Инструкция по эксплуатации котла дквр 20 13. Реферат: краткое описание котла типа дквр

Проектируемой теплогенерирующей установкой является котельный агрегат ДКВр 20 - 13.

Котел ДКВр 20-13 (Первое число после наименования котла обозначает паропроизводительность, т/ч. Второе число - давление пара в барабане котла, кгс/смІ ати) - двухбарабанный, вертикально-водотрубный с естественной циркуляцией, реконструированный, бескаркасной конструкции. Он используется для производства насыщенного и перегретого (при установке пароперегревателя) пара давлением 14 и 24 кг/см 2 .

Котел предназначен для произведственно-отопительных и районных котельных. При сжигании газообразного топлива компонуется камерной топкой.

Котельный агрегат ДКВр 20-13 представляет собой два продольно-расположенных барабана, установленных друг над другом, диаметром 1000 мм сваренных из листовой стали. Поверхность верхнего барабана должна быть хорошо изолирована огнеупорным материалом для обеспечения требуемого срока службы котла.

В результате сжигания топлива в топке образуются дымовые газы высокой температуры. Эти газы проходят по газоходам котла, образуемым перегородкам 6 , омывают пучки труб, по которым движется (циркулирует) вода. В результате газы отдают воде часть своего тепла и охлаждаются, а вода нагревается и превращается в пар, собираемый в верхнем барабане котла. Воздух для горения подается в топку снизу через поддувало (зольник), где частично собирается зола и мелкие кусочки топлива, провалившиеся через решетку.

Котельный агрегат обмурован со всех сторон тяжелыми кирпичными стенами толщиной 510 мм за исключением задней стенки толщиной 380 мм. Котел устанавливается на бетонном основании выше уровня чистого пола.

По боковым стенам обмуровки котельного агрегата вмонтированы люки для осмотра котла изнутри. Штампованное днище нижнего барабана имеет специальные лазы, закрываемые люками. Таким образом, у котла имеются четыре люка для ревизии с правой и с левой сторон (по два на каждую) и один с фронтовой стороны между газовыми горелками. С левой и с задней сторон можно произвести тщательный наружный осмотр котельного агрегата, а также произвести качественную регулировку расхода пара, благодаря смотровым площадкам, закрепленным на металлическом каркасе, который опоясывает обмуровку котла. В данном проекте запроектировано три смотровые площадки, подъем на которые можно осуществить по металлическим лестницам, приваренным к каркасу площадок. В свою очередь все смотровые площадки оборудованы перилами, установленными для предотвращения падения служебного персонала с этих площадок.

В верхней части котельного агрегата установлены два взрывных клапана. При нерасчетном режиме работы котельного агрегата - взрыве, резко возрастает объем дымовых газов. Дымовые газы свободно проходят через крупноячеистую сетку, затем разрушают асбестовую плиту и выходят по направляющей трубе наружу. (Схема взрывного клапана представлена на рис. 1)

Рис. 1.

1 - отверстие в обмуровке для установки взрывного клапана; 2 - обмуровка; 3 - крупноячеистая сетка; 4 - асбестовая плита (может выдерживать высокую температуру); 5 - крепление; 6 - направление, по которому в случае взрыва движутся дымовые газы; 7 - направляющая труба.

На верхнем барабане запроектирована вся необходимая запорно-регулирующая, предохранительная (Схема предохранительного клапана представлена на рис. 2), контрольно-пропускная арматура, а также манометр, измеряющий давление в барабане котлоагрегата. На передней части котла установлены водоуказательные приборы.

Рис. 2.

1 - клапан; 2 - стенки барабана котла; 3 - защитный корпус; 4 - рычажное устройство; 5 - грузы, регулирующие давление срабатывания клапана; 6 - траектория движения воды или пара.

На фронтовой части котла установлены три газомазутные горелки типа ГМГм, через которые топливо подается в топку котельного агрегата. Для этого во фронтальной стене обмуровки имеются расширяющиеся отверстия в топку, необходимые для образования факела горения и раскрытия его на необходимый угол.

По боковым сторонам за пределы вынесены трубы, соединенные с верхними и нижними коллекторами и обоими барабанами. Эти трубы - выносные циклоны. Выносные циклоны необходимы для разделения пароводяной смеси соответственно на пар и воду. От выносных циклонов в верхней части котла к верхнему барабану выходят две трубы, по которым движется пар.

С задней стороны в обмуровке имеется отверстие, через которое из конвективной части котла выходят дымовые газы. К этому отверстию возможно присоединение поверхностей нагрева - воздухоподогревателя или экономайзера. По заданию необходимо рассчитать и запроектировать поверхность нагрева - экономайзер, который соединен с котлом с помощью специального короба.

На наружной поверхности обмуровки имеются отверстия, в которые вмонтированы трубы периодической продувки. В нижний барабан дополнительно подведены трубы для прогрева котла паром при растопке.

Перед кипятильным пучком котлов расположена топочная камера, которая для уменьшения потерь тепла с уносом и химическим недожогом делится кирпичной шамотной перегородкой на две части: собственно топку и камеру догорания. Дымовые газы совершают в котле горизонтально - поперечное с несколькими поворотами движение. Это обеспечивается установкой между кипятильными трубами чугунных перегородок, которые делят их на первый и второй газоходы. Выход газов из камеры догорания и из котла, как правило, асимметричен.

Вода в трубы боковых экранов поступает одновременно из верхнего и нижнего барабанов.

В котлах ДКВр 20-13 применено двухступенчатое испарение. Первая ступень испарения включает конвективный пучок, фронтовой и задний экраны, а также боковые экраны заднего топочного блока. Боковые экраны переднего топочного блока включены во вторую ступень испарения. Сепарационными устройствами второй ступени испарения являются выносные циклоны центробежного типа. Циркуляционные контуры второй ступени испарения замыкаются через выносные циклоны и их опускные трубы; первой ступени испарения - через опускную часть конвективного пучка. Питание циркуляционного контура второй ступени испарения осуществляется из нижнего барабана в выносные циклоны.

Газоходы разделены между собой чугунной перегородкой по всей высоте газохода котла с окном (от фронта котла) справа. Передняя часть нижнего барабана крепится неподвижно, а остальные части котла имеют скользящие опоры, а также реперы, которые контролируют удлинения элементов при температурном расширении.

Топка сформирована экранными трубами, которые образуют соответственно: передний или фронтовой экран; левый боковой экран; правый боковой экран (аналогично левому); задний экран топки.

Барабаны котла, рассчитанные на давление 14 кгс/см 2 имеют одинаковый внутренний диаметр (1000 мм) при толщине стенок 13 мм. Для осмотра барабанов и расположенных в них устройств, а также для очистки труб шарошками на заднем и переднем днищах имеются лазы. В водяном пространстве верхнего барабана находится питательная труба для непрерывной продувки; в паровом объеме - сепарационные устройства также устанавливается воздушный кран и собственно паропровод, на котором установлен главный парозапорный вентиль. Следует также отметить, что в данной работе запроектирован кран для отвода пара на собственные нужды котельной. В верхнем барабане над топкой установлены две легкоплавкие вставки (смесь олова и свинца), которые плавятся при температуре около 300 °С, что приводит к выпуску воды в топку, прекращению горения топлива и предохранению барабана от перегрева. На верхнем барабане установлена арматура: водоуказательные приборы, предохранительные клапаны, термометр, манометр. На всех котлах ДКВР над топкой и газоходом установлены взрывные предохранительные клапаны. В нижнем барабане установлены перфорированная труба для периодической продувки, устройство для прогрева барабана при растопке и штуцер для спуска воды.

Движение топочных газов осуществляется следующим образом:

Топливо и воздух подаются в горелки, а в топке образуется факел горения. Теплота от топочных газов в топке, за счет радиационного и конвективного теплообмена, передается всем экранным трубам (радиационным поверхностям нагрева), где эта теплота за счет теплопроводности металлической стенки и конвективного теплообмена от внутренней поверхности труб передается воде, циркулирующей по экранам. Затем топочные газы с температурой 900…1100 °С выходят из топки и через окно справа в кирпичной перегородке переходят в камеру догорания, огибают кирпичную перегородку с левой стороны и входят в первый газоход, где передают теплоту конвективному пучку труб. С температурой около 600 °С топочные дымовые газы, огибая чугунную перегородку с правой стороны, входят во второй газоход кипятильного пучка труб и с температурой около 200…250 °С, с левой стороны, выходят из котла и направляются в водяной экономайзер.

За котельным агрегатом устанавливается поверхность нагрева - экономайзер. Экономайзер является одной из составных частей котлоагрегата. Так как температура воды в котельном агрегате везде одинакова и растет с увеличением давления, то без установки водяного экономайзера глубокое охлаждение уходящих газов невозможно.

Котел оборудован устройствами и приборами, обеспечивающими безопасную работу котельного агрегата и позволяющими безотказно и быстро производить пуск, остановку и регулирование его работы. За нормальной эксплуатацией котельного агрегата необходимо наблюдать и контролировать происходящие в нем процессы. Для этого применяют различные контрольно-измерительные приборы. Изменение давления в котельном агрегате или отклонение уровня воды в барабане за допустимые пределы может вызвать аварийную ситуацию, связанную с непосредственной опасностью для обслуживающего персонала. Поэтому, согласно правилам, на паровом котле для непосредственного наблюдения и контроля за давлением и уровнем воды в барабане установлены манометр, водоуказательные приборы и предохранительные устройства.

Предохранительная арматура служит для ограничения движения, расхода и направления движения среды. К ней относятся: предохранительные клапаны на питательных линиях, автоматические быстрозапорные клапаны на паропроводах, обратные клапаны. Обратные клапаны пропускают среду только в одном направлении и автоматически закрываются при обратном ее движении. Устанавливают их на входе питательной воды в парогенератор для исключения возможности ее обратного движения из котла при падении давления в питательном трубопроводе. Обратные клапаны устанавливают также на напорных патрубках питательных насосов для предотвращения обратного движении воды при останове последних.

Циркуляционная схема котла приведена на рис. 4. Питательная вода по питательным трубопроводам 15 поступает в верхний барабан 16 , где смешивается с котловой водой. Из верхнего барабана по последним рядам труб конвективного пучка 18 вода опускается в нижний барабан 17 , откуда по подпиточным трубам 21 направляется в циклоны 8 . Из циклонов по опускным трубам 26 вода подается к нижним камерам 24 боковых экранов 22 второй ступени испарения, пароводяная смесь поднимается в верхние камеры 10 этих экранов, откуда поступает по трубам 9 в выносные циклоны 8 , в которых разделяется на пар и воду. Вода по трубам 31 опускается в нижние камеры 20 экранов, отсепарированный пар по перепускным трубам 12 отводится в верхний барабан. Циклоны соединены между собой перепускной трубой 25 .

