Митохондрии. Функции митохондрий и энергообразование

Происхождение митохондрий

Межмембранное пространство

Межмембранное пространство представляет собой пространство между наружной и внутренней мембранами митохондрии. Его толщина - 10-20 нм. Так как наружная мембрана митохондрии проницаема для небольших молекул и ионов, их концентрация в периплазматическом пространстве мало отличается от таковой в цитоплазме. Напротив, крупным белкам для транспорта из цитоплазмы в периплазматическое пространство необходимо иметь специфические сигнальные пептиды; поэтому белковые компоненты периплазматического пространства и цитоплазмы различны. Одним из белков, содержащихся в периплазматическом пространстве, является цитохром c - один из компонентов дыхательной цепи митохондрий.

Внутренняя мембрана

Внутренняя мембрана образует многочисленные гребневидные складки - кристы, существенно увеличивающие площадь ее поверхности и, например, в клетках печени составляет около трети всех клеточных мембран. Характерной чертой состава внутренней мембраны митохондрий является присутствие в ней кардиолипина - особого фосфолипида , содержащего сразу четыре жирные кислоты и делающего мембрану абсолютно непроницаемой для протонов . Ещё одна особенность внутренней мембраны митохондрий - очень высокое содержание белков (до 70 % по весу), представленных транспортными белками , ферментами дыхательной цепи , а также крупными АТФ-синтетазными комплексами. Внутренняя мембрана митохондрии в отличие от внешней не имеет специальных отверстий для транспорта мелких молекул и ионов; на ней, на стороне, обращенной к матриксу, располагаются особые молекулы АТФ-синтазы , состоящие из головки, ножки и основания. При прохождении через них протонов происходит синтез АТФ . В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты дыхательной цепи . Наружная и внутренняя мембраны в некоторых местах соприкасаются, там находится специальный белок-рецептор, способствующий транспорту митохондриальных белков, закодированных в ядре, в матрикс митохондрии.

Матрикс

Матрикс - ограниченное внутренней мембраной пространство. В матриксе (розовом веществе) митохондрии находятся ферментные системы окисления пирувата , жирных кислот, а также ферменты цикла трикарбоновых кислот (цикла Кребса). Кроме того, здесь же находится митохондриальная ДНК , РНК и собственный белоксинтезирующий аппарат митохондрии.

Митохондриальная ДНК

Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу , в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 10 5 раз меньше ДНК, локализованной в ядре . В целом митохондриальная ДНК кодирует 2 рРНК , 22 тРНК и 13 субъединиц ферментов дыхательной цепи , что составляет не более половины обнаруживаемых в ней белков . В частности, под контролем митохондрального генома кодируются семь субъединиц АТФ-синтетазы, три субъединицы цитохромоксидазы и одна субъединица убихинол-цитохром-с -редуктазы. При этом все белки, кроме одного, две рибосомные и шесть тРНК транскрибируются с более тяжёлой (наружной) цепи ДНК, а 14 других тРНК и один белок транскрибируются с более лёгкой (внутренней) цепи.

На этом фоне геном митохондрий растений значительно больше и может достигать 370000 нуклеотидных пар, что примерно в 20 раз больше описанного выше генома митохондрий человека. Количество генов здесь также примерно в 7 раз больше, что сопровождается появлением в митохондриях растений дополнительных путей электронного транспорта, не сопряжённых с синтезом АТФ.

Таким образом, суммарная реакция, катализируемая ферментами дыхательной цепи, состоит в окислении НАДН кислородом с образованием воды. По сути этот процесс заключается в ступенчатом переносе электронов между атомами металлов , присутствующих в простетических группах белковых комплексов дыхательной цепи, где каждый последующий комплекс обладает более высоким сродством к электрону, чем предыдущий. При этом сами электроны передаются по цепи до тех пор, пока не соединятся с молекулярным кислородом, обладающим наибольшим сродством к электронам. Освобождаемая же при этом энергия запасается в виде электрохимического (протонного) градиента по обе стороны внутренней мембраны митохондрий. При этом считается, что в процессе транспорта по дыхательной цепи пары электронов перекачивается от трёх до шести протонов.

Завершающим этапом функционирования митохондрии является генерация АТФ , осуществляемая встроенным во внутреннюю мембрану специальным макромолекулярным комплексом с молекулярной массой 500 кДа. Этот комплекс, называемый АТФ-синтетазой, как раз и катализирует синтез АТФ путём конверсии энергии трансмембранного электрохимического градиента протонов водорода в энергию макроэргической связи молекулы АТФ.

АТФ-синтеза

В структурно-функциональном плане АТФ-синтаза состоит из двух крупных фрагментов, обозначаемых символами F 1 и F 0 . Первый из них (фактор сопряжения F 1) обращён в сторону матрикса митохондрии и заметно выступает из мембраны в виде сферического образования высотой 8 нм и шириной 10 нм. Он состоит из девяти субъединиц, представленных пятью типами белков. Полипептидные цепи трёх субъединиц α и стольких же субъединиц β уложены в похожие по строению белковые глобулы , которые вместе образуют гексамер (αβ) 3 , имеющий вид слегка приплюснутого шара. Подобно плотно уложенным долькам апельсина, последовательно расположенные субъединицы α и β образуют структуру, характеризующуюся осью симметрии третьего порядка с углом поворота 120°. В центре этого гексамера находится субъединица γ, которая образована двумя протяжёнными полипептидными цепями и напоминает слегка деформированный изогнутый стержень длиной около 9 нм. При этом нижняя часть субъединицы γ выступает из шара на 3 нм в сторону мембранного комплекса F 0 . Также внутри гексамера находится минорная субъединица ε, связанная с γ. Последняя (девятая) субъединица обозначается символом δ и расположена на внешней стороне F 1 .

