента;

Доказать, что значение выталкивающей силы зависит от плотности жидкости.

Методы исследования:

Исследовательские;

Расчетные;

Информационного поиска;

Наблюдений

1. Открытие силы Архимеда

Существует знаменитая легенда о том, как Архимед бежал по улице и кричал «Эврика!» Это как раз повествует об открытии им того, что выталкивающая сила воды равна по модулю весу вытесненной им воды, объем которой равен объему погруженного в нее тела. Это открытие названо законом Архимеда.

В III веке до нашей эры жил Гиерон - царь древнегреческого города Сиракузы и захотел он сделать себе новую корону из чистого золота. Отмерил его строго сколько нужно, и дал ювелиру заказ. Через месяц мастер вернул золото в виде короны и весила она столько, сколько и масса данного золота. Но ведь всякое бывает и мастер мог схитрить, добавив серебро или того хуже - медь, ведь на глаз не отличишь, а масса такая, какая и должна быть. А царю узнать охота: честно ль сделана работа? И тогда, попросил он ученого Архимеда, проверить из чистого ли золота сделал мастер ему корону. Как известно, масса тела равна произведению плотности вещества, из которого сделано тело, на его объем: . Если у разных тел одинаковая масса, но они сделаны из разных веществ, то значит, у них будет разный объем. Если бы мастер вернул царю не ювелирно сделанную корону, объем которой определить невозможно из-за ее сложности, а такой же по форме кусок металла, который дал ему царь, то сразу было бы ясно, подмешал он туда другого металла или нет. И вот принимая ванну, Архимед обратил внимание, что вода из нее выливается. Он заподозрил, что выливается она именно в том объеме, какой объем занимают его части тела, погруженные в воду. И Архимеда осенило, что объем короны можно определить по объему вытесненной ей воды. Ну а коли можно измерить объем короны, то его можно сравнить с объемом куска золота, равного по массе. Архимед погрузил в воду корону и измерил, как увеличился объем воды. Также он погрузил в воду кусок золота, у которого масса была такая же, как у короны. И тут он измерил, как увеличился объем воды. Объемы вытесненной в двух случаях воды оказались разными. Тем самым мастер был изобличен в обмане, а наука обогатилась замечательным открытием.

Из истории известно, что задача о золотой короне побудила Архимеда заняться вопросом о плавании тел. Опыты, проведенные Архимедом, были описаны в сочинении «О плавающих телах», которое дошло до нас. Седьмое предложение (теорема) этого сочинения сформулировано Архимедом следующим образом: тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут опускаться пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела.

Интересно, что сила Архимеда равна нулю, когда погруженное в жидкость тело плотно, всем основанием прижато ко дну.

Открытие основного закона гидростатики - крупнейшее завоевание античной науки.

2. Формулировка и пояснения закона Архимеда

Закон Архимеда описывает действие жидкостей и газов на погруженное в них тело, и является одним из главных законов гидростатики и статики газов.

Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме погруженной части тела - эта сила называется силой Архимеда :

,

где - плотность жидкости (газа), - ускорение свободного падения, - объём погружённой части тела (или часть объёма тела, находящаяся ниже поверхности).

Следовательно, архимедова сила зависит только от плотности жидкости, в которую погружено тело, и от объема этого тела. Но она не зависит, например, от плотности вещества тела, погруженного в жидкость, так как эта величина не входит в полученную формулу.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

3. Определение силы Архимеда

Силу, с которой тело, находящееся в жидкости, выталкивается ею, можно определить на опыте используя данный прибор:

Небольшое ведерко и тело цилиндрической формы подвешиваем на пружине, закрепленной в штативе. Растяжение пружины отмечаем стрелкой на штативе, показывая вес тела в воздухе. Приподняв тело, под него подставляем стакан с отливной трубкой, наполненный жидкостью до уровня отливной трубки. После чего тело погружают целиком в жидкость. При этом часть жидкости, объём которой равен объёму тела, выливается из отливного сосуда в стакан. Указатель пружины поднимается вверх, пружина сокращается, показывая уменьшение веса тела в жидкости. В данном случае на тело, наряду с силой тяжести, действует еще и сила, выталкивающая его из жидкости. Если в ведёрко налить жидкость из стакана (т.е. ту, которую вытеснило тело), то указатель пружины возвратится к своему начальному положению.

На основании этого опыта можно заключить, что сила, выталкивающая тело, целиком погруженное в жидкость, равна весу жидкости в объёме этого тела. Зависимость давления в жидкости (газе) от глубины погружения тела приводит к появлению выталкивающей силы (силы Архимеда), действующей на любое тело, погруженное в жидкость или газ. Тело при погружении двигается вниз под действием силы тяжести. Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме.

Данный опыт подтверждает, что архимедова сила равна весу жидкости в объёме тела.

4. Условие плавания тел

На тело, находящееся внутри жидкости, действуют две силы: сила тяжести, направленная вертикально вниз, и архимедова сила, направленная вертикально вверх. Рассмотрим, что будет происходить с телом под действием этих сил, если вначале оно было неподвижно.

При этом возможны три случая:

1) Если сила тяжести больше архимедовой силы, то тело опускается вниз, то есть тонет:

, то тело тонет;

2) Если модуль силы тяжести равен модулю архимедовой силы, то тело может находиться в равновесии внутри жидкости на любой глубине:

, то тело плавает;

3) Если архимедова сила больше силы тяжести, то тело будет поднимается из жидкости - всплывать:

, то тело плавает.

Если всплывающее тело частично выступает над поверхностью жидкости, то объем погруженной части плавающего тела такой, что вес вытесненной жидкости равен весу плавающего тела.