Экраны первой ступени испарения питаются из нижнего барабана. В нижние камеры 20 боковых экранов 22 вода поступает по соединительным трубам 30 , в нижнюю камеру 19 заднего экрана по другим трубам. Фронтовой экран 2 питается из верхнего барабана - вода поступает в нижнюю камеру 3 по опускным трубам 27 .

Пароводяная смесь отводится в верхний барабан из верхних камер 10 боковых экранов первой ступени испарения по пароотводящим трубам 28 , из верхней камеры 11 заднего экрана трубами 29 , из верхней камеры 7 фронтового экрана трубами 6. Фронтовой экран имеет рециркуляционные трубы 5 .

В верхней части парового объема верхнего барабана установлены жалюзийные сепарационные устройства с дырчатыми (перфорированными) листами.

В верхнем барабане (в водяном объеме) установлен корытообразный направляющий щит. Для изменения направления движения потока пароводяной смеси, выходящей из промежутка между стенками барабана и направляющим щитом, над верхними кромками направляющего Щита установлены продольные отбойные козырьки.

Рис. 4.

1 - вторая ступень испарения; 2 - фронтовой экран; 3 - камера; 4 - непрерывная продувка; 5 - рециркуляционные трубы; 6 - перепускная труба из верхнего коллектора в барабан; 7, 10, 11 - верхние камеры; 8 - выносные циклоны; 9 - перепускные трубы из верхней камеры в выносной циклон; 12 - перепускные трубы из выносного циклона в барабан; 13 - патрубок отвода пара; 14 - сепарациоиное устройство; 15 - питательные линии; 16 - верхний барабан; 17 - нижний барабан; 18 - конвективный пучок; 19, 20, 23, 24 - нижние камеры; 21 - подпиточные трубы; 22 - боковые экраны; 25 - перепуская труба; 26 - опускные трубы; 27, 29, 30, 31 - перепускные трубы; 28 - пароотводящие трубы.

Паровой котёл серии ДКВР, оборудованный мазутными газовыми топками двухбарабанного типа и вертикально-водотрубной конфигурации, используется с целью выработки пара (перегретый, насыщенный). Генерируемый продукт применяется в технологических процессах на промышленных объектах, в вентиляционной и отопительной системе, горячем водоснабжении.

Рис. 1

Преимущества агрегатов серии ДКВР

Образец этой серии котел ДКВР 4 13, обладает ярко выраженными преимуществами, свойственные всем изделиям этого модельного ряда:

  • КПД 91% - достигается у котлов ДКВР 6 5 13 благодаря качественной аэродинамической и гидравлической схеме функционирования;
  • дешёвое обслуживание и эксплуатация;
  • простота и удобство монтажа котлов ДКВР 6 5 13 – сборная конструкция изделия, позволяет его устанавливать, не производя демонтаж стен;
  • универсальность - возможность переоборудования, позволяющего использовать разные виды топлива;
  • доступно регулирование степени производительности котлов ДКВР 6 5 13 – 40 – 150% (максимально эффективное и экономичное использование);
  • наличие водогрейного режима;
  • разнообразие комплектаций, позволяющее совмещать котел ДКВР 4 13 с автоматизированными горелками.

Конструктивные особенности изделий серии ДКВР

Схема агрегата, имеющего уровень производительности 10т/ч, абсолютно не зависит от устройства топки и вида топлива. Предусмотрено оснащение котлов ДКВР 6 5 13 парой барабанов, располагающихся вдоль его оси. Кипятильный пучок формируется из изогнутых труб, а топочная камера экранируется. Паровой котел ДКВР 4 13 отличается удобной конструкцией топки, разграниченной перегородкой из шамотного кирпича, благодаря чему образуется камера догорания.


Рис. 2

Внимание! Подобная конструкция топки парового котла ДКВР 20 13, позволяет исключить затягивание в пучок открытого пламени и существенно снижает потери, возникающие из-за химического недожога и уноса.

Иную конструкцию имеет паровой котёл ДКВР 10 13, у которого отделение камеры догорания осуществляется посредством труб, относящихся к заднему экрану. Независимо от модификации изделия, предусмотрено разделение шамотной перегородкой двух рядов труб, относящихся к пучку, благодаря чему он не контактирует с камерой догорания.

Каждый котел оснащается перегородкой из чугуна, находящейся в пучке. Таким образом, они разделяется на два газохода. Благодаря подобной конструктивной схеме, гарантируется разворот газов в горизонтальной плоскости. Трубы будут омываться в поперечной плоскости.

Характерной особенностью котла ДКВР 4 13, считается выход газов по асимметричной траектории, как из камеры догорания, так и из самого котла. Отдельные кипятильные трубы монтировать не обязательно, в том случае, когда пароперегреватель, установлен в газоходе №1.

Обязательно котел оснащается овальными лазами, используемыми в следующих целях:

  • профилактический осмотр барабанов парового котла ДКВР 20 13;
  • монтаж устройств в барабанах;
  • очищение труб, находящихся на днище парового котла ДКВР 20 13.

Размеры лазов составляют 32.5 ×40см.

Оснащается котел ДКВР 4 13 барабанами, имеющими внутренний диаметр до одного метра и рассчитанными на работу при давлении 1.4Мпа. Барабан производится из 2-х видов стали: 09Г2С, 16ГС (толщина до 13мм). Изготовление котельных кипятильных пучков и экранов осуществляется с применением бесшовных труб. Нижние экранные камеры оснащаются торцевыми люками, используемыми с целью продувки и удаления шлама, посредством специальных штуцеров (D=32×2мм).

Преимущества и конструкция пароперегревателей

Характерной особенностью пароперегревателей котлов этой серии, считается унифицированное строение, позволяющее их совмещать с конструкциями, имеющими равное давление, но не способствующее взаимодействию с агрегатами, обладающими разной степенью производительности.


Рис. 3

Благодаря оснащению котлов ДКВР 4 13 одноходовыми пароперегревателями, удаётся генерировать перегретый продукт, не требуется обработки специальными охладителями. Камера, аккумулирующая перегретый пар, фиксируется на верхний барабан, одна из её опор статичная, а вторая динамичная.

Принцип работы агрегата, проще понять, взглянув на схему циркуляции, в соответствии с которой вода доставляется в район барабана, посредством пары линий. Здесь её переправляют в нижний сегмент, используя с этой целью трубы, относящиеся к конвективному пучку.

Особенности схемы агрегатов серии ДКВР

Экраны, в соответствии со схемой питаются посредством необогреваемых труб, имеющихся барабане. Иначе выглядит схема питания парового котла ДКВР 10 13, в котором вода циркулирует по опускным трубам, относящимся к верхнему барабану. Получаемая пароводяная смесь, формируемая в подъёмных трубах и экране, перенаправляется к верхнему барабану.


Рис. 4

Согласно со схемой, каждый из котлов оснащается сепарирующими пар устройствами, помещёнными во внутреннее пространство барабана и позволяющего генерировать продукт. Отдельные модификации агрегатов, имеют вид единого транспортабельного блока и поставляются в разобранном состоянии. Каждый котел ДКВР 4 13 комплектуется сварной опорной рамой, изготавливаемой с применением стального проката.

Стандартный паровой котел ДКВР 10 13 не оснащается опорной рамой, у него есть жёстко зафиксированная точка, в виде передней опоры, относящейся к нижнему барабану. Прочие опорные элементы, в совокупности с камерами, расположенных по бокам экранов, сформированы в виде скользящих деталей. Относящиеся к заднему и фронтальному экрану камеры, фиксируются посредством кронштейнов к каркасу, а боковые закрепляются непосредственно к опорной раме.

Подобная схема котла, обеспечивает эффективную работу и высокий КПД.

Измерительные приборы и арматура

Традиционно котел ДКВР 4 13 оснащается измерительными контрольными приборами и соответствующей арматурой:

  • клапаны – предохранительные;
  • вентили (запорные) – продувка барабанов, отбор пара (насыщенного, перегретого), ввод химикатов;
  • манометры – дополняются трёхходовыми кранами;
  • рамки с запорными устройствами – указывают уровень;
  • вентили, спускающие воду в нижнем барабане;
  • вентили – отбираются пробы пары.

Стандартный паровой котел ДКВР 10 13, дополнительно комплектуется игольчатым и запорным вентилями, обеспечивающими непрекращающуюся продувку барабана. Важным аспектом, считается оснащение согласно со схемой газоходов подобного оборудования чугунной гарнитурой. Система труб котла присоединяется к барабану посредством вальцованных швов, благодаря чему существенно повышается уровень ремонтопригодности и степень надёжности всей конструкции.

Обмуровка котлов

Неотъемлемой частью конструкции считается обмуровка стандартного котла ДКВР 10 13, выполняющая важную функцию.


Рис. 5

Общая характеристика обмуровки

Техническая справка! Обмуровка, представляет собой, оградительную систему агрегата, призванную отделить газоходы с топкой от внешней среды. Обмуровка, применима исключительно в случае с изделиями, не оснащёнными цельносварными экранами. Обмуровка формирует нужное направление газовых дымовых потоков в агрегате, тем самым снижая тепловые потери.

Попутно исключается возможность присосов воздушных масс снаружи, норовящих проникнуть в газоходы, когда возникает разреженная атмосфера или повышенное давление, приводящее к выбиванию газа в помещение котельной. Обмуровка призвана создать нужный температурный режим на всей поверхности конструкции в процессе работы.

Если окружающий воздух прогревается не более чем, до 25°C, то температура поверхности должна варьироваться в пределах 45 - 55°C.

Котельная обмуровка, имеет вид комбинированной системы, состоящей из следующих компонентов:

  • огнеупорные плиты;
  • скрепляющие металлические детали;
  • изоляционный слой;
  • кирпичная кладка;
  • уплотнительный обмазочный слой;
  • обшивка – стальная.

Виды обмуровки

Различают 3-и вида обмуровки:

  • тяжёлая обмуровка – кирпичная стеновая: опирается на фундаментную плиту;
  • облегчённая обмуровка – огнеупорный кирпич, обшивка из стали и изоляционный слой: фиксируется на каркасе, посредством металлических крепёжных элементов;
  • лёгкая обмуровка - бетонные жаростойкие плиты, в совокупности с теплоизоляционным материалом, уплотнительной обмазкой и обшивкой из металла.