Мембранная часть АТФ-синтазы, называемая фактором сопряжения F 0 , представляет собой гидрофобный белковый комплекс, пронизывающий мембрану насквозь и имеющий внутри себя два полуканала для прохождения протонов водорода. Всего в состав комплекса F 0 входит одна белковая субъединица типа а , две копии субъединицы b , а также от 9 до 12 копий мелкой субъединицы c . Субъединица а (молекулярная масса 20 кДа) полностью погружена в мембрану, где образует шесть пересекающих её α-спиральных участков. Субъединица b (молекулярная масса 30 кДа) содержит лишь один сравнительно короткий погружённый в мембрану α-спиральный участок, а остальная её часть заметно выступает из мембраны в сторону F 1 и закрепляется за расположенную на её поверхности субъединицу δ. Каждая из 9-12 копий субъединицы c (молекулярная масса 6-11 кДа) представляет собой сравнительно небольшой белок из двух гидрофобных α-спиралей, соединённых друг с другом короткой гидрофильной петлёй, ориентированной в сторону F 1 , а все вместе образуют единый ансамбль, имеющий форму погружённого в мембрану цилиндра. Выступающая из комплекса F 1 в сторону F 0 субъединица γ как раз и погружена внутрь этого цилиндра и достаточно прочно зацеплена за него.

Таким образом, в молекуле АТФ-синтазы можно выделить две группы белковых субъединиц, которые могут быть уподоблены двум деталям мотора: ротору и статору . «Статор» неподвижен относительно мембраны и включает в себя шарообразный гексамер (αβ) 3 , находящуюся на его поверхности и субъединицу δ, а также субъединицы a и b мембранного комплекса F 0 . Подвижный относительно этой конструкции «ротор» состоит из субъединиц γ и ε, которые, заметно выступая из комплекса (αβ) 3 , соединяются с погружённым в мембрану кольцом из субъединиц c .

Способность синтезировать АТФ - свойство единого комплекса F 0 F 1 , сопряжённого с переносом протонов водорода через F 0 к F 1 , в последнем из которых как раз и расположены каталитические центры, осуществляющие преобразование АДФ и фосфата в молекулу АТФ. Движущей же силой для работы АТФ-синтазы является протонный потенциал, создаваемый на внутренней мембране митохондрий в результате работы цепи электронного транспорта.

Сила, приводящая в движение «ротор» АТФ-синтазы, возникает при достижении разности потенциалов между наружной и внутренней сторонами мембраны > 220 мВ и обеспечивается потоком протонов, протекающих через специальный канал в F 0 , расположенный на границе между субъединицами a и c . При этом путь переноса протонов включает в себя следующие структурные элементы:

  1. Два расположенных несоосно «полуканала», первый из которых обеспечивает поступление протонов из межмембранного пространства к существенно важным функциональным группам F 0 , а другой обеспечивает их выход в матрикс митохондрии;
  2. Кольцо из субъединиц c , каждая из которых в своей центральной части содержит протонируемую карбоксильную группу, способную присоединять H + из межмембранного пространства и отдавать их через соответствующие протонные каналы. В результате периодических смещений субъединиц с , обусловленных потоком протонов через протонный канал происходит поворот субъединицы γ, погружённой в кольцо из субъединиц с .

Таким образом, каталитическая активность АТФ-синтазы непосредственно связана с вращением её «ротора», при котором поворот субъединицы γ вызывает одновременное изменение конформации всех трёх каталитических субъединиц β, что в конечном счёте и обеспечивает работу фермента. При этом в случае образования АТФ «ротор» крутится по часовой стрелке со скоростью четыре оборота в секунду, а само подобное вращение происходит дискретными скачками по 120°, каждый из которых сопровождается образованием одной молекулы АТФ.

Непосредственная функция синтеза АТФ локализована на β-субъединицах сопрягающего комплекса F 1 . При этом самым первым актом в цепи событий, приводящих к образованию АТФ, является связывание АДФ и фосфата с активным центром свободной β-субъединицы, находящейся в состоянии 1. За счёт энергии внешнего источника (тока протонов) в комплексе F 1 происходят конформационные изменения, в результате которых АДФ и фосфат становятся прочно связанными с каталитическим центром (состояние 2), где становится возможным образование ковалентной связи между ними, ведущей к образованию АТФ. На данной стадии АТФ-синтазы ферменту практически не требуется энергии, которая будет необходима на следующем этапе для освобождения прочно связанной молекулы АТФ из ферментативного центра. Поэтому следующий этап работы фермента заключается в том, чтобы в результате энергозависимого структурного изменения комплекса F 1 каталитическая β-субъединица, содержащая прочно связанную молекулу АТФ, перешла в состояние 3, в котором связь АТФ с каталитическим центром ослаблена. В результате этого молекула АТФ покидает фермент, а β-субъединица возвращается в исходное состояние 1, благодаря чему обеспечивается цикличность работы фермента.

