«Надеюсь открыть более интересный материал, чем графен. Графен и его создатели

Ультратонкий материал - графен, за последнее десятилетие наделал в научном мире столько шума, что его стали применять практически во всех сферах человеческой деятельности. Из него пытаются делать аккумуляторы для электромобилей, собирают радиоактивные , делают поролон, наращивают костную ткань и даже нейтрализуют раковые опухоли.

Как известно, графен - это сверхпрочный и сверхэлектроёмкий материал. Он обладает в 100 раз более высокой электропроводностью, чем кремний, используемый сегодня в солнечных батареях.

Он был открыт в Манчестерском университете бывшими советскими, а ныне британскими физиками Андреем Геймом и Константином Новосёловым.
В 2004 году в журнале Science они впервые написали о графене, а в 2010 году ученые получили за свое открытие Нобелевскую премию.


«У графена есть свойства, которых нет ни у одного материала, - говорит Новоселов, - это в буквальном смысле материя, ткань. С ней можно делать то же самое, что вот с этой салфеткой: сгибать, сворачивать, растягивать…» Бумажная салфетка неожиданно рвется у него в руках. С графеном такого не случится, замечает физик, это самый прочный материал на Земле.

Сейчас графеновыми исследованиями плотно занимается, так называемая испанская тройка:

  • Университет Кордобы занимается вопросами проектирования и конструирования.
  • Grabat Energy - компания, специализирующаяся в области нанотехнологий и энергетики. Отвечать за производство графеновых батарей в промышленных масштабах.
  • Graphenano , является одним из основных производителей графеновых изделий в Испании. Здесь занимаются созданием этого материала и изготовлением его в виде полимера.

Графен в автомобилестроении

, который позволяет автомобилю без подзарядки преодолевать 1000 км очень обнадеживает всех ценителей экологического транспорта. Тем более, что такие же исследования с графеном проводились исследователями в Институте науки и технологий, Кванджу, Южная Корея и им также удалось создать батареи автомобиля с той же мощности, но, время зарядки сокращается до 16 секунд .


Заметьте, это исследования, которые проводились еще в 2013 году. А уже через год испанцы опубликовали о том, что их батарея будет продуктивней Тесла в 2,5 раза и зарядка батареи будет всего 8 минут. А главное два немецких автопроизводителя были заинтересованы в попытке установить графеновые аккумуляторы на своих автомобилях.

GTA Spano - испанский суперкар с графеновым кузовом

Испанский суперкар GTA Spano полностью сделан из графена.
Здесь компания Graphenano тестирует графен совсем не в качестве батареи, а как материал для создания корпуса и салона автомобиля. Графен здесь можно найти не только в шасси, но и в кузове и кожаной обивке.


По всей видимости из графена пытаются сделать не только батарею а полностью весь автомобиль.
Обратите внимание на табличку с надписью «графеновая батарея»

Поролон из графена



Графеновый поролон может стать самым теплопроводимым материалом в мире, утверждает ведущий производитель полиуретановой пены, компания Мурсия, которая включила этот материал в ассортимент своей продукции.

После длительного периода исследований и испытаний в своих лабораториях, они сумели успешно внедрить этот материал. Графеновый поролон имеет высокую теплопроводимость и уменьшает образование клещей и бактерий внутри эластичного пенополиуретана. Он может служить как прекрасный утеплитель в стенах, так и в мягкой мебели и салоне автомобиля. Видимо, в салоне GTA Spano его уже применили.

Что важно, при производстве графенового поролона не используется метиленхлорид и значительно уменьшаются , что сказывается на экологичной составляющей этого продукта.

Графен восстанавливает кости

Исследователи из института медицинских наук Amrita и научно-исследовательского центра в Индии показали, что оксид графена способен восстанавливать костную ткань .
Они обнаружили, что графеновые чешуйки оксида ускоряют размножение стволовых клеток и регенерацию клеток костной ткани.