Тяжёлая обмуровка совместима с агрегатами, имеющими малую мощность. Высота стен здесь достигает 12м, а в качестве основного материала применяют обычный кирпич, облицованный в высокотемпературных зонах шамотом. Обмуровка подобного типа очень толстая (64см), а её масса достигает 1.2 тонны/1м2.

Кладка обмуровки испещрена температурными швами, в которых в качестве наполнителя используется асбестовый шнур, гарантирующий свободное расширение.

Конструкции, имеющий высокий и средний уровень производительности оснащаются облегчённой обмуровкой, фиксируемой на каркасе парового котла ДКВР 4 13 и состоящей из следующих компонентов: шамотная кирпичная кладка; изоляция в виде вермикулита и шлаковой ваты.

Масса подобной обмуровки достигает 0.4тонны/м2. Благодаря снижению веса обмуровки и уменьшению её толщины, она выполняется любой высоты и монтируется в совокупности с разгрузочными поясами, устанавливаемыми через 1.5 метра. Стена разделяется на ярусы, опирающиеся на кронштейны, фиксируемые на каркасе парового котла ДКВР 4 13, способного выдержать такие нагрузки.

Особенности обмуровки котлов серии ДКВР

Эксплуатируя котлы ДКВР 20 13, выполняют тяжёлую обмуровку, возводя стены толщиной 5.1 метр (в 2 кирпича). Исключением считается задняя стена, толщина которой составляет 3.8м (1.5 кирпича).

Рекомендуется покрывать заднюю стену обмуровки снаружи покрывать штукатуркой (2см), благодаря чему удастся избежать присосов. Формируемая тяжёлая обмуровка создаётся из красного кирпича. Шамотный материал используется исключительно с целью обкладки стен, обращённых в топку. Если участок экранируемый, то толщина слоя достигает 12.5см, а противном случае она увеличивается до 2.5см и формируется перегородка, разделяющая трубы котла ДКВР 20 13.

Предусмотрена поставка агрегатов с облегчённой обмуровкой, изготавливаемой с применением следующих материалов:

  • легковесный шамот - 1,0 т/м3;
  • перлит;
  • обмазка - защита от открытого пламени;
  • савелит;
  • слой, сочетающий штукатурку из савелита и обмазки газоуплотнительного типа.

Лёгкая обмуровка не применяется с паровыми котлами ДКВР 20 13 и прочими агрегатами, рассматриваемой серии. Обмуровка во многом создаёт среду, в которой дозволяется эксплуатировать агрегат. Выбор разновидности обмуровки определяется конструкцией изделия и его технических характеристик.

Например, котел ДКВР 10 13 характеристики имеет следующие:

Обмуровка в подобном случае, обеспечит полноценный режим работы в любых условиях, независимо от состояния атмосферной среды.

Автоматика стандартного котла ДКВР 10 13 и прочих агрегатов этой серии

Если детально рассмотреть чертёж котла ДКВР 10 13, то легко определить, значимость автоматической системы управления, получившей название «Контур». Основным каркасом, выполняющим функцию остова системы, считается импульсный регулятор Р25. Конструктивная схема представлена в виде однотипных блоков, представляющих собой, функционально завершённые компоненты.

Каждый из блоков выполняет определённые операции, в соответствии с которыми элементы автоматики котлов ДКВР 20 13 делятся на следующие типы:

  • измерительные;
  • регулирующие;
  • функциональные.

Рис. 6

Измерительные компоненты автоматики выполняют функцию суммирования сигналов, передаваемых датчиками. Осуществляется их сравнение на основе, имеющегося задания, после чего генерируется сигнал рассогласования. Регулирующие сигналы автоматики котлов ДКВР 20 13, призваны сформировать корректирующее воздействие, посредством преобразования рассогласования в соответствии с имеющимся алгоритмом. Функциональные сигналы автоматики котлов ДКВР 20 13, призваны создать дискретное, а в отдельных случаях динамическое преобразование.

Виды датчиков

Есть несколько типов датчиков, которые совместимы с автоматикой системы «Контур», устанавливаемой на котёл ДКВР 20 13:

  • дифтягомер ДТ-2;
  • дифманометр ДМ;
  • манометр МЭД;
  • термический преобразователь сопротивления;
  • термоэлектрический преобразователь.

Регуляторы автоматики котлов ДКВР 20 13, комплектуются системой ручного управления и индикатором, отображающим положение исполнительного механизма. Предусмотрены пускатели ПМРТ и реле электрогидравлического типа.

Основные системы автоматики котлов ДКВР 10 13, 20 13

Система управления автоматики модификации котлов ДКВР 20 13 включает следующие элементы:

  • топливно-воздушное АСР;
  • разрежение в котельном потоке АСР;
  • количество воды, находящейся в верхнем барабане АСР.

Автоматика котлов ДКВР 20 13, относящаяся к топливно-воздушной системе АСР, состоит из следующих компонентов:

  • первичный преобразователь (модель ДТ2-1000);
  • блок регулировки (модель Р25.1);
  • исполнительный механизм (модификация МЭО 100/63 – имеет улучшенные характеристики).

Автоматика модификации котла ДКВР 20 13, относящаяся к процессу разряжения, формирующегося в котельной топке, представлена следующими элементами:

  • первичный прибор (модель ДТ2 50);
  • блок регулировки;
  • исполнительный механизм (модификация МЭО 250/63).

Автоматика модификации котла ДКВР 20 13, относящаяся нагрузке АСР, формируется следующими элементами:

  • первичный преобразователь (модель МЭД-22364);
  • блок регулировки;
  • исполнительный механизм.

Автоматика модификации котла ДКВР 20 13, определяющая количество воды в верхнем барабане, представлена следующими компонентами:

  • дифманометр (модель ДМ 3583М);
  • блок регулировки;
  • исполнительный механизм.

Измерение давления воздуха окружающей среды проводится с помощью автоматики модификации котла ДКВР 10 13, представленной дифференциальным тягомером, дифманометром и исполнительным механизмом.

Устройство и принцип действия

Вся серия унифицированных котлоагрегатов типа ДКВР на давление 13 кг/см 2 имеет общую конструктивную схему - двухбарабанные котлоагрегаты с естественной циркуляцией и экранированной топочной камерой, с продольным размещением барабанов и коридорным расположением кипятильных труб.

Котлоагрегаты типа ДКВР-20/13 производительностью 20 т/ч рассчитаны на абсолютное рабочее давление 13 кг/см 2 (1,37 МПа) и предназначены для выработки насыщенного или перегретого пара с температурой до 250°С.

Технологический процесс в паровом котле - это процесс сгорания топлива и выработки пара при нагреве воды.

Природный газ, основную горючую часть которого составляет метан СН 4 (94%), по топливопроводу котла поступает в горелку ГМГ-2М и по мере выхода из нее сгорает в виде факела в топочной камере. Воздух для поддержания процесса горения подается с помощью вентилятора ВД-6.

Так как теплота сгорания газа высока и составляет 8500 ккал/м 3 , то удельная потребность в подаваемом воздухе велика: на 1 м 3 газа требуется 9,6 м 3 воздуха, а с учетом коэффициента избытка воздуха = 1,05 - 10 м 3 .

В результате непрерывного горения топлива в топочной камере образуются нагретые до высокой температуры газообразные продукты сгорания. Они омывают снаружи топочные экраны, которые состоят из труб с циркулирующей внутри них водой и пароводяной смеси. Затем продукты сгорания, охлажденные в топочной камере до температуры 980 о С, непрерывно двигаясь по газоходам котла, омывают вначале пучок кипятильных труб, затем экономайзер ЭТ2-106, охлаждаются до температуры 115 о С и дымососом ДН-10 удаляются через дымовую трубу в атмосферу.

Питательная вода предварительно проходит через фильтры механической и химической очистки, а затем поступает в деаэратор ДС-75, где происходит удаление кислорода О 2 и двуокиси углерода СО 2 из воды за счет ее подогрева паром до температуры 104 о С, что соответствует избыточному давлению в деаэраторе 0,02 ч 0,025 МПа. Выделившийся из воды воздух уходит через трубу в верхней части деаэраторной колонки в атмосферу, а очищенная и подогретая вода выливается в бак-аккумулятор, расположенный под колонкой деаэратора, откуда расходуется для питания котла. В верхний барабан котла питательная вода подается по двум питательным линиям после дополнительного подогрева в экономайзере до температуры 91-100 о С. В котле ДКВР-20/13 имеется три контура естественной циркуляции воды. Первый - контур конвективного пучка: котловая вода из верхнего барабана опускается в нижний барабан по кипятильным трубам конвективного пучка, расположенным во втором газоходе - в области более низких температур топочных газов. Образующаяся пароводяная смесь поднимается в верхний барабан по кипятильным трубам, расположенным в первом газоходе - в области более высоких температур топочных газов. Два других контура составляют левый и правый боковые топочные экраны: котловая вода из верхнего барабана по опускной трубе подводится к нижнему коллектору левого (или правого) бокового экрана; к коллектору также подводится вода из нижнего барабана по перепускным трубам, после чего вода распределяется по коллектору, а образующаяся пароводяная смесь по трубам левого (правого) бокового экрана поднимается в верхний барабан. В верхнем барабане происходит отделение (сепарация) пара от воды. Насыщенный пар затем через главный запорный вентиль по паропроводу котельного агрегата направляется в главный паропровод котельной. Отделившаяся от пара в барабане котла вода смешивается с питательной водой.

Таблица 1

Технические характеристики котла ДКВР 20/13

Параметр

Ед. измерения

Значение

Паропроизводительность

Кол-во горелок

Давление пара

Расход газа

Расход питательной воды

Давление газа к котлу

Давление воздуха после вентилятора

Давление питательной воды

Разрежение в топке

Температура пара

Температура мазута

Температура отходящих газов за экономайзером

Температура газов за котлом, 0 С

Температура питательной воды после экономайзера

Уровень воды в барабане

Поверхность нагрева: радиационная/ конвективная/ общая

47,9/229,1/227,0

Коэффициент избытка воздуха

Продольный шаг труб кипятильного пучка

Поперечный шаг труб кипят. пучка

Диаметр экранных и кипятильных труб

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

В данной курсовой работе выполнен поверочно-конструкторский расчет котла ДКВр 20-13 - двухбарабанного котла, вертикально-водотрубного реконструированного.

Для топочной камеры и конвективных котельных пучков выполнен поверочный расчет.