Работа АТФ-синтазы связана с механическими движениями её отдельных частей, что позволило отнести этот процесс к особому типу явлений, названных «вращательным катализом». Подобно тому, как электрический ток в обмотке электродвигателя приводит в движение ротор относительно статора, направленный перенос протонов через АТФ-синтетазу вызывает вращение отдельных субъединиц фактора сопряжения F 1 относительно других субъединиц ферментного комплекса, в результате чего это уникальное энергообразующее устройство совершает химическую работу - синтезирует молекулы АТФ. В дальнейшем АТФ поступает в цитоплазму клетки, где расходуется на самые разнообразные энергозависимые процессы. Подобный перенос осуществляется специальным встроенным в мембрану митохондрий ферментом АТФ/АДФ-транслоказой, который обменивает вновь синтезированную АТФ на цитоплазматическую АДФ, что гарантирует сохранность фонда адениловых нуклеотидов внутри митохондрий.

Словарь синонимов

Митохондрия. См. пластосома. (

Митохондрии

В клетках животных тканей митохондрии были обнаружены в 1882 г., а у растений - только в 1904 г. (в пыльниках кувшинки). Биологические функции удалось установить после выделения и очистки фракции методом фракционного центрифугирования. В их составе находится 70% белка и около 30% липидов, небольшое количество РНК и ДНК, витамины А, B 6 , В 12 , К, Е, фолиевая и пантотеновая кислоты, рибофлавин, различные ферменты. Митохондрии имеют двойную мембрану, Наружная изолирует органеллу от цитоплазмы, а внутренняя образует выросты кристы. Все пространство между мембранами заполнено матриксом (рис. 13).

Основная функция митохондрий - участие в клеточном дыхании. Роль митохондрий в дыхании была установлена в 1950-1951 годах. На наружных мембранах концентрируется сложная ферментная система цикла Кребса. При окислении субстратов дыхания освобождается энергия, которая тотчас же в процессе окислительного фосфорилирования, происходящего в кристах, аккумулируется в образующихся молекулах АДФ и главным образом АТФ. Энергия, запасенная в макроэргических соединениях, используется в дальнейшем для удовлетворения всех потребностей клетки.

Образование митохондрий в клетке происходит непрерывно из микротелец, чаще их возникновение связывают с дифференцировкой мембранных структур клетки. Они в клетке могут восстанавливаться путем их деления и почкования. Митохондрии не долговечны, продолжительность их жизни 5-10 дней.

Митохондрии – «силовые» станции клетки. В них концентрируется энергия, которая запасается в «аккумуляторах» энергии - молекулах АТФ, а не рассеивается в клетке. Нарушение структуры митохондрии ведет к нарушению процесса дыхания и в итоге к патологии организма.

Аппарат Гольджи. Аппарат Гольджи (синоним - диктиосомы) представляет собой стопки из 3-12 уплощенных, замкнутых, окруженных двойной мембраной дисков, называемых цистернами, от краев которых отшнуровываются многочисленные пузырьки (300-500). Ширина цистерн 6-90 А, толщина мембран - 60-70 А.

Аппарат Гольджи является центром синтеза, накопления и выделения полисахаридов, в частности целлюлозы, участвует в распределении и внутриклеточном транспорте белков, а также в образовании вакуолей и лизосом. В растительной клетке удалось проследить участие аппарата Гольджи в возникновении срединной пластинки и росте клеточной пекто-целлюлозной оболочки.

Аппарат Гольджи более всего развит в период активной жизни клетки. При ее старении он постепенно атрофируется, а затем исчезает.

Лизосомы. Лизосомы - довольно мелкие (около 0.5 мк в диаметре) округлые тельца. Они покрыты белково-липоидной мембраной. Содержимое лизосом многочисленные гидролитические ферменты, которые осуществляют функцию внутриклеточного переваривания (лизирования) макромолекул белка, нуклеиновых кислот, полисахаридов. Их основная функция переваривание отдельных участков протопласта клетки (автофагия - самопожирание). Этот процесс протекает за счет фагоцитоза или пиноцитоза. Биологическая роль этого процесса двоякая. Во-первых, защитная, поскольку при временном недостатке запасных продуктов клетка поддерживает жизнь за счет конституционных белков и др. веществ, а во-вторых происходит освобождение от избыточных или изношенных органелл (пластид, митохондрий и др.) Оболочка лизосомы препятствует выходу ферментов в цитоплазму, в противном случае она бы вся переваривалась этими ферментами.

В умершей клетке лизосомы разрушаются, ферменты оказываются в клетке и все ее содержимое переваривается. Остается только пекто-целлюлозная оболочка.

Лизосомы являются продуктами деятельности аппарата Гольджи, оторвавшимися от него пузырьками, в которых этот органоид аккумулировал переваривающие ферменты.

Сферосомы - округлые белково-липоидные тельца 0.3-0.4 мкм. По всей вероятности являются производными аппарата Гольджи или эндоплазматического ретикулума. По своей форме и величине напоминают лизосомы. Поскольку сферосомы содержат кислую фосфатазу, то они, вероятно, имеют отношение к лизосомам. Некоторые авторы считают, что сферосомы и лизосомы эквивалентны друг другу, но, скорее всего только по происхождению и форме. Есть предположение об их участии в синтезе жиров (А.Фрей-Висслинг).

Рибосомы - очень мелкие органоиды, диаметр их около 250А, По форме они почти шаровидные. Часть их прикреплена к наружным мембранам эндоплазматического ретикулума, часть их находится в свободном состоянии в цитоплазме. В клетке может содержаться до 5 млн рибосом. Рибосомы есть в хлоропластах и митохондриях, где они синтезируют часть белков, из которых построены эти органоиды, и ферменты, функционирующие в них.

Основная функция - синтез специфических белков согласно информации, поступающей из ядра. Их состав: белок и рибосомная рибонуклеиновая кислота (РНК) в равных соотношениях. Их структура малая и большая субъединицы, сформированные из рибонуклеотида.