Архимедова сила больше силы тяжести, если плотность жидкости больше плотности погруженного в жидкость тела, если

1) =— тело плавает в жидкости или газе,2) >— тело тонет,3) < — тело всплывает до тех пор, пока не начнет плавать.

Именно эти принципы соотношения силы тяжести и силы Архимеда применяются в судоходостронии. Однако на воде держатся громадные речные и морские суда, изготовленные из стали, плотность которой почти в 8 раз больше плотности воды. Объясняется это тем, что из стали делают лишь сравнительно тонкий корпус судна, а большая часть его объема занята воздухом. Среднее значение плотности судна при этом оказывается значительно меньше плотности воды; поэтому оно не только не тонет, но и может принимать для перевозки большое количество грузов. Суда, плавающие по рекам, озерам, морям и океанам, построены из разных материалов с различной плотностью. Корпус судов обычно делают из стальных листов. Все внутренние крепления, придающие судам прочность, также изготавливают из металлов. Для постройки судов используют разные материалы, имеющие по сравнению с водой как большую, так и меньшую плотность. Вес воды, вытесненной подводной частью судна, равен весу судна с грузом в воздухе или силе тяжести, действующей на судно с грузом.

Для воздухоплавания вначале использовали воздушные шары, которые раньше наполняли нагретым воздухом, сейчас - водородом или гелием. Для того чтобы шар поднялся в воздух, необходимо, чтобы архимедова сила (выталкивающая), действующая на шар, была больше силы тяжести.

5. Проведение эксперимента

    Исследовать поведение сырого яйца в жидкостях разного рода.

Задача: доказать, что значение выталкивающей силы зависит от плотности жидкости.

Я взял одно сырое яйцо и жидкости разного рода (приложение 1):

Вода чистая;

Вода, насыщенная солью;

Подсолнечное масло.

Сначала я опустил сырое яйцо в чистую воду - яйцо утонуло - «пошло ко дну» (приложение 2). Потом в стакан с чистой водой я добавил столовую ложку поваренной соли, в результате яйцо плавает (приложение 3). И наконец, я опустил яйцо в стакан с подсолнечным маслом - яйцо опустилось на дно (приложение 4).

Вывод: в первом случае плотность яйца больше плотности воды и поэтому яйцо утонуло. Во втором случае плотность солёной воды больше плотности яйца, поэтому яйцо плавает в жидкости. В третьем случае плотность яйца также больше плотности подсолнечного масла, поэтому яйцо утонуло. Следовательно, чем больше плотность жидкости, тем сила тяжести меньше.

2. Действие Архимедовой силы на тело человека в воде.

Определить на опыте плотность тела человека, сравнить ее с плотностью пресной и морской воды и сделать вывод о принципиальной возможности человека плавать;

Вычислить вес человека в воздухе, архимедову силу, действующую на человека в воде.

Для начала с помощью весов я измерил массу своего тела. Затем измерил объем тела (без объема головы). Для этого я налил в ванну воды столько, чтобы при погружении в воду я был полностью в воде (за исключением головы). Далее с помощью сантиметровой ленты отметил от верхнего края ванны расстояние до уровня воды ℓ 1 , а затем - при погружении в воду ℓ 2 . После этого с помощью предварительно проградуированной трехлитровой банки стал наливать в ванну воду от уровня ℓ 1 до уровня ℓ 2 - так я измерил объем вытесненной мной воды (приложение 5). Плотность я рассчитал с помощью формулы:

Сила тяжести, действующая на тело в воздухе, была рассчитана по формуле: , где - ускорение свободного падения ≈ 10 . Значение выталкивающей силы было рассчитано с помощью формулы описанной в пункте 2.

Вывод:Тело человекаплотнее пресной воды, а, значит, оно в ней тонет. Человеку легче плавать в море, чем в реке, так как плотность морской воды больше, а следовательно больше значение выталкивающей силы.

Заключение

В процессе работы над этой темой мы узнали для себя много нового и интересного. Круг наших познаний увеличился не только в области действия силы Архимеда, но и применении ее в жизни. Перед началом работы мы имели о ней далеко неподробное представление. При проведении опытов мы подтвердили экспериментально справедливость закона Архимеда и выяснили, что выталкивающая силазависит от объема тела и плотности жидкости, чем больше плотность жидкости, тем архимедова сила больше. Результирующая сила, которая определяет поведение тела в жидкости, зависит от массы, объёма тела и плотности жидкости.

Помимо проделанных экспериментов, была изучена дополнительная литература об открытии силы Архимеда, о плавании тел, воздухоплавании.

Каждый из Вас может сделать удивительные открытия, и для этого не нужно обладать ни особенными знаниями, ни мощным оборудованием. Нужно лишь немного внимательней посмотреть на окружающий нас мир, быть чуть более независимым в своих суждениях, и открытия не заставят себя ждать. Нежелание большинства людей познавать окружающий мир оставляет большой простор любознательным в самых неожиданных местах.

Список литературы

1.Большая книга экспериментов для школьников - М.: Росмэн, 2009. - 264 с.

2. Википедия: https://ru.wikipedia.org/wiki/Закон_Архимеда.

3. Перельман Я.И. Занимательная физика. - книга 1. - Екатеринбург.: Тезис, 1994.

4. Перельман Я.И. Занимательная физика. - книга 2.- Екатеринбург.: Тезис, 1994.

5. Перышкин А.В. Физика: 7 класс: учебник для общеобразовательных учреждений / А.В. Перышкин. - 16-е изд., стереотип. - М.: Дрофа, 2013. - 192 с.: ил.

Приложение 1

Приложение 2

Приложение 3

Приложение 4