Для водяного экономайзера - конструктивный расчет.

Также разрабатывается проект котельного агрегата с экономайзером.

Исходные данные:

Поверхность нагрева, установленная за котлом - экономайзер

Номинальная паропроизводительность котла - 20 т/ч

Давление пара - 14 атм (ата)

Температура питательной воды (после деаэратора) - 80 0 С

Вид топлива - г/д Саратов-Москва

Способ сжигания топлива - в факеле

Температура наружного воздуха (в котельной) - 25 0 С

В первой главе производится расчет объемов и энтальпий воздуха и продуктов сгорания при б=1. Для этого рассчитывается теоретическое количество воздуха необходимое для полного сгорания топлива и минимальный объем продуктов сгорания, которые получились бы при полном сгорании топлива с теоретически необходимым количеством воздуха.

Во второй главе приводится описание котла ДКВР 20-13, производится выбор топочного устройства по исходным данным, приводятся расчетные характеристики топки, определение коэффициентов избытка воздуха, рассчитываются энтальпии продуктов сгорания для разных участков, тут же строится J-и диаграмма продуктов сгорания, производится расчет теплового баланса и расхода топлива, а также тепловой расчет топки, расчет конвективных пучков.

В третьей главе проводится конструктивный расчет водяного экономайзера, находится его поверхность нагрева, число и ряд труб.

В четвертой главе производится определение расчетной невязки теплового баланса.

В пятой главе составляется таблица теплового расчета котельного агрегата.

Описание топлива:

В качестве топлива в котельном агрегате используется природный газ, поступающий из газопровода Саратов-Москва

В качестве газообразного топлива используется природный газ газоконденсатных и газонефтяных месторождений. Природные газы подразделяются на три группы:

1. Газы, добываемые из чисто газовых месторождений. В основном состоят из метана и являются тощими или сухими. Содержание тяжелых углеводородов (от пропана и выше) в сухих газах 50 мг/м 3 .

2. Газы, которые выделяются из скважин нефтяных месторождений совместно с нефтью. Такие газы называются попутными. Кроме метана также газы содержат обычно свыше 150 мг/м 3 тяжелых углеводородов. Они являются жирными газами. Жирными газами называются такие газы, которые представляют собой смесь сухого газа, пропан-бутановой фракции и газового бензина.

3. Газы, добываемые из конденсатных месторождений. Такие газы состоят из смеси сухого газа и паров конденсата, которые выпадают при сжижении. Пары конденсата представляют собой смесь паров тяжелых углеводородов, содержащих С 5 и выше (бензин, керосин и лигроин).

Природный газ не имеет запаха. До подачи в сеть его одорируют, т.е. придают резкий не приятный запах, который ощущается при 1% концентрации.

Газообразное топливо очищают от примесей.

Природный газ состоит из метана СН 4 (до 98%) и других углеводородов. Теплота сгорания =28000-46000 кДж/м 3 . Природные газы отличаются малым содержанием балласта, отсутствием серы, окиси углерода и пыли.

Газообразное топливо представляет собой смесь горючих и негорючих газов, содержащих некоторое количество примесей. К горючим газам относятся углеводороды, водород и оксид углерода. Негорючими компонентами являются азот, диоксид углерода и кислород. Они составляют балласт газообразного топлива.

В сравнении с твердым топливом применение в котельных установках жидкого и газообразного топлива значительно выгоднее т.к. упрощается его транспортировка, хранение и сжигание, а также значительно повышается коэффициент полезного действия котла. При использовании газа автоматизируется производство, и ликвидируются складские помещения.

Расчетные характеристики топлива:

Месторождение - г/д Саратов-Москва

Состав газа по объёму :

С 5 Н 12 и более=0,3%

Плотность, кг/м 3 (при 0 0 С и 760 мм рт. ст.), =0,837 кг/м 3

8550 ккал/м 3 =10215 кДж/кг

1. Расчет объемов и энтальпий воздуха и продуктов сгорания при б=1 (для газообразного топлива)

Теоретическое количество воздуха необходимое для полного сгорания топлива:

Минимальный объем продуктов сгорания, которые получились бы при полном сгорании топлива с теоретически необходимым количеством воздуха (б=1):

2. Котел. Описание котла типа ДКВр 20-13

Котельные установки - это теплогенерирующие установки, т.е. целью их работы является получение тепловой энергии сгорания сжигаемого в них топлива и передачи полученной теплоты теплоносителю.

Котельные установки подразделяются по роду вырабатываемого теплоносителя на паровые и водогрейные, а по характеру обслуживания потребителей - на отопительные, отопительно-производственные и производственные. Котельные производственные и отопительные (предназначенные для покрытия отопительных нагрузок) работают определенное количество дней в году, в зависимости от характера производства и длительности отопительного периода.

Проектируемой теплогенерирующей установкой является котельный агрегат ДКВр 20-13.

Котел ДКВр 20-13 (первое число после наименования котла обозначает паропроизводительность, т/ч; второе число - давление пара в барабане котла, кгс/смІ ати) - двухбарабанный, вертикально-водотрубный с естественной циркуляцией, реконструированный, бескаркасной конструкции. Он используется для производства насыщенного и перегретого (при установке пароперегревателя) пара давлением 14 и 24 кгс/см 2 .

Котел предназначен для производственно-отопительных и районных котельных. При сжигании газообразного топлива компонуется камерной топкой.

Котельный агрегат ДКВр 20-13 представляет собой два продольно-расположенных барабана, установленных друг над другом, диаметром 1000 мм и сваренных из листовой стали. Поверхность верхнего барабана должна быть хорошо изолирована огнеупорным материалом для обеспечения требуемого срока службы котла.

Котельный агрегат обмурован со всех сторон тяжелыми кирпичными стенами толщиной 510 мм за исключением задней стенки толщиной 380 мм. Котел устанавливается на бетонном основании выше уровня чистого пола.

По боковым стенам обмуровки котельного агрегата вмонтированы люки для осмотра котла изнутри. Штампованное днище нижнего барабана имеет специальные лазы, закрываемые люками. Таким образом, у котла имеются четыре люка для ревизии с правой и с левой сторон (по два на каждую) и один с фронтовой стороны между газовыми горелками. С левой и с задней сторон можно произвести тщательный наружный осмотр котельного агрегата, а также произвести качественную регулировку расхода пара, благодаря смотровым площадкам, закрепленным на металлическом каркасе, который опоясывает обмуровку котла. В данном проекте запроектировано три смотровые площадки, подъем на которые можно осуществить по металлическим лестницам, приваренным к каркасу площадок. В свою очередь все смотровые площадки оборудованы перилами, установленными для предотвращения падения служебного персонала с этих площадок.

В верхней части котельного агрегата установлены два взрывных клапана. При нерасчетном режиме работы котельного агрегата - взрыве, резко возрастает объем дымовых газов. Дымовые газы свободно проходят через крупноячеистую сетку, затем разрушают асбестовую плиту и выходят по направляющей трубе наружу.

На верхнем барабане запроектирована вся необходимая запорно-регулирующая, предохранительная, контрольно-пропускная арматура, а также манометр, измеряющий давление в барабане котлоагрегата. На передней части котла установлены водоуказательные приборы.

На фронтовой части котла установлены три газомазутные горелки типа ГМГм, через которые топливо подается в топку котельного агрегата. Для этого во фронтальной стене обмуровки имеются расширяющиеся отверстия в топку, необходимые для образования факела горения и раскрытия его на необходимый угол.

По боковым сторонам за пределы вынесены трубы, соединенные с верхними и нижними коллекторами и обоими барабанами. Эти трубы - выносные циклоны. Выносные циклоны необходимы для разделения пароводяной смеси соответственно на пар и воду. От выносных циклонов в верхней части котла к верхнему барабану выходят две трубы, по которым движется пар.

С задней стороны в обмуровке имеется отверстие, через которое из конвективной части котла выходят дымовые газы. К этому отверстию возможно присоединение поверхностей нагрева - воздухоподогревателя или экономайзера. По заданию необходимо рассчитать и запроектировать поверхность нагрева - экономайзер, который соединен с котлом с помощью специального короба.

На наружной поверхности обмуровки имеются отверстия, в которые вмонтированы трубы периодической продувки. В нижний барабан дополнительно подведены трубы для прогрева котла паром при растопке.

Котел ДКВр 20-13 состоит из двух продольно-расположенных барабанов, которые соединяются между собой пучком кипятильных (конвективных) труб. Трубы боковых экранов приварены к верхним коллекторам. Нижние концы экранных труб приварены к нижним коллекторам. В нижнем барабане расположены трубы периодической продувки и спускная линия.

Перед кипятильным пучком котлов расположена топочная камера, которая для уменьшения потерь тепла с уносом и химическим недожогом делится кирпичной шамотной перегородкой на две части: собственно топку и камеру догорания. Дымовые газы совершают в котле горизонтально-поперечное с несколькими поворотами движение. Это обеспечивается установкой между кипятильными трубами чугунных перегородок, которые делят их на первый и второй газоходы. Выход газов из камеры догорания и из котла, как правило, асимметричен.

Вода в трубы боковых экранов поступает одновременно из верхнего и нижнего барабанов.

В котлах ДКВр 20-13 применено двухступенчатое испарение. Первая ступень испарения включает конвективный пучок, фронтовой и задний экраны, а также боковые экраны заднего топочного блока. Боковые экраны переднего топочного блока включены во вторую ступень испарения. Сепарационными устройствами второй ступени испарения являются выносные циклоны центробежного типа. Циркуляционные контуры второй ступени испарения замыкаются через выносные циклоны и их опускные трубы; первой ступени испарения - через опускную часть конвективного пучка. Питание циркуляционного контура второй ступени испарения осуществляется из нижнего барабана в выносные циклоны.

Газоходы разделены между собой чугунной перегородкой по всей высоте газохода котла с окном (от фронта котла) справа. Передняя часть нижнего барабана крепится неподвижно, а остальные части котла имеют скользящие опоры, а также реперы, которые контролируют удлинения элементов при температурном расширении.

Топка сформирована экранными трубами, которые образуют соответственно: передний или фронтовой экран, левый боковой экран, правый боковой экран (аналогично левому), задний экран топки.