Микротрубочки. Микротрубочки - своеобразные производные эндоплазматического ретикулума. Обнаружены во многих клетках. Само их название говорит об их форме - одна или две, расположенные параллельно, трубочки с полостью внутри. Внешний диаметр в пределах 250А. Стенки микротрубочек построены из белковых молекул. Из микротрубочек во время деления клетки образуются нити веретена.

Ядро

Ядро было обнаружено в растительной клетке Р. Броуном в 1831 году. Оно располагается в центре клетки или около клеточной оболочки, но со всех сторон окружено цитоплазмой. В большинстве случаев в клетке находится одно ядро, по несколько ядер находится в клетках некоторых водорослей, а также грибов. У зеленых водорослей неклеточной структуры насчитывается сотни ядер. Многоядерные клетки нечленистых млечников. Отсутствуют ядра в клетках бактерий и сине-зеленых водорослей.

Форма ядра чаще всего близка к форме шара или эллипса. Зависит от формы, возраста и функции клетки. В меристематической клетке ядро крупное, округлой формы и занимает 3/4 объема клетки. В паренхимных клетках эпидермы, имеющих крупную центральную вакуоль, ядро имеет чечевицеобразную форму и отодвинуто вместе с цитоплазмой к периферии клетки. Это признак специализированной, но уже стареющей клетки. Клетка, лишенная ядра, способна жить лишь короткое время. Безъядерные клетки ситовидных трубок живые клетки, но живут они недолго. Во всех других случаях безъядерные клетки являются мертвыми.

Ядро имеет двойную оболочку, через поры в которой содержимое
ядра (нуклеоплазма) может сообщаться с содержимым цитоплазмы. Мембраны оболочки ядра снабжены рибосомами и сообщаются с мембранами эндоплазматического ретикулума клетки. В нуклеоплазме располагается одно или два ядрышка и хромозомы. Нуклеоплазма представляет собой коллоидную систему золя, напоминающую по консистенции загустевшую желатину. В ядре, по данным отечественных биохимиков (Збарский И.Б. и др.), содержится четыре фракции белков: простых белков - глобулинов 20%, дезоксирибонуклеопротеидов - 70%, кислых белков - 6% и остаточных белков 4%. Они локализуются в следующих ядерных структурах: ДНК-протеиды (щелочные белки) - в хромозомах, РНК-протеиды (кислые белки) - в ядрышках, частично в хромозомах (в период синтеза информационной РНК) и в ядерной мембране. Глобулины составляют основу нуклеоплазмы. Остаточные белки (природа не уточнена) образуют ядерную мембрану.



Основная масса белков ядра - сложные щелочные белки дезоксирибонуклеопротеиды, в основе которых находится ДНК.

Молекула ДНК. Молекула ДНК – полинуклеотид и состоит из нуклеотидов. В состав нуклеотида входит три компонента: молекула сахара (дезоксирибоза), молекула азотистого основания и молекулы фосфорной кислоты. Дезоксирибоза соединена с азотистым основанием гликозидной, а с фосфорной кислотой - эфирной связью. В ДНК имеется в различных комбинациях всего 4 разновидности нуклеотидов, отличающихся друг от друга азотистыми основаниям. Два из них (аденин и гуанин) относятся к пуриновым азотистым соединениям, а цитозин и тимин - к пиримидиновым. Молекулы ДНК располагаются не в одной плоскости, а состоят из двух спирализованных нитей, т.е. две параллельно расположенные цепочки, закрученные одна вокруг другой, образуют одну молекулу ДНК. Они скреплены между собой с помощью водородной связи между азотистыми основаниями, причем пуриновые основания одной цепочки присоединяют пиримидиновые основания другой (рис.14). Структура и химизм молекулы ДНК была раскрыта английским (Крик) и американским (Уотсон) учеными и обнародована в 1953 г. Этот момент принято считать началом развития молекулярной генетики. Молекулярный вес ДНК – 4-8 млн. Количество нуклеотидов (различных вариантов) до 100 тысяч. Молекула ДНК очень стабильна, ее стабильность обеспечивается тем, что на всем протяжении она имеет одинаковую толщину - 20А (8А - ширина пиримидинового основания +12А - ширина пуринового основания). Если ввести в организм радиоактивный фосфор, то метка будет обнаруживаться во всех фосфоросодержащих соединениях, кроме ДНК (Леви, Сикевиц).

Молекулы ДНК являются носителями наследственности, т.к. в их структуре закодирована информация о синтезе специфических белков, определяющих свойства организма. Изменения могут возникнуть под действием мутагенных факторов (радиоактивное излучение, сильнодействующие, химические агенты -алкалоиды, спирты и т.д.).

Молекула РНК. Молекулы рибонуклеиновой кислоты (РНК) значительно меньше молекул ДНК. Это одиночные цепочки из нуклеотидов. Существует три вида РНК: рибосомная, самая длинная, образующая многочисленные петли, информационная (матричная) и траспортная, самая короткая. Рибосомная РНК локализуется в рибосомах эндоплазматической сети и составляет 85% всей РНК клетки.

Информационная РНК по своей структуре напоминает листочек клевера. Ее количество - 5% от суммы всей РНК в клетке. Она синтезируется в ядрышках. Ее сборка происходит в хромозомах в период интерфазы. Ее основная функция - перенос информации от ДНК к рибосомам, где происходит синтез белка.