Сейчас идет активная проверка графенового оксида на токсичность и если все пройдет успешно, то вскоре мы можем ожидать новых революционных методов лечения переломов костей.

Графен лечит от рака



Ученые выявили, что при помощи оксида графена можно уничтожить раковые стволовые клетки, в то же время, никак не влияя на здоровые клетки.

Если включить лечение оксидом графена в комплексное лечение при раковых опухолях, то разрастание опухоли прекратиться, а также графен поможет предотвратить метастазирование и повторное развитие опухоли в будущем. Такие заключения сделали специалисты после изучения свойств углеродного материала.

Специалисты предполагают, что их работа все же достигнет стадии клинических испытаний, и оксид графена можно будет применять для лечения раковых опухолей.

Графен впитывает радиоактивные отходы



Оксид графена быстро удаляет радиоактивные вещества из загрязненной воды, утверждают исследователи из МГУ им. Ломоносова и американского Университета Райса. Микроскопические, толщиной в атом хлопья этого материала быстро связываются с естественными и искусственными радиоизотопами и конденсируют их, превращая в твердые вещества. Сами хлопья растворимы в жидкости, и их легко производить в промышленных масштабах.


Таким образом можно очистить загрязненные участки, пострадавшие от выбросов ядерных отходов, как например на АЭС в Фукусиме. Оксид графена оказался гораздо лучше, чем бентонитовая глина и гранулированный активированный уголь, который обычно используется при ядерной очистке.

Также графеном можно очистить подземные воды, которые загрязняются при добыче нефти, газа и редкоземельных металов. И что примечательно такой метод очистки значительно дешевле традиционных.

Графен действительно уникальный материал и он может принести много пользы для нашей планеты. И в дальнейшем, мы будем следить за всеми новостями связанными с исследованиями в этой области.

Он прочный, он гибкий и он уже здесь: после долгих лет исследований и экспериментов графен приходит в нашу жизнь, а именно – в продукты, которыми мы пользуемся каждый день. В скором времени графен изменит мир смартфонов, аккумуляторов, спортивной экипировки, суперкаров и сверхпроводников. Свойства этого материала настолько невероятные, что некоторые люди даже считают, что графен достался нам от инопланетных кораблей, оставленных на нашей планете задолго до появления человечества.

Это, конечно же, фантастика, но потенциал графена не может не рождать подобные теории заговора. Прошло более 60 лет с тех пор, как ученые и производители электроники впервые попытались раскрыть всю мощь нового материала, однако его практическое применение стало реальным только сейчас. Новости о технологических прорывах в этой области не прекращаются, и очередной всплеск инфоповодов по этой теме состоялся в ходе недавней выставки мобильной электроники MWC 2018. Далее речь пойдет о 10 способах использования графена, которые изменят вашу жизнь в обозримом будущем.

Обычная одежда спасает нас от вредных ультрафиолетовых лучей, но зачастую этого бывает недостаточно, особенно в жарких солнечных странах. Проблема будет решена с помощью небольшого гибкого УФ-сканера, который может крепиться на кожу, как обычный пластырь, либо изначально встраиваться в одежду. Когда этот сканер определит, что вы слишком долго находитесь под прямыми солнечными лучами, он отправит соответствующее уведомление на смартфон, предупредив вас об опасности.

Производители обуви и спортивных товаров также делают большую ставку на графен. Сегодня уже существуют носки и стельки, распознающие силу давления в той или иной области подошвы. Но подавляющее большинство таких продуктов оснащены всего несколькими датчиками, графен позволяет разместить более 100 датчиков, которые никак не повлияют на вес обуви. Прототипы высокотехнологичных стелек существуют уже сегодня, они изготовлены из специальной пены и измеряют давление с точностью до миллиграмма.