Барабаны котла, рассчитанные на давление 14 кгс/см 2 , имеют одинаковый внутренний диаметр (1000 мм) при толщине стенок 13 мм. Для осмотра барабанов и расположенных в них устройств, а также для очистки труб шарошками на заднем и переднем днищах имеются лазы. В водяном пространстве верхнего барабана находится питательная труба для непрерывной продувки; в паровом объеме - сепарационные устройства также устанавливается воздушный кран и собственно паропровод, на котором установлен главный парозапорный вентиль. Следует также отметить, что в данной работе запроектирован кран для отвода пара на собственные нужды котельной. В верхнем барабане над топкой установлены две легкоплавкие вставки (смесь олова и свинца), которые плавятся при температуре около 300°С, что приводит к выпуску воды в топку, прекращению горения топлива и предохранению барабана от перегрева. На верхнем барабане установлена арматура: водоуказательные приборы, предохранительные клапаны, термометр, манометр. На всех котлах ДКВР над топкой и газоходом установлены взрывные и предохранительные клапаны. В нижнем барабане установлены перфорированная труба для периодической продувки, устройство для прогрева барабана при растопке и штуцер для спуска воды.

Движение топочных газов осуществляется следующим образом: Топливо и воздух подаются в горелки, а в топке образуется факел горения. Теплота от топочных газов в топке, за счет радиационного и конвективного теплообмена, передается всем экранным трубам (радиационным поверхностям нагрева), где эта теплота за счет теплопроводности металлической стенки и конвективного теплообмена от внутренней поверхности труб передается воде, циркулирующей по экранам. Затем топочные газы с температурой 900-1100 °С выходят из топки и через окно справа в кирпичной перегородке переходят в камеру догорания, огибают кирпичную перегородку с левой стороны и входят в первый газоход, где передают теплоту конвективному пучку труб. С температурой около 600 °С топочные дымовые газы, огибая чугунную перегородку с правой стороны, входят во второй газоход кипятильного пучка труб и с температурой около 200-250 °С, с левой стороны, выходят из котла и направляются в водяной экономайзер.

За котельным агрегатом устанавливается поверхность нагрева - экономайзер. Экономайзер является одной из составных частей котлоагрегата. Так как температура воды в котельном агрегате везде одинакова и растет с увеличением давления, то без установки водяного экономайзера глубокое охлаждение уходящих газов невозможно.

Котел оборудован устройствами и приборами, обеспечивающими безопасную работу котельного агрегата и позволяющими безотказно и быстро производить пуск, остановку и регулирование его работы. За нормальной эксплуатацией котельного агрегата необходимо наблюдать и контролировать происходящие в нем процессы. Для этого применяют различные контрольно-измерительные приборы. Изменение давления в котельном агрегате или отклонение уровня воды в барабане за допустимые пределы может вызвать аварийную ситуацию, связанную с непосредственной опасностью для обслуживающего персонала. Поэтому, согласно правилам, на паровом котле для непосредственного наблюдения и контроля за давлением и уровнем воды в барабане установлены манометр, водоуказательные приборы и предохранительные устройства.

Предохранительная арматура служит для ограничения движения, расхода и направления движения среды. К ней относятся: предохранительные клапаны на питательных линиях, автоматические быстрозапорные клапаны на паропроводах, обратные клапаны. Обратные клапаны пропускают среду только в одном направлении и автоматически закрываются при обратном ее движении. Устанавливают их на входе питательной воды в парогенератор для исключения возможности ее обратного движения из котла при падении давления в питательном трубопроводе. Обратные клапаны устанавливают также на напорных патрубках питательных насосов для предотвращения обратного движении воды при остановке последних.

Питательная вода по питательным трубопроводам 15 поступает в верхний барабан 16, где смешивается с котловой водой. Из верхнего барабана по последним рядам труб конвективного пучка 18 вода опускается в нижний барабан 17, откуда по подпиточным трубам 21 направляется в циклоны 8. Из циклонов по опускным трубам 26 вода подается к нижним камерам 24 боковых экранов 22 второй ступени испарения, пароводяная смесь поднимается в верхние камеры 10 этих экранов, откуда поступает по трубам 9 в выносные циклоны 8, в которых разделяется на пар и воду. Вода по трубам 31 опускается в нижние камеры 20 экранов, отсепарированный пар по перепускным трубам 12 отводится в верхний барабан. Циклоны соединены между собой перепускной трубой 25.

Рис. 1 Общая схема циркуляции воды в котле ДКВР-20-13

1 - вторая ступень испарения; 2 - фронтовой экран; 3 - камера; 4 - непрерывная продувка; 5 - рециркуляционные трубы; 6 - перепускная труба из верхнего коллектора в барабан; 7, 10, 11 - верхние камеры; 8 - выносные циклоны; 9 - перепускные трубы из верхней камеры в выносной циклон; 12 - перепускные трубы из выносного циклона в барабан; 13 - патрубок отвода пара; 14 - сепарационное устройство; 15 - питательные линии; 16 - верхний барабан; 17 - нижний барабан; 18 - конвективный пучок; 19, 20, 23, 24 - нижние камеры; 21 - подпиточные трубы; 22 - боковые экраны; 25 - перепускная труба; 26 - опускные трубы; 27, 29, 30, 31 - перепускные трубы; 28 - пароотводящие трубы.

Экраны первой ступени испарения питаются из нижнего барабана.

В нижние камеры 20 боковых экранов 22 вода поступает по соединительным трубам 30, в нижнюю камеру 19 заднего экрана по другим трубам. Фронтовой экран 2 питается из верхнего барабана - вода поступает в нижнюю камеру 3 по опускным трубам 27.

Пароводяная смесь отводится в верхний барабан из верхних камер 10 боковых экранов первой ступени испарения по пароотводящим трубам 28, из верхней камеры 11 заднего экрана трубами 29, из верхней камеры 7 фронтового экрана трубами 6. Фронтовой экран имеет рециркуляционные трубы 5.

2.1 Топка. Выбор топочного устройства. Описание топочного устройства и топочного объема

Топка - устройство, предназначенное для сжигания топлива с целью получения теплоты. Топка выполняет функцию горения и теплообменного аппарата - теплота излучением и конвекцией одновременно передается от факела горения и продуктов сгорания к экранным поверхностям, по которым циркулирует вода. Доля лучистого теплообмена в топке, где температура топочных газов порядка 1000°С, больше чем конвективного, поэтому, чаще всего, поверхности нагрева в топке называют радиационными.

Топочные устройства в зависимости от способа сжигания делятся на камерные и слоевые. Выбор способа сжигания и типа топочного устройства определяется видом топлива, его реакционными свойствами и физико-химическими свойствами золы, а также производительностью и конструкцией котла.

Топочное устройство должно обеспечивать экономичность работы котла в необходимых пределах регулирования нагрузки, бесшлаковую работу поверхностей нагрева, отсутствие газовой коррозии экранных труб, минимальное содержание окислов азота и сернистых соединений в уходящих газах.

Для сжигания природного газа, мазута и пылевидного твердого топлива обычно используют камерные топки. В конструкции камерной топки можно выделить четыре основных элемента: топочную камеру, экранную поверхность, горелочное устройство и систему удаления шлака и золы.

Обмуровкой называют ограждения, отделяющие топочную камеру и газоходы котельного агрегата от внешней среды. Обмуровку выполняют из красного или диатомового кирпича, огнеупорного материала или из металлических щитов с огнеупорами. Внутренняя часть обмуровки в топке, или футеровка, со стороны топочных газов и шлаков, выполняется из огнеупорных материалов: шамотного кирпича, шамотобетона и других огнеупорных масс. Обмуровка и футеровка должны быть достаточно плотными, особо высокоогнеупорными, стойкими к химическому воздействию шлаков и иметь малый коэффициент теплопроводности. Несмотря на более высокую стоимость шамотного кирпича или другого огнеупорного материала по сравнению с обычным красным кирпичом, все эксплуатационные расходы покроют капитальные, благодаря высоким теплофизическим свойствам, а также высокой стойкостью к продуктам сгорания.

Экранная радиационная поверхность нагрева выполнена из стальных труб. Экраны воспринимают теплоту за счет радиации и конвекции и передают ее воде или пароводяной смеси, циркулирующим по трубам. Экраны защищают обмуровку от мощных тепловых потоков.

В камерных топках котлов паропроизводительностью до 25 т/ч сжигается газообразное топливо и мазут.

Таблица №1. Расчетные характеристики топки

Наименование величин

Обозначение

Размерность

Величина

Видимое теплонапряжение зеркала горения

Видимое теплонапряжение топочного объема

Коэффициент избытка воздуха в топке

Потеря тепла от химнедожога

Потеря тепла от мехнедожога

Доля золы топлива в шлаке и провале

Доля золы топлива в уносе

Давление воздуха под решеткой

мм вод. ст.

Температура дутьевого воздуха

Коэффициент избытка воздуха на выходе из топки принимаем из таблицы «Расчетные характеристики камерной топки» (РН 5-02, РН 5-03).

Коэффициент избытка воздуха для других участков газового тракта получаются путем прибавления к б т присосов воздуха принимаемых по , РН 4-06.

Для выполнения теплового расчета газовый тракт котельного агрегата делят на самостоятельные участки: топочную камеру, конвективные испарительные пучки и экономайзер.

Таблица №2. Средние характеристики продуктов сгорания в поверхностях нагрева котла

Наименование величин

Размерность

V=9.52нм 3 /кг

V=7,6 нм 3 /кг

V=1,037 нм 3 /кг

V=2,11 нм 3 /кг

Конвективные пучки

Экономайзер

Коэффициент избытка воздуха перед газоходом б"

Коэффициент избытка воздуха

за газоходом б”

Коэффициент избытка воздуха (средний) б

V=V+0,0161·(-1)·V о

V г =V+V+V+(-1)·V о

Энтальпия газов, представляющая собой произведение объема газов на их теплоемкость и температуру, возрастает с повышением температуры.

При вычислении I-и таблицы рекомендуется для каждого значения коэффициента избытка воздуха б определить величину лишь в пределах, немного превышающих реально возможные пределы температур в газоходах. Величина представляет собой разность двух соседних по горизонтали значений при одном б.

Результаты вычислений сводятся в таблицу 3.

По расчетным данным таблицы 3 строится диаграмма I-и продуктов сгорания.