Транспортная РНК, как установлено сейчас, это целое семейство соединений, родственных по структуре и биологической функции. Каждая живая клетка по приблизительной оценке содержит 40-50 индивидуальных транспортных РНК и их общее число в природе, если учесть видовые различия, огромно. (Акад.В.Энгельгардт). Транспортными они называются потому, что их молекулы заняты транспортным обслуживанием внутриклеточного процесса синтеза белка. Соединяясь со свободными аминокислотами, они доставляют их к рибосомам в строящуюся белковую цепь. Это самые маленькие молекулы РНК, состоят в среднем из 80 нуклеотидов. Локализуются в матриксе цитоплазмы и составляют около 10% клеточной РНК

В составе РНК содержится четыре азотистых основания, но в отличие от ДНК в молекуле РНК вместо тимина находится урацил.

Структура хромозом. Хромозомы впервые были обнаружены в конце 19 века классиками цитологии Флемингом и Страсбургером (1882, 1884), а русский исследователь клетки И.Д. Чистяков их обнаружил в 1874 году.

Основной структурный элемент хромозом - ядро. Они имеют различную форму. Это либо прямые, либо изогнутые палочки, овальные тельца, шарики, размеры которых варьируют.

В зависимости от места расположения центромеры различают прямые, равноплечие и неравноплечие хромозомы. Внутренняя структура хромозом представлена на рис. 15, 16. Следует отметить, что дезоксирибонуклеопротеид является мономером хромозомы.

В хромозоме дезоксирибонуклеопротеидов 90-92%, из них 45% -ДНК и 55% - белка (гистона). В небольшом количестве в хромозоме представлена и РНК (информационная).

У хромозомы четко выражена и поперечная структура - наличие утолщенных участков - дисков, которые еще в 1909г. были названы генами. Этот термин был предложен датским ученым Иогансеном. В 1911 г. американский ученый Морган доказал, что гены являются основными наследственными единицами и распределяются они в хромозомах в линейном порядке и, поэтому хромозома имеет качественно различные участки. В 1934 г. американский ученый Пайнтер доказал прерывистость морфологического строения хромозом и наличие в хромозомах дисков, а диски - это места скопления ДНК. Это послужило началом создания хромосомных карт, на которых указывалось место (локус) расположения гена, определяющего тот или иной признак организма. Ген - это участок двойной спирали ДНК, на котором содержится информация о структуре одного белка. Это участок молекулы ДНК, определяющий синтез одной молекулы белка. ДНК непосредственного участия в синтезе белка не принимает. В ней только содержится и хранится информация о структуре белка.

Структура ДНК, состоящая из нескольких тысяч последовательно расположенных 4-х нуклеотидов, представляет собой код наследственности.

Код наследственности. Синтез белка. Первое сообщение по коду ДНК сделал американский биохимик Ниренберг в 1961 г. в Москве на международном биохимическом конгрессе. Сущность кода ДНК состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом расположенных нуклеотидов (триплет). Так, например участок, состоящий из Т-Т-Т (триплет из 3-х тиминсодержащих нуклеотидов) соответствует аминокислоте лизину, триплет А (аденин) - Ц (цитозин) - А (аденин)- цистеину и т.д. Допустим, что ген представлен цепочкой нуклеотидов, расположенных в следующем порядке: А-Ц-А-Т-Т-Т-А-А-Ц-Ц-А-А-Г-Г-Г. Разбив этот ряд на триплеты, мы сразу расшифруем, какие аминокислоты и в каком порядке будут располагаться в синтезируемом белке.

Число возможных сочетаний из 4-х имеющихся нуклеотидов по три равно 4×64. Исходя из этих соотношений, числа различных триплетов с избытком хватит для обеспечения информации по синтезу многочисленных белков, определяющих и структуру и функции организма. Для синтеза белка в рибосомы направляется точная копия этой информации в виде информационной РНК. В расшифровке и синтезе, кроме и-РНК, участвует большое число молекул различных транспортных рибонуклеиновых кислот (т-РНК), рибосомы и ряд ферментов. Каждая из 20 аминокислот связывается с Т-РНК - молекула с молекулой. Каждой из 20 аминокислот соответствует своя т-РНК. У т-РНК имеются химические группы, способные «узнавать» свою аминокислоту, выбирая именно ее из наличных аминокислот. Происходит это с помощью специальных ферментов. Узнав свою аминокислоту, т-РНК вступает с ней в соединение. К началу цепочки (молекулы) и-РНК присоединяется рибосома, которая, продвигаясь по и-РНК, соединяет друг с другом в полипептидную цепочку именно те аминокислоты, порядок которых зашифрован нуклеотидной последовательностью данной И-РНК. В результате образуется молекула белка, состав которого закодирован в одном из генов.

Ядрышки - неотъемлемая структурная часть ядра. Это сферические тельца. Они очень изменчивы, меняют свою форму и структуру, появляются и исчезают. Их бывает одно, два. Для каждого растения определенное число. Ядрышки исчезают, когда клетка готовится к делению, а затем появляются вновь; они, по-видимому, участвуют в синтезе рибонуклеиновых кислот. Если ядрышко разрушить сфокусированным пучком рентгеновских или ультрафиолетовых лучей, то клеточное деление подавляется.

Роль ядра в жизни клетки. Ядро служит контролирующим центром клетки- оно направляет клеточную активность и содержит носителей наследственности (гены), определяющие признаки данного организма. Роль ядра можно выявить, если с помощью микрохирургических приемов удалить его из клетки и наблюдать последствие этого. Ряд опытов, доказывающих важную роль в регуляции клеточного роста, провел Геммерлинг на одноклеточной зеленой водоросли Acetobularia. Эта морская водоросль достигает высоты 5 см, внешне напоминает гриб, имеет подобие "корней" и "ножки". Вверху заканчивается большой дисковидной "шляпкой". Клетка этой водоросли имеет одно ядро, располагающееся в базальной части клетки.