Графеновый крио-кулер для охлаждения базовых станций 5 G

Всем модулям беспроводной связи при увеличении объема передаваемых данных требуется все больше охлаждения, иначе оборудование перегреется. Таким образом, многократное повышение пропускной способности в приближающихся 5G-сетях. Разработанный в Швеции компактный охлаждающий насос способен понижать температуру базовых станций вплоть до -150 градусов, поддерживая стабильный сигнал.

Хотя впервые графен был получен в Университете Манчестера, исследования данного материала ведутся по всему миру, а наибольшее число патентов по использованию графена принадлежит Китаю. Неудивительно, что крупнейший производитель электроники в этой стране стал одним из первых брендов, внедривших графен в свои продукты. Так, Xiaomi Mi Pro HD являются наушниками с графеновой диафрагмой, которая позволяет передавать более громкий, чистый и насыщенный звук. Также у Xiaomi есть терапевтический пояс PMA A10 из ткани, покрытой графеном.

В Италии ученые разрабатывают солнечную батарею на основе графена и органических кристаллов. Такая технология позволяет делать солнечные ячейки более крупными, что повышает эффективность сбора энергии и удешевляет производство в 4 раза.

Графеновые самолеты

В авиации вес – это все, от него напрямую зависит стоимость полета. Именно поэтому Ричард Брэнсон (и другие, менее известные люди) предсказывают полный переход коммерческих авиакомпаний на гораздо более легкий и прочный графен уже в ближайшее десятилетие. И это не просто слова – к примеру, Airbus уже не первый год активно занимается этим направлением.

Чехлы для смартфонов

Чехлы со встроенной батареей так и не прижились на рынке, а проблема быстро разряжающихся мобильных аккумуляторов никуда не делась. Чехлы с задней панелью из графена смогут намного эффективнее охлаждать смартфон, прибавляя до 20% ко времени работы батареи в вашем мобильном устройстве.

Супертонкие электронные книги

На MWC 2017 компания FlexEnable продемонстрировала построенную на основе графена полноцветную пиксельную матрицу для энергоэффективных дисплеев и дисплеев с электронными чернилами. Такие экраны будут иметь толщину обычной бумаги. К тому же, эти матрицы будут гибкими, что избавляет от необходимости использования толстого защитного стекла.

Графен раскрывает широкие перспективы для автомобилестроения, в частности для электромобилей. Дело в том, что с изготовленные из графена транспортные средства обладают меньшим весом и большей жесткостью кузова, что позволяет им быстрее ускоряться и расходовать значительно меньше электроэнергии.

Сверхбыстрые зарядки

Что, если бы вы могли зарядить свой смартфон на 100% за 5 минут? Именно столько времени требуется зарядному устройству от Zap & Go . И хотя тестовый прототип имел емкость всего 750 мАч, этот результат не может не впечатлять. А в следующем году инженеры компании обещают снизить этот показатель до 15-20 секунд. Тем временем, в Huawei разработали обычные литий-ионные батареи, которые благодаря применению графена могут работать на температурах до 60 о С, что на 10 превышает показатель стандартных аккумуляторов на 10 градусов, что продлевает срок эксплуатации батареи почти в 2 раза.

Нобелевская премия 2010 года по физике присуждена выходцам из России, работающим в Великобритании - Константину Новоселову и Андрею Гейму - за создание графена, объявила Шведская академия. Премия ученым присуждена "за новаторские эксперименты по исследованию двумерного материала графена", говорится в сообщении на сайте премии.

Графен представляет собой одиночный слой атомов углерода, соединенных между собой структурой химических связей, напоминающих по своей геометрии структуру пчелиных сот.

Графен обладает высокой прочностью, он прозрачен в силу своей чрезвычайно малой толщины. Кроме того, графен является прекрасным проводником электрического тока, что делает его очень привлекательными для использования в качестве прозрачных электродов солнечных батарей или сенсорных дисплеев.

Будучи открытым всего несколько лет назад (в 2004 г.) учеными Константином Новоселовым и Андреем Геймом , работающими ныне в Манчестерском университете, графен быстро завоевал право называться материалом - преемником кремния, так как вскоре после начала его интенсивного изучения стало понятно, что по многим параметрам он превосходит наиболее широко используемый полупроводник.