Таблица №3. Тепловой баланс и расход топлива

Наименование величины

Обозначение

Размерность

Располагаемое тепло топлива

Q=c тл ·t тл, при t тл =0

Температура уходящих газов

По приложению IV

Энтальпия уходящих газов

Из диаграммы I-и

Температура холодного воздуха

Согласно заданию

Энтальпия холодного воздуха

I хв = ух ·V о (с и) хв

Потери тепла от мех. недожога

По характеристикам топки

Потери тепла от хим. недожога

По характеристикам топки

Потеря тепла с уходящими газами

Q 2 =(I ух - ух ·I хв)·

Потеря тепла в окружающ. среду

Коэффициент сохранения тепла

Потеря тепла с физическим теплом шлаков

где: а шл - по расчетным характеристикам топки;

(с и) шл - энтальпия шлака, при t шл =600 о С по РН4-04 (с и) шл =133,8 ккал/кг

Сумма потерь тепла

Уq=q 2 +q 3 +q 4 +q 5 +q 6 , при сжигании газа и мазута

К.П.Д. котлоагрегата

з ка =100-Уq

Энтальпия насыщенного пара

Из термодинамических таблиц согласно Р нп (приложение V )

Энтальпия питательной воды

Из термодинамических таблиц согласно t" пв (приложение V )

Тепло, полезно использованное в котлоагрегате

Без пароперегревателя

Q ка =D·(i"" нп - i" пв)

Полный расход топлива

Расчетный расход топлива

В р =В·, при сжигании газа и мазута

Таблица №4. Тепловой расчет топки

Наименование величины

Обозначение

Расчетная формула или способ определения

Размерность

Объем топочной камеры

По данным приложения I

Полная луче-воспринимающая поверх. нагрева

По данным приложения I

Поверхность стен

Степень экранирования топки

для камерных топок

для слоевых топок

Площадь зерк. гор.

По приложению III

Поправочный коэффициент

По приложению VI

Абсолютное давление газов в топке

Принимается р=1,0

Принимается предварительно по приложению VII

Коэффициент ослабления лучей в пламени

Для светящегося пламени:

Для несветящегося

k=k г ·(р+р),

где: k г - коэффициент ослабления лучей трехатомными газами, определяемый по номограмме IX .

Для полусветящегося

k=k г ·(p+p)+k n ·µ,

где k n - коэффициент ослабления лучей золовыми частицами,

определяемый по номограмме Х ;

µ- концентрация золы в дымовых газах, г/нм

Произведение

Степень черноты топочной среды

Принимается по номограмме ХI

Эффективная степень черноты факела

Условный коэффициент загрязнения

Произведение

Параметр, учиты-вающий влияние излучения горящего слоя

Степень черноты топки

Для слоевых топок:

Для камерных топок:

Присос холодного воздуха в топку

Коэффициент избытка воздуха, организованно поданного в топку

б т =б т Ш-Дб т,

где б т Ш принимается из табл. №1

Температура горячего воздуха

Принимается согласно расчетным характеристикам топки

Энтальпия горячего воздуха

I гв =б т ·V o ·(c и) гв

Энтальпия холодного воздуха

I хв =б т ·V o ·(c и) хв

при наличии подогрева воздуха

I хв =Дб т ·V o ·(c и) хв

Тепло, вносимое воздухом в топку

При отсутствии подогрева воздуха

при наличии подогрева воздуха

Q в =I хв +I гв =

Дб т ·V o ·(c и) хв +б т ·V o ·(c и) гв

Тепловыделение в топке на 1кг (1нм 3) топлива

Теоретическая (адиабатическая) температура горения

По I-и диаграмме согласно величине Q т

Тепловыделение на 1 м 2 поверхности нагрева

ккал/м 2 ч

Температура газов на выходе из топки

По номограмме I

Энтальпия газов на выходе из топки

По I-и диаграмме согласно величине Q т Ѕ

Тепло, переданное излучением в топке

Q л =ц·(Q т -I т Ѕ)

Тепловая нагрузка лучевоспринимающей поверхности нагрева топки

ккал/м 2 ч

Видимое тепло-напряжение топочного объема

ккал/м 3 ч

Приращение

энтальпии воды в топке

2.2 Конвективные пучки. Общее описание конвективных пучков

Испарительная поверхность нагрева вертикально-водотрубных котельных агрегатов состоят из развитого пучка кипятильных труб вальцованных в верхний и нижний барабаны, топочных экранов питаемых водой из котельных барабанов через опускные и соединительные трубы из коллекторов. Коллектор выполнен из труб диаметром до 219 мм, экранные трубы присоединены к ним сваркой. Как правило, котел ДКВр имеет три циркуляционных контура: один, образуемый кипятильными трубами котла, и два, образуемые экранами. Часть питательной воды, поступающей в верхний барабан котла по группе кипятильных труб, являющихся опускными, проходит в нижний барабан. Здесь вода разделяется на 3 потока: один из них по группе кипятильных труб, являющихся подъемными, возвращается в верхний барабан в виде пароводяной смеси, а два других по соединительным трубам проходят в нижние коллекторы экранов, затем в экранные трубы и, наконец, также в виде пароводяной смеси, в верхний барабан котла. Другая часть питательной воды, поступающей в котел, из верхнего барабана по опускным трубам также поступает в коллектор.

Для обеспечения надежной работы и расчетной производительности котельного агрегата большое значение имеет правильная организация движения воды в испарительных поверхностях нагрева. Надежная работа может быть обеспечена в том случае, когда вода, движущаяся в кипятильных и экранных трубах работающих при повышенной температуре, создает необходимое охлаждение металла этих труб, так как снижение механической прочности металла при повышении температуры может привести к их разрушению.

Следует отметить, что естественная циркуляция в кипятильных и экранных трубах происходит под действием гравитационных сил, обуславливаемых разностью плотностей воды и пароводяной смеси.

При расчете используются уравнение теплопередачи и уравнение теплового баланса, а расчет выполняется для 1 м 3 газа при нормальных условиях.

Таблица №5. Расчет кипятильного пучка

Наименование величины

Обозначение

Расчетная формула, способ определения

Размерность

а) расположение труб

По данным приложения I

коридорное

б) диаметр труб

в) поперечный шаг

г) продольный шаг

д) число труб в ряду первого газохода

е) число рядов труб в первом газоходе

ж) число труб в ряду второго газохода

з) число рядов труб во втором газоходе

и) общее число труб

к) средняя длина одной трубы

По данным приложения I

л) конвективная поверхность нагрева

Н к =z·р·d н ·l ср

Среднее сечение для прохода газов

По данным приложения I

Температура газов перед кипятильным пучком 1 го газохода

Из расчета топки (без пароперегревателя)

иґ 1кп =QЅ т -(30ч40) о С

Энтальпия газов

По диаграмме J-и

Температура газов за кипятильным пучком 2 го газохода

Предварительно принимаем по приложению VIII

Энтальпия газов за 2 ым газоходом

По диаграмме J-и при иЅ 2кп и б 2кп

Средняя температура газов

и ср =0,5·(иґ 1кп +иЅ 2кп)

Тепловосприятие кипятильных пучков

Q б =ц·(Jґ 1кп -JЅ 2кп +?б кп ·J)

Секундный объем газов

Средняя скорость газов

щ г.ср =V сек /F ср

Температура насыщения при давлении в барабане котла

По приложению V

Коэффициент загрязнения

Принимается по номограмме XII

Температура наружной стенки трубы

Объемная доля водяных паров

r=0,5·(рґ+рЅ),

где рґи рЅ-парциальное давление водяных паров на входе и выходе из пучков (табл.2)

Коэффициент теплообмена конвекцией

б к =б н ·С z ·C ср

По номограмме II

Объемная доля сухих трехатомных газов

Из табл.2 проекта r=р

Объемная доля трехатомных газов

Эффективная толщина излучающего слоя

Суммарная поглощательная способность трехатомных газов

р г ·s=r г ·s

Коэффициент ослабления лучей трехатомными газами

По номограмме IX

Сила поглощения газового потока

k г ·p г ·s г ·р, где р=1 ата

Поправочный коэффициент

По номограмме XI

Коэффициент теплообмена излучением

б л =б н ·С г ·а

По номограмме XI

то же из пункта 22 расчета

Коэффициент омывания поверх-ности нагрева

По приложению II

Коэффициент теплопередачи

Tґ=иґ 1кп -t s

Температурный напор на выходе газов

TЅ=иЅ 2кп -t s

Среднелогарифми-ческий температур-ный напор

Тепловосприятие поверхности нагре-ва по уравнению теплопередачи

Отношение расчетных величин тепловосприятия

Если Q б и Q Т отличаются меньше, чем на 2%, расчет считается законченным, в противном случае расчет повторяется с изменением величины иЅ 2кп

Приращение энтальпии воды

3. Описание водяного экономайзера

Водяные экономайзеры устанавливают для снижения температуры уходящих газов, а, следовательно, для повышения коэффициента полезного действия котельной установки. Чугунные экономайзеры изготовляются по отраслевым стандартам «Экономайзеры чугунные блочные» ГОСТ 24.03.002.

Экономайзеры бывают индивидуальные и групповые. Как правило, устанавливать индивидуальные экономайзеры, так как они работают равномерно и с наименьшим избытком воздуха.

Водяные экономайзеры изготавливаются чугунными и стальными.

В данной курсовой работе в качестве поверхности нагрева запроектирован индивидуальный экономайзер, установленного за котлом. Компоновка - одноколонковый экономайзер (несколько горизонтальных рядов труб образуют группы, которые компонуют в одну или две колонки). Группы в требуемом количестве собираются в пакет. Пакет собирают в каркасе с глухими стенками, состоящими из изоляционных плит, обшитых металлическими листами. Торцы экономайзеров закрываются четырьмя съёмными металлическими щитами, запроектированными для возможности качественного осмотра внутренней части экономайзера и для его очистки.

Проектируемый экономайзер имеет собственный фундамент из-за значительной массы устройства. Фундамент экономайзера не связан с фундаментом котельного агрегата.

Экономайзер соединен с котлом с помощью специального короба, непосредственно по которому двигаются дымовые газы. В коробе имеется мягкая вставка для предотвращения передачи вибрации. На верхней части короба установлен взрывной клапан.

В нижней части имеется дымоход, по которому осуществляется выход отработанных дымовых газов. Внизу устроены люки для чистки.

На внешней поверхности экономайзера имеется ввод питательной воды в нижнем ряду и выход отепленной питательной воды из верхнего ряда.

Приборы на входе питательной воды расположены непосредственно у дымохода, а приборы на выходе - на питательном трубопроводе рядом с верхним барабаном котла, над задней смотровой площадкой. Приборы запроектированы так, чтобы обслуживающему персоналу было удобно обеспечить их регулировку и снимать показания с измерительных приборов, а также во избежание их помех при эксплуатации.

Предусмотрена установка чугунного экономайзера, так как чугунные экономайзеры возможно применять при давлениях до 23 ати. Чугунные экономайзеры не допускают кипения воды в них, т. к. при гидравлическом ударе они могут выйти из строя. Температура воды на выходе из чугунного экономайзера на 20 °С ниже температуры кипения воды в барабане котла.