Гаммерлинг установил, что если перерезать ножку, то нижняя часть продолжает жить и полностью регенерируют шляпку после операции. Верхняя же часть, лишенная ядра, выживает в течение некоторого времени, но, в конце концов, погибает, не будучи в состоянии восстановить нижнюю часть. Следовательно, ацетобулярии ядро необходимо для метаболических реакций, лежащих в основе роста.

Ядро способствует образованию клеточной оболочки. Это можно проиллюстрировать экспериментами с водорослью Voucheria и Spyrogyra. Выпуская из перерезанных нитей в воду содержимое клеток, мы можем получить комочки цитоплазмы с одним, с несколькими ядрами и без ядер. В первых двух случаях клеточная оболочка формировалась нормально. В случае отсутствия ядра оболочка не образовывалась.

В опытах И.И.Герасимова (1890г.) со спирогирой было установлено, что клетки с двойным ядром удваивают длину и толщину хлоропласта. В безъядерных клетках продолжается процесс фотосинтеза, образуется ассимиляционный крахмал, но при этом затухает процесс его гидролиза, что объясняется отсутствием гидролитических ферментов, которые могут быть синтезированы в рибосомах лишь согласно информации ДНК ядра. Жизнь протопласта без ядра неполноценна и недолговечна. В экспериментах И.И. Герасимова безъядерные клетки спирогиры жили 42 дня и погибали. Одна из важнейших функций ядра состоит в снабжении цитоплазмы рибонуклеиновой кислотой, необходимой для синтеза белка в клетке. Удаление ядра из клетки ведет к постепенному падению содержания РНК в цитоплазме и замедлению синтеза белка в ней.

Наиболее важна роль ядра в передаче признаков от клетки клетке, от организма к организму и осуществляет это в процессе деления ядра и клетки в целом.

Клеточное деление. Размножаются клетки делением. При этом из одной клетки образуется две дочерних с тем же набором наследственного материала, заключенного в хромозомах, что и материнская клетка. В соматических клетках хромозомы представлены двумя, так называемыми гомологическими хромозомами, в которых заложены аллельные гены (носители противоположных признаков, например, белый и красный цвет лепестков гороха и т.д.), признаков двух родительских пар. В связи с этим в соматических клетках тела растения всегда удвоенный набор хромозом, обозначаемый 2п. Хромозомы обладают выраженной индивидуальностью. Количество и качество хромозом - характерный признак каждого вида. Так, в клетках земляники диплоидный набор хромозом равен 14, (2n), яблони -34, топинамбура - 102 и т.д.

Митоз (кариокинез) – деление соматических клеток был впервые описан Э. Руссовым(1872г.) и И.Д.Чистяковым (1874). Его сущность заключается в том, что из материнской клетки путем деления образуется две дочерние клетки с тем же набором хромозом.Клеточный цикл слагается из интерфазы и собственно митоза. Методом микроавторадиографии установлено, что самой длительной и сложной является интерфаза - период "покоящегося" ядра, т.к. в этот период происходит удвоение ядерного материала. Интерфаза делится на три фазы:

Q1 - пресинтетическая (ее длительность 4-6 часов);

S - синтетическая (10-20 часов);

Q2 - постсинтетическая (2-5 часов).

Во время Q1 фазы идет подготовка к редупликации ДНК. А в S-фазу происходит редупликация ДНК, клетка удваивает запас ДНК. В Q2-фазу формируются ферменты и структуры, необходимые для запуска митоза. Таким образом, в интерфазе молекулы ДНК в хромозомах расщепляются на две одинаковые нити, происходит сборка на их матрице информационных РНК. Последняя уносит информацию о структуре специфических белков в цитоплазму, а в ядре каждая из нитей ДНК достраивает недостающую половинку своей молекулы. В этом процессе удвоения (редупликация) проявляется уникальная особенность ДНК, состоящая в способности ДНК точно воспроизводить саму себя. Образовавшиеся дочерние молекулы ДНК автоматически получаются точными копиями родительской молекулы, т.к. при редупликации к каждой половинке присоединяются комплементарные (А-Т; Г-Ц; и т.д.) основания из окружающей среды.

В профазу митотического деления удвоенные хромозомы становятся заметными. В метафазе все они располагаются в экваториальной зоне, располагаясь в один ряд. Образуются нити веретена (из микротрубочек, соединяющихся друг с другом). Оболочка ядра и ядрышко исчезают. Утолщенные хромозомы расщепляются вдоль на две дочерние хромозомы. В этом заключается суть митоза. Он обеспечивает точное распределение удвоенных молекул ДНК между дочерними клетками. Тем самым обеспечивает и передачу зашифрованной в ДНК наследственной информации.

В анафазе дочерние хромозомы начинают отходить к противоположным полюсам. В центре появляются первые фрагменты клеточной оболочки (фрагмобласт).

В телофазе происходит оформление ядер в дочерних клетках. Содержимое материнской клетки (органеллы) распределяется между образующимися дочерними. Полностью формируется клеточная оболочка. На этом заканчивается цитокинез (рис.17).