Благодаря своим свойствам, графен считается следующим поколением материалов, которые найдут свое применение в наноэлекронике. Он позволит существенно повысить скорость работы вычислительных машин, снизить их энергопотребление и нагревание в ходе работы, сделать их легкими. Графен также может быть использован в качестве замены тяжелых медных проводов в авиационной и космической индустрии, а также в широком наборе гибких электронных устройств, прототипы которых разрабатываются в наши дни.

Главный из существующих в настоящее время способов получения графена основан на механическом отщеплении или отшелушивании слоев графита. Он позволяет получать наиболее качественные образцы с высокой подвижностью носителей. Этот метод не предполагает использования масштабного производства, поскольку это ручная процедура.

Другой известный способ - метод термического разложения подложки карбида кремния гораздо ближе к промышленному производству.

Поскольку графен впервые был получен только в 2004 г. , он еще недостаточно хорошо изучен и привлекает к себе повышенный интерес. Данный материал не является просто кусочком других аллотропных модификаций углерода: графита, алмаза - из-за особенностей энергетического спектра носителей он проявляет специфические, в отличие от других двумерных систем, электрофизические свойства.

Согласно расчетам, микроэлектронные чипы на основе графена должны быть легче, производительнее, стабильнее в работе, должны потреблять меньше электроэнергии и меньше ее количество рассеивать в виде тепла. Наибольшая сложность в создании готовых электронных устройств на основе графена до сих пор заключалась в технической сложности получения углеродного листа больших размеров и отсутствия технологий манипуляций с ним.

В июне 2010 г. в Nature Nanotechnology была опубликована статья группы исследователей из Кореи и Японии, которые впервые сумели использовать углеродный наноматериал графен для создания сенсорного экрана с большой диагональю, что может приблизить появление гибких дисплеев и солнечных батарей и позволит существенно снизить их стоимость.

Ученые впервые сумели показать, что манипуляции с графеном возможны по принципам стандартной роликовой технологии, используемой, например, при печати газет и журналов. В своей работе они сумели получить большой лист графена, используя метод реакционного химического осаждения углеводородного сырья на гладкую пластину из меди. После этого с помощью роликов ученые покрыли графен слоем специального клейкого полимера, а медную подложку растворили травлением.

На следующем этапе ученые с помощью все той же роликовой технологии при нагревании перенесли графен с клейкой поверхности полимера на обычный пластик, используемый, например, для производства бутылок прохладительных напитков. Авторы публикации показали, что таким образом можно нанести несколько слоев графена друг на друга.

Полученный таким образом прямоугольный графеновый лист с диагональю 76 см ученые сумели превратить в прозрачный электрод для сенсорного дисплея. Такой дисплей, в отличие от современных аналогов, где в качестве прозрачного проводника используется оксид индия-олова, отличаются долговечностью, гибкостью, повышенной прозрачностью и, что наиболее важно, низкой стоимостью и экологичностью производства.

Создатели графена:

Андрей Гейм родился в Сочи в 1958 г., сейчас имеет голландское гражданство.

В 1982 г. окончил МФТИ, факультет общей и прикладной физики, получил степень кандидата физико-математических наук в Институте физики твердого тела АН СССР.

Работал научным сотрудником в Институте проблем технологии микроэлектроники и особо чистых материалов РАН в подмосковной Черноголовке, Ноттингемском университете, университете Бат (Великобритания), в университете Неймегена (Нидерланды), с 2001 г. - в Манчестерском университете.

В настоящее время Андрей Гейм - руководитель Манчестерского центра по мезонауке и нанотехнологиям, а также глава отдела физики конденсированного состояния.

Константин Новоселов родился в Нижнем Тагиле в 1974 г., сейчас имеет британское и российское гражданство.