Чугунные экономайзеры собирают из чугунных ребристых труб и соединяют чугунными коленами (дугами и калачами). Питательная вода должна последовательно пройти по всем трубам экономайзера снизу вверх. Такое ее движение необходимо, т.к. при нагревании воды падает растворимость находящихся в ней газов, и они выделяются из нее в виде пузырьков, которые постепенно продвигаются вверх, где и удаляются через воздушный сборник. Скорость движения воды должна быть не менее 0,3 м/с, чтобы лучше смывать пузырьки.

На концах труб экономайзера имеются квадратные приливы - фланцы, которые при монтаже образуют две сплошные металлические стенки. Стыки между фланцами герметизируются асбестовым шнуром для устранения присосов воздуха. Сбоку стенки с дугами и калачами закрываются съемными крышками.

Температура воды при входе в экономайзер превышает температуру точки росы дымовых газов не менее чем на 10 °С. Это необходимо для того, чтобы исключить конденсацию водяных паров, входящих в состав дымовых газов и осаждение влаги на трубах экономайзера.

Чугунный экономайзер прост и надёжен в эксплуатации. Он устойчив против коррозии, поэтому его применению следует отдать предпочтение перед воздухоподогревателями в тех случаях, когда подогрев воздуха является необходимым для интенсификации процесса горения или для повышения КПД топки.

Рис. 2 Детали чугунного водяного экономайзера системы ВТИ: а - ребристая труба; б - соединение труб.

Чугунный экономайзер является не менее надёжной частью агрегата, чем собственно котёл. Он не требуют частых остановок, поэтому он не имеет обводных боровов, являющихся источником значительных присосов воздуха в газовый тракт.

Циркуляция в экономайзере происходит следующим образом. Вода из питательной линии подается в одну из крайних нижних труб, а затем последовательно проходит через все эти калачи по всем трубам, после чего поступает в котел.

Вода движется по трубам снизу вверх. Газы, омывая трубы снаружи, движутся сверху вниз. При такой схеме движения (противотоке) газов и воды обеспечивается лучшее удаление выделяемых из воды пузырьков воздуха с внутренней стенки трубы, а также уменьшается количество золы и сажи, осаждающихся на наружной поверхности труб. Водяные экономайзеры с ребристыми трубами сравнительно быстро загрязняются золой и сажей, поэтому периодически наружные поверхности экономайзеров обдуваются перегретым паром или сжатым воздухом.

Рис. 3 Чугунный экономайзер марки ВТИ

В качестве предохранительного устройства экономайзера использован взрывной клапан, который устанавливается на верхнем коробе экономайзера, присоединенного к котлу. При нерасчетном режиме работы котельного агрегата - взрыве, резко возрастает объем дымовых газов. Дымовые газы свободно проходят через крупноячеистую сетку, затем разрушают асбестовую плиту и выходят по направляющей трубе наружу.

На экономайзере устанавливается следующая арматура:

а) на входе - регулирующий клапан, обводная линия с вентилем, задвижка, обратный клапан, вентиль и обратный клапан на дренаже, манометр, термометр, предохранительный клапан.

б) на выходе - вентиль для выпуска воздуха, манометр, предохранительный клапан, термометр, вантуз, вентиль и обратный клапан, установленные непосредственно на входе трубопровода питательной воды в верхний барабан котла.

К достоинствам чугунных экономайзеров относятся устойчивость к коррозии их внешней и внутренней поверхности, а также сравнительно небольшая стоимость, что оправдывает их применение в котельных небольшой мощности. Недостатками чугунных экономайзеров являются: громоздкость, особенно при больших площадях поверхности нагрева, низкая теплопередача и большая чувствительность к гидравлическим ударам, что не позволяет нагревать воду в них до кипения.

3.1 Расчет водяного экономайзера

Таблица №6. Расчет водяного экономайзера

Наименование величины

Обозначение

Расчетная формула, способ определения

Размерность

Конструктивные характеристики:

а) диаметр труб

По приложению I

б) расположение труб

в) поперечный шаг

г) продольный шаг

д) относительный поперечный шаг

е) относительный продольный шаг

ж) средняя длина одной трубы

Принимается по приложению IХ

з) число труб в ряду колонки

и) число рядов труб по ходу газов

Принимается предварительно в зависимости от вида топлива:

а) газ, мазут z 2 =12;

б) твердые топлива с W р > 22% - z 2 =14;

в) твердые топлива с W р < 22% - z 2 =16.

Средняя скорость газов

Принимается равной 6ч8 м/сек

Температура газов на входе

Из расчета кипятильных пучков котла иґ вэ =иЅ кп

Энтальпия газов на входе

По J-и диаграмме

Температура газов на выходе

Из задания иЅ вэ =и ух

Энтальпия газов на выходе

По J-и диаграмме

Температура воды на входе в экономайзер

Из задания tґ=tґ пв

Энтальпия воды на входе в экономайзер

Согласно расчету теплового баланса котлоагрегата (табл.4)

Тепловосприятие экономайзера по балансу

Q б =ц·(Jґ вэ -JЅ вэ +?б вэ ·J)

Энтальпия воды на выходе из экономайзера

iЅ= iґ+Q б ·

Температура воды на выходе из экономайзера

По приложению V при Р к

Температурный напор на входе газов

Tґ=иґ вэ -tЅ

Температурный напор на выходе

TЅ=иЅ вэ -t "

Средний темпера-турный напор

T ср =0,5·(?tґ+?tЅ)

Средняя температура газов

и=0,5·(иґ вэ +иЅ вэ)

Средняя температура воды

t=0,5·(tґ+tЅ)

Объем газов на 1кг топлива

По табл.2 расчета

Сечение для прохода газов

Коэффициент теплопередачи

Пономограмме XVI

Поверхность нагрева

Число рядов труб по ходу газов

Число рядов труб, принятое по конструктивным соображениям

По приложению I

Число рядов труб в одной колонке

zґ 2к =0,5·z 2к

Высота колонки

h=s 2 ·zґ 2к +(500ч600)

Ширина колонки

Приращение энтальпии воды

4. Определение невязки теплового баланса

Таблица №7. Определение расчетной невязки теплового баланса

Наименование величины

Обозначение

Расчетная формула, способ определения

Размерность

Количество тепла, воспринятое на 1кг топлива лучевоспринимающими поверхностями топки, определенное из уравнения баланса

Из табл. №5

То же, кипятильными пучками

Из табл. №6

То же, экономайзером

Из табл. №7

Общее количество полезно использованного тепла

Q 1 =Q·з ка /100

Невязка теплового баланса

Q=Q 1 -(Q л +Q кп +Q эк)·(1-)

Приращение энтальпии воды в топке

Из табл. №5

То же, в кипятильных пучках

Из табл. №6

Приращение энтальпии воды в экономайзере

Из табл. №7

Сумма приращений энтальпий

I 1 =?i т +?i кп +?i эк

Невязка теплового баланса

Относительная величина невязки

5. Сводная таблица теплового расчета котлоагрегата

Таблица №98. Сводная таблица теплового расчета котлоагрегата

Наименование величин

Размерность

Наименование газохода

кипятильные пучки

экономайзер

Температура газов на входе иґ

То же, на выходе иЅ

Средняя температура газов и

Энтальпия газов на входе Jґ

То же, на выходе JЅ

Тепловосприятие Q б

Температура вторичного теплоносителя на входе tґ

То же, на выходе tЅ

Скорость газов щ г

Скорость воздуха щ в

Заключение

котел воздух топливо экономайзер

В данной курсовой работе был проведен поверочно-конструкторский расчет котельного агрегата и экономайзера. Курсовая работа выполнена согласно заданию с использованием всей необходимой справочной и нормативной литературой и методов расчета. Для выполнения теплового расчета газовый тракт котлоагрегата разделен на ряд самостоятельных участков: топочную камеру, конвективные пучки, экономайзер.

КПД котельного агрегата составляет 90,87 %. Расчетный расход топлива 1146,2 кг/ч. Тепло полезно используемое в котлоагрегате 11,714 Гкал/ч.

В качестве топлива в котельном агрегате используется природный газ, поступающий из третьей нитки газопровода Ставрополь-Москва. Тепловыделение в топке на 1 м 2 поверхности нагрева 196862,4 ккал/м 2 ч. Тепло переданное излучением в топке составляет 5529,22 ккал/кг топлива.Температура газов на выходе из топки 1160 °С.

Тепловосприятие кипятильных пучков 3830,94 ккал/кг, средняя температура газов 715 °С. При расчете было найдено тепловосприятие поверхности нагрева по уравнению теплопередачи, и по уравнению баланса, различие между которыми составило 1,58%, что в пределах нормы (<2%).

Поверхность нагрева установленная за котлом - экономайзер из чугунных ребристых труб длиной труб 3000 мм. Количество рядов труб в одной колонке, полученое в расчете, равно 9; число рядов труб по ходу газов, принятое по конструктивным соображениям, также равно 9. Средняя температура газов здесь составляет 245 °С. Температура воды на входе в экономайзер - 80 °С. Температура воды на выходе из экономайзера - 194,13 °С.

По определённому количеству полезного тепла, воспринимаемого различными поверхностями котельного агрегата, найдена тепловая невязка д 1 =2,05%. Также определена относительная величина тепловой невязки по энтальпии д 2 =2,3%.

По поверочно-конструктивному расчёту сконструирован водяной экономайзер. Выполнена обвязка котла и экономайзера с нанесением необходимой арматуры (предохранительные клапаны, вентили, обратные клапана, регулирующие клапаны, задвижки, воздушник, манометр, термометры, вантуз).

С писок литературы

1. Гусев Ю.Л. Основы проектирования котельных установок. Издание 2, переработанное и дополненное. Издательство литературы по строительству. Москва, 1973. - 248 с.

2. Щёголев М.М., Гусев Ю.Л., Иванова М.С. Котельные установки. Издание 2, приработанное и дополненное. Издательство литературы по строительству. - Москва, 1972.

3. Делягин Г.Н., Лебедев В.И., Пермяков Б.А. Теплогенерирующие установки. - Москва, Стройиздат, 1986. - 560 с.

4. СНиП II-35-76. Котельные установки.

5. Методические указания для расчета котельного агрегата и экономайзера. К курсовой работе по ТГУ для студентов специальности 270109 - Теплогазоснабжение и вентиляция / Сост.: А.Е. Ланцов, Г.М. Ахмерова. Казань, 2007. - 26 с.