Мейоз - редукционное деление был обнаружен и описан в 90-х годах прошлого столетия В.И.Беляевым. Сущность деления заключается в том, что из соматической клетки, содержащей 2п (двойной, диплоидный) набор хромозом, образуется четыре гаплоидных клетки, с"n", половинным набором хромозом. Этот тип деления является сложным и состоит из двух этапов. Первый - редукция хромозом. Удвоенные хромозомы располагаются в экваториальной зоне попарно (две параллельно расположенные гомологичные хромозомы). В этот момент может происходить коньюгация (сцепление) хромозом, кроссинговер (перекрест) и в результате - обмен участками хромозом. В результате этого часть генов отцовских хромозом переходит в состав материнских хромозом и наоборот. Внешний вид тех и других хромозом в результате этого не меняется, но их качественный состав становится иным. Отцовская и материнская наследственности перераспределяются и смешиваются.

В анафазе мейоза гомологичные хромозомы с помощью нитей веретена расходятся по полюсам, на которых после небольшого периода покоя (исчезают нити, но перегородка между новыми ядрами не формируется) начинается процесс митоза - метафаза, при которой все хромозомы располагаются в одной плоскости и происходит их продольное расщепление на дочерние хромозомы. При анафазе митоза с помощью веретена они расходятся по полюсам, где и формируется четыре ядра и в итоге - четыре гаплоидные клетки. В клетках некоторых тканей при их развитии под влиянием некоторых факторов происходит незавершенный митоз и количество хромозом в ядрах удваивается за счет того, что не расходятся по полюсам. В результате таких нарушений естественного или искусственного характера возникают организмы тетраплоиды и полиплоиды. С помощью мейоза формируются половые клетки - гаметы, а также споры, элементы полового и бесполого размножения растений (рис.18).

Амитоз - прямое деление ядра. При амитозе веретено деления не образуется и оболочка ядра не распадается, как при митозе. Раньше амитоз рассматривался как примитивная форма деления. Сейчас установлено, что он связан с деградацией организма. Представляет собой упрощенный вариант более сложного деления ядра. Амитоз встречается в клетках и тканях нуцеллуса, эндосперма, паренхиме клубней, черешков листьев и т.д.

Митохондрии — одни из самых важных составляющих любой клетки. Их еще называют хондриосомами. Это грануловидные или нитевидные органеллы, которые являются составляющей частью цитоплазмы растений и животных. Именно они являются производителями молекул АТФ, которые так необходимы для многих процессов в клетке.

Что такое митохондрии?

Митохондрии - это энергетическая база клеток, их деятельность основана на окислении и применении энергии, освободившейся при распаде молекул АТФ. Биологи на простом языке его называют станцией вырабатывания энергии для клеток.

В 1850 г. митохондрии выявили в виде гранул в мышцах. Их число менялось в зависимости от условий роста: они скапливаются больше в тех клетках, где большой дефицит кислорода. Это происходит чаще всего при физических нагрузках. В таких тканях появляется острая нехватка энергии, которую восполняют митохондрии.

Появление термина и место в теории симбиогенеза

В 1897 г. Бенд впервые ввел понятие «митохондрия», чтобы обозначить зернистую и нитчатую структуру в По форме и величине они разнообразны: толщина составляет 0,6 мкм, длина - от 1 до 11 мкм. В редких ситуациях митохондрии могут быть большого размера и разветвленным узлом.

В теории симбиогенеза дается четкое представление о том, что такое митохондрии и как они появились в клетках. В ней говорится, что хондриосома возникла в процессе поражения клетками бактерий, прокариотами. Так как они не могли автономно применять кислород для выработки энергии, это препятствовало полному их развитию, а прогеноты могли развиваться беспрепятственно. В течение эволюции связь между ними дала возможность прогенотам передать свои гены теперь уже эукариотам. Благодаря такому прогрессу митохондрии теперь не являются независимыми организмами. Их генофонд не может быть реализован в полной мере, так как происходит его частичная блокировка ферментами, которые есть в любой клетке.

Где они живут?

Митохондрии сосредотачиваются в тех районах цитоплазмы, где появляется необходимость в АТФ. Например, в мышечной ткани сердца они располагаются неподалеку от миофибрилл, а в сперматозоидах формируют защитную маскировку вокруг оси жгута. Там они вырабатывают очень много энергии для того, чтобы "хвост" крутился. Именно таким образом сперматозоид двигается к яйцеклетке.

В клетках новые митохондрии образуются с помощью простого деления предыдущих органелл. Во время него сохраняется вся наследственная информация.

Митохондрии: как они выглядят

По форме митохондрии напоминает цилиндр. Они часто встречаются в эукариотах, занимая от 10 до 21 % объема клетки. Их размеры и формы во многом разнятся и способны меняться в зависимости от условий, но ширина постоянна: 0,5-1 мкм. Перемещения хондриосом зависят от того, в каких местах клетки совершается быстрая трата энергии. Передвигаются по цитоплазме, применяя для передвижения структуры цитоскелета.

Заменой разных по габаритам митохондрий, работающих отдельно друг от друга и снабжающих энергией некоторые зоны цитоплазмы, являются длинные и разветвленные митохондрии. Они способны обеспечить энергией участки клеток, находящиеся далеко друг от друга. Подобная совместная работа хондриосом наблюдается не только у одноклеточных организмов, но и у многоклеточных. Самое сложное строение хондриосом встречается в мышцах скелета млекопитающих, где самые большие разветвленные хондриосомы стыкуются друг с другом, используя межмитохондриальные контакты (ММК).

Они представляют собой узкие просветы между прилегающими друг к другу митохондриальными мембранами. Данное пространство обладает высокой электронной плотностью. ММК больше встречаются в клетках где связываются вместе с работающими хондриосомами.