В 1997 г. окончил МФТИ, факультет физической и квантовой электроники.

В настоящее время является профессором университета Манчестера.

Совместная работа выходцев из Института проблем технологии микроэлектроники и особо чистых материалов РАН в подмосковной Черноголовке в Университете Манчестера началась в 2001 г., когда Гейм был приглашен на должность директора Центра мезонауки и нанотехнологии Манчестерского университета. Константин Новоселов, стипендиат Фонда Леверхульма, присоединился к новым исследованиям своего соотечественника.

Гейм и Новосёлов - лауреаты премии Европейского Физического общества Europhysics Prize 2008 г. Эта высокая европейская награда присуждается ежегодно с 1975 года. Официальная формулировка присуждения премии размером в 10 тысяч евро: "за открытие и выделение свободного одноатомного слоя углерода, и объяснение его выдающихся электронных свойств".

5 октября 2010 г. стало известно, что Константину Новоселову и Андрею Гейму присуждена Нобелевская премия 2010 года по физике.

Премия ученым присуждена "за новаторские эксперименты по исследованию двумерного материала графена" , говорится в сообщении на сайте премии.

Материал подготовлен на основе информации РИА Новости и открытых источников

Что , обещающий революцию во многих областях технологий, далеко не безопасен. Он может оказывать губительное воздействие на здоровье человека и окружающую среду.

Графен - это материал с уникальными свойствами, многие связывают с ним . Графен прочнее стали, гибок, обладает высокой электропроводимостью, при этом состоит всего из одного слоя атомов углерода. Эти свойства привели к тому, что материал стали воспринимать как основу для множества будущих "прорывных" изобретений человечества.

Тем не менее, до недавнего времени серьезным изучением экологических последствий применения нового материала никто не занимался. После продолжительного исследования ученые из Калифорнийского университета в Риверсайде пришли к выводу, что графен может быть опасен.

Выяснилось, что при попадании материала в грунтовые воды гексагональная структура графена начинает разрушаться, микрочастицы довольно быстро теряют стабильность, разрушаются и значительного вреда принести не могут. А вот графеновое загрязнение поверхностных вод, в которых больше органики, а жесткость ниже, может оказаться гораздо более серьезным. Молекулярная структура графена такова, что острые выступы нано-частиц материала способны разрывать мембраны клеток живых организмов, что обуславливает его токсичность. Ученые призывают максимально тщательно изучить свойства графена до того, как его начнут активно использовать в производстве электроники.

Тем не менее, вряд ли это открытие остановят человечество от масштабного применения графена. Материал обладает настолько уникальными свойствами, что заменить его попросту нечем. Ни один сплав не может похвастаться такой теплопроводностью, выдающейся прочностью и максимальными из всех известных материалов электропроводящими качествами. Подвижность электронов в графеновых структурах в сто раз превышает показатель кремния, который в данный момент является основой практически всей электроники на планете.

По своим свойствам графен куда надежнее, чем сталь. Гаджеты будущего на его основе окажутся куда более устойчивыми к повреждениям, чем то, что мы имеем сейчас. Но и это еще не все - графен может в сто раз ускорить скорость доступа к Интернету, привести к революции в компьютерной индустрии, на несколько порядков увеличив мощность процессоров. Графен нашел применение в медицине, в укреплении старых зданий, в производстве электроэнергии и сотнях других областей.

Первыми графен получили в 2004 году, работая в Великобритании в Манчестерском университете, выходцы из России Андрей Гейм и Константин Новоселов. В 2010 году за свой вклад в изучение "материала будущего" они были удостоены Нобелевской премии.

Не так давно компания Samsung объявила о том, что её учёные открыли недорогой способ массового производства графена. В данном материале мы попытаемся рассказать, что такое графен и почему его принято называть «материалом будущего».

Что такое графен?