6. Расчетные нормали, приложения и номограммы к поверочно-конструкторскому и аэродинамическому расчетам котельного агрегата и экономайзера к курсовой работе и курсовому проекту по ТГУ для студентов специальности 270109. / Сост.: А.Е. Ланцов, Г.М. Ахмерова. - Казань, 2009. - 54 с.

7. Эстеркин Р.И. Котельные установки. Энергоатомиздат. - Ленинград, 1989. - 280 с.

Размещено на Allbest.ru

Подобные документы

    Способы расчета котельного агрегата малой мощности ДЕ-4 (двухбарабанного котла с естественной циркуляцией). Расчет объемов и энтальпий продуктов сгорания и воздуха. Определение КПД котла и расхода топлива. Поверочный расчёт топки и котельных пучков.

    курсовая работа , добавлен 07.02.2011

    Состав, зольность и влажность твердого, жидкого и газообразного топлива. Объемы и энтальпии воздуха и продуктов сгорания. Расход топлива котельного агрегата. Основные характеристики топочных устройств. Определение теплового баланса котельного устройства.

    курсовая работа , добавлен 16.01.2015

    Тепловой расчет котельного агрегата Е-25М. Пересчет теоретических объемов и энтальпии воздуха и продуктов сгорания для рабочей массы топлива (сернистый мазут). Тепловой баланс, коэффициент полезного действия (КПД) и расход топлива котельного агрегата.

    курсовая работа , добавлен 17.03.2012

    Основные конструктивные характеристики, расчеты по топливу, воздуху и продуктам сгорания, составление теплового баланса котельного агрегата ПК-19. Выявление потерь от механического и химического недожога и вследствие теплообмена с окружающей средой.

    курсовая работа , добавлен 29.07.2009

    Определение объема воздуха, продуктов сгорания, температуры и теплосодержания горячего воздуха в топке агрегата. Средние характеристики продуктов сгорания в поверхностях нагрева. Расчет энтальпии продуктов сгорания, теплового баланса и пароперегревателя.

    контрольная работа , добавлен 09.12.2014

    Расчетные характеристики топлива. Материальный баланс рабочих веществ в котле. Характеристики и тепловой расчет топочной камеры. Расчет фестона и экономайзера, камеры охлаждения, пароперегревателя. Объемы и энтальпии воздуха и продуктов сгорания.

    дипломная работа , добавлен 13.02.2016

    Техническая характеристика водогрейного котла. Расчет процессов горения топлива: определение объемов продуктов сгорания и минимального объема водяных паров. Тепловой баланс котельного агрегата. Конструкторский расчет и подбор водяного экономайзера.

    курсовая работа , добавлен 12.12.2013

    Описание котла ДКВР 6,5-13 и схема циркуляции воды в нем. Расчет объемов и энтальпий воздуха и продуктов сгорания. Вычисление полезно-израсходованного тепла в котлоагрегате. Средние характеристики продуктов сгорания в топке. Описание кипятильного пучка.

    курсовая работа , добавлен 09.02.2012

    Описание конструкции котла. Особенности теплового расчета парового котла. Расчет и составление таблиц объемов воздуха и продуктов сгорания. Расчет теплового баланса котла. Определение расхода топлива, полезной мощности котла. Расчет топки (поверочный).

    курсовая работа , добавлен 12.07.2010

    Основные контуры естественной циркуляции промышленных котлов КЕ-25-14 ГМ. Расчет теплового баланса котельного агрегата и расхода топлива, конструктивных характеристик и теплообмена в топке, первого и второго конвективных пучков. Расчет экономайзера.

Стационарные паровые котлы ДКВР (двухбарабанные котлы водотрубные, реконструированные) предназначены для производства насыщенного или перегретого пара. Котлы выпускаются паропроизводительностью 2,5; 4; 6,5; 10 и 20 т/ч в основном на рабочее давление 1,27 МПа (13 кгс/см2) для производства насыщенного пара и с пароперегревателем (кроме котлов паропроизводительностью 2,5 т/ч) для производства перегретого пара с температурой 250°С. Кроме того, котлы паропроизводительностью 6,5; 10 и 20 т/ч изготовляются на давление 2,25 МПа (23 кгс/см2) для производства перегретого пара до 370°С, а котлы паропроизводительностью 10 т/ч — также на давление 3,82 МПа (39 кгс/см2) для производства пара, перегретого до 440°С.

Типоразмеры выпускаемых в настоящее время котлов ДКВР и их основные параметры приведены в таблице.

Типоразмеры котлов ДКВР

Производительность, т/ч Избыточное давление пара, кгс/см3
13 23
насыщенный пар перегретый пар (250°С) насыщенный пар перегретый пар (370 °С)
2,5 ДКВР -2,5-13 - - -
4 ДКВР -4-13 ДКВР -4-13-250 - -
6,5 ДКВР -6,5-13 ДКВР -6,5-13-250 ДКВР -6,5-23 ДКВР -6,5-23-370
10 ДКВР -10-13 ДКВР -10-13-250 ДКВР -10-23 ДКВР -10-23-370
20 ДКВР -20-13 ДКВР -20-13-250 ДКВР -20-23 ДКВР -20-23-370

Примечания:
1. Котлы типов ДКВР -10-13 с пароперегревателем и без него в низкой компоновке не являются серийными. Компоновка котлов и поставка их должны согласовываться с заводом.
2. Расчетная температура питательной воды принимается равной 100°С.
Топочное устройство Рекомендуемый вид топлива Топочное устройство Рекомендуемый вид топлива
ПМЗ-РПК Бурый и каменный уголь (кроме антрацитов) ЦКТИ системы Померанцева Дробленые отходы древесины и дре-весная кора с WB<55%
ПМЗ-ЛЦР
ПМЗ-ЧЦР
ЧЦР Антрацит марок АС и AM АКТИ системы Шершнева Фрезерный торф с WP<55%

Паровые котлы ДКВР могут быть использованы как водогрейные . Для этого над котлом устанавливают стандартный пароводяной подогреватель (бойлер), который включается в его циркуляцию, при этом в днище нижнего барабана вваривают дополнительный штуцер для отвода конденсата из бойлера.

Для котлов ДКВР -2,5; ДКВР -4 и ДКВР -6,5 применяют также внутрибарабанные бойлеры с прямыми латунными трубками диаметром 16X1 мм, устанавливаемые в паровом пространстве верхнего барабана.

При этом и другом способах котел работает как паровой по замкнутой схеме и температура стенок поверхностей нагрева получается выше температуры точки росы, что предохраняет их от газовой коррозии.

При переводе котлов ДКВР на водогрейный режим хвостовые поверхности нагрева необходимо выполнять в виде теплофикационного экономайзера или воздухоподогревателя.

Для обеспечения необходимого напора ось выносного теплообменника должна располагаться выше оси верхнего барабана котла не менее чем на 1,5 м.

При работе котлов ДКВР в водогрейном режиме их теплопроизводительность (мощность) соответствует величинам, приведенным в таблице.

Тепло-производительность (мощность) котлов ДКВР при работе в водогрейном режиме

Тип котла При работе на твердом топливе При работе на газе и мазуте
мощность, кВт теплопроизвонительность, Гкал/ч мощность, кВт теплопроизводительность, Гкал/ч
ДКВР -2,5-13 1745 1,5 2 440 2,1
ДКВР -4-13 2910 2,5 4 070 3,5
ДКВР -6,5-13 4650 4 6510 5,6
ДКВР -10-13 7560 6,5 10 580 9,1

Эти теплопроизводительности «соответствуют номинальной паропроизводительности котла на твердом топливе и повышенной на 40%—на газе и мазуте.

Все котлы на давление 13 кгс/см2 унифицированы по мощности и выполняются по единой конструктивной схеме: с продольным расположением верхнего и нижнего барабанов, полностью экранированной топочной камерой и многотипными. У котлов этой серии верхний барабан выполнен более длинным, чем нижний. Внутренний диаметр барабанов на давление 13— 23 кгс/см2 равен 1000 мм. Барабаны котла соединены между собой пучком стальных труб диаметром 51X2,5 мм, образующих развитую конвективную поверхность нагрева. Трубы расположены в коридорном порядке с шагом в продольном направлении, равным 100 мм, и поперечном — 110 мм, и своими концами развальцованы в барабанах. Конвективный пучок разделен поперечной перегородкой на две части, образуя два горизонтальных газохода.

Котел имеет экранированную топку из труб диаметром 51х2,5 мм, расположенную под передней частью верхнего барабана. Трубы боковых экранов ввальцованы одним концом в верхний барабан, а другим приварены к нижним коллекторам.

Топочная камера котла состоит из двух частей: собственно топки и камеры догорания, которая образуется путем выкладывания шамотной стенки на заднем топочном пороге. Камера догорания служит для удлинения пути дымовых газов, благодаря чему устраняется возможность затягивания пламени в конвективный пучок и улучшаются условия для догорания уноса.

Пароперегреватель выполняется - из стальных цельнотянутых труб (сталь 10) диаметром 32X3 мм.

Для очистки наружных поверхностей нагрева применяется стационарный обдувочный прибор, обдувочные трубы которого выполнены из стали Х25Т. Обдувают поверхности насыщенным или перегретым паром.

Котлы , работающие на твердом топливе, оборудуют устройством для возврата уноса в топку .

Температура газов за котлами паропроизводительностью 2,5—10 т/ч в среднем равна: при работе на твердом топливе 310—345°С, на газе 300—325°С и на мазуте 350—400°С.

Верхний предел температур следует принимать для котлов с пароперегревателем. Для мазута и газа температуры приведены при работе котлов с увеличенной паропроизводительностью на 50%. При установке экономайзера температура уходящих газов снижается до 140—180°С.

Перед сжиганием в котлах сернистого мазута к нему необходимо добавлять жидкую присадку ВНИЦНП-106. При этом котлы должны работать при давлении не ниже 0,49—0,59 МПа (5—6 кгс/см2).

На котлах ДКВР устанавливается регулятор питания для автоматического регулирования уровня воды в верхнем барабане в пределах ±60 мм от среднего уровня, а также звуковая сигнализация.

Для сжигания газа или мазута в комплекте с котлами ДКВР поставляются газомазутные горелки типа ГМГ. Горелки устанавливаются на фронтовой стенке топочной камеры котла и предназначены для сжигания газа с теплотой сгорания QHг=3500—8000 ккал/м3 (при нормальных условиях) и мазута марок 40 и 100.