Графен - это двумерная аллотропная форма углерода, в которой объединённые в гексагональную кристаллическую решётку атомы образуют слой толщиной в один атом. Графен был открыт в 2004 году двумя выходцами из России - Андреем Геймом и Константином Новосёловым - которые, как это часто бывает, не смогли реализовать свой научный потенциал в родной стране и уехали работать в Нидерланды и Великобританию соответственно. За открытие графена Гейм и Новосёлов в 2010 году получили Нобелевскую премию по физике.


Открыватели графена Андрей Гейм и Константин Новосёлов

Чем он интересен?

Необычные свойства графена сулят этому материалу блестящее будущее. Мы перечислим лишь некоторые из них, которые на наш взгляд, представляют максимальный интерес.

Начнём с механических свойств. Графен обладает очень высокой прочностью. Лист графена площадью в один квадратный метр (и толщиной, напомним, всего лишь в один атом!) способен удерживать предмет массой 4 килограмма. Вследствие двумерной структуры, графен является очень гибким материалом, что в будущем позволит использовать его, например, для плетения нитей (при этом тоненькая графеновая «верёвка» по прочности будет аналогична толстому и тяжёлому стальному канату). Кроме того, в определённых условиях графен способен сам «залечивать» «дырки» в своей кристаллической структуре.

Графен - это материал с очень высокой проводимостью электричества и тепла, что делает его идеальным для применения в различных электронных устройствах, особенно если впомнить о его гибкости и полной оптической прозрачности. Уже были изготовлены экспериментальные солнечные батареи, в которых графен используется в качестве замены сравнительно дорогого селенида индия. При этом «графеновые» солнечные батареи демонстрируют более высокую эффективность.


Гибкая подложка с графеновыми электродами

Ещё одно возможное применение графена - создание гибкой электроники и, в частности, гибких дисплеев. Сейчас в экранах (как жидкокристаллических, так и OLED) в качестве прозрачного проводника используется оксид индия-олова, который относительно дорог и при этом хрупок. В этом смысле высокая прочность и гибкость графена делают его идеальным кандидатом на замену. Широкое распространение графена наверняка даст хороший стимул развитию носимой электроники, поскольку позволит встраивать чипы в одежду, бумагу и другие повседневные вещи.


Тестовая пластина с «графеновыми» чипами IBM

Графен также рассматривается в качестве перспективного материала для создания полевых транзисторов, что открывает широкие возможности по миниатюризации электроники. Например, в последнее время принято говорить о том, что знаменитый «закон Мура» скоро себя исчерпает, поскольку классический кремниевый транзистор нельзя уменьшать бесконечно. В то же время транзисторы, в которых используется графен, можно сделать очень небольшими без потери полезных свойств. Компания IBM уже объявила о создании интегральных схем на основе графеновых транзисторов, которые к тому же способны бесперебойно работать при температурах до 128 градусов Цельсия.


Схема работы графенового фильтра

Также графеновая плёнка, как оказалось, является отличным фильтром для воды, поскольку она пропускает молекулы воды и при этом задерживает все остальные. Возможно, в будущем это поможет снизить стоимость опреснения морской воды. Несколько месяцев назад компания Lockheed Martin представила графеновый фильтр для воды под названием Perforene, которые, по утверждению производителя, на 99% снижает энергетические затраты на опреснение.

Наконец, не можем не отметить, что благотворительный Фонд Билла и Мелинды Гейтс в прошлом году выделил грант в размере 100 тысяч долларов на «разработку новых композитных эластичных материалов для презервативов, включающих наноматериалы типа графена».

В сухом остатке

У каждой эпохи есть своё ключевое открытие, которое задаёт темпы и направление прогресса на много лет вперёд. Например, металлургия стала основой промышленной революции, а изобретение полупроводникового транзистора в XX веке сделало возможным появление современного мира в том виде, каким мы его знаем. Станет ли графен таким чудо-материалом XXI века, который позволит создавать устройства, о которых мы сейчас и не догадываемся? Вполне может быть. Пока же нам остаётся только с интересом следить за исследованиями в этой области.