Чтобы лучше разобраться в вопросе, нужно кратко расписать значимость митохондрии, строение и функции этих удивительных органелл.

Как они устроены?

Для понимания, что такое митохондрии, необходимо узнать их строение. Этот необычный источник энергии имеет форму шара, но чаще вытянут. Две мембраны располагаются близко друг к другу:

  • наружная (гладкая);
  • внутренняя, которая образует выросты листовидной (кристы) и трубчатой (тубулы) формы.

Если не принимать во внимание размер и форму митохондрии, строение и функции у них одинаковые. Хондриосома разграничена двумя мембранами, размером 6 нм. Наружная мембрана митохондрии напоминает емкость, которая ограждает их от гиалоплазмы. Внутреннюю мембрану от внешней отъединяет участок шириной 11-19 нм. Отличающей чертой внутренней мембраны считается ее способность выпячиваться внутрь митохондрии, принимая форму сплющенных гребней.

Внутреннюю полость митохондрии заполняет матрикс, который имеет мелкозернистую структуру, где иногда обнаруживают нити и гранулы (15-20 нм). Нити матрикса создают органеллы, а гранулы небольших размеров - рибосомы митохондрии.

На первой стадии проходит в гиалоплазме. На данной ступени идет начальное окисление субстратов или глюкозы до Данные процедуры проходят без кислорода - анаэробное окисление. Следующая стадия образования энергии заключается в аэробном окислении и распада АТФ, данный процесс происходит в митохондриях клеток.

Что делают митохондрии?

Основными функциями этой органеллы являются:


Наличие в митохондриях своей дезоксирибонуклеиновой кислоты еще раз подтверждает симбиотическую теорию появления этих органелл. Также, помимо основной работы, они участвуют в синтезе гормонов и аминокислот.

Митохондриальная патология

Мутации, происходящие в геноме митохондрии, приводят к удручающим последствиям. Носителем человека является ДНК, которая передается потомкам от родителей, а митохондриальный геном передается только от матери. Объясняется данный факт очень просто: цитоплазму с заключенными в ней хондриосомами дети получают вместе с женской яйцеклеткой, в сперматозоидах они отсутствуют. Женщины с данным отклонением могут передать потомству митохондриальное заболевание, больной мужчина - нет.

В обычных условиях хондриосомы располагают одинаковой копией ДНК - гомоплазмия. В геноме митохондрии могут происходить мутации, вследствие совместного существования здоровых и мутированных клеток возникает гетероплазмия.

Благодаря современной медицине на сегодняшний день выявлены более 200 заболеваний, поводом возникновения чего послужила мутация митохондрии ДНК. Не во всех случаях, но терапевтическому поддержанию и лечению митохондриальные болезни поддаются хорошо.

Вот мы и разобрались с вопросом о том, что такое митохондрии. Как и все остальные органеллы, они очень важны для клетки. Они косвенно принимают участие во всех процессах, для которых нужна энергия.

В клетках любых живых организмов есть особые органеллы, которые двигаются, функционируют, сливаются между собой и размножаются. Называются они митохондриями или хондриосомами. Подобные структуры содержатся как в клетках простейших организмов, так и в клетках растений и животных. Долгое время при изучении изучались и функции митохондрии, потому что она представляла особый интерес.

Действительно, на клеточном уровне митохондрии выполняют конкретную и весьма важную функцию - образуют энергию в виде аденозинтрифосфата. Это ключевой нуклеотид в обмене организмов и преобразовании его в энергию. АТФ выступает в роли универсального источника энергии, необходимой для протекания любых биохимических процессов в организме. В этом главные функции митохондрии - поддерживать жизнедеятельность на клеточном уровне за счёт формирования АТФ.

Процессы, происходящие в клетках, долгое время представляли особый интерес учёных, потому что это помогало лучше понять структуру и возможности организма. Процесс познания всегда занимает долгое время. Так Карл Ломанн в 1929 году открыл аденозинтрифосфат, а Фриц Липман в 1941 году разобрался в том, что он является основным поставщиком энергии в клетки.

Строение митохондрий

Внешний вид представляет такой же интерес, как и функции митохондрии. Размеры и формы этих органелл непостоянны и могут быть разными в зависимости от видов живых существ. Если описывать средние значения, то гранулярная и нитевидная митохондрия, состоящая из двух мембран, имеет размеры порядка 0,5 микромиллиметра в толщину, а длина может достигать 60 микромиллиметров.

Как уже было сказано выше, учёные долгое время пытались разобраться в вопросе, каково строение и функции митохондрий. Основные сложности были с недостаточно развитостью оборудования, потому что изучать микромир другими способами практически невозможно.

В митохондрий содержится больше, чем в клетках растений, потому что для животных преобразование энергии с эволюционной точки зрения более важно. Впрочем, объяснять подобные процессы достаточно сложно, но в клетках растений подобные функции берут на себя в основном хлоропласты.

В клетках митохондрии могут располагаться в самых разных местах, где есть потребность в АТФ. Можно сказать, что у митохондрий достаточно универсальное строение, поэтому они могут появляться в разных местах.

Функции митохондрии

Основная функция митохондрий - синтез молекул АТФ. Это своего рода энергетическая станция клетки, которая за счёт окисления различных высвобождает энергию за счёт их распада.

Главным источником энергии, т.е. соединением, используемым для распада, является Её в свою очередь организм получает из белков, углеводов и жиров. Есть два пути образования энергии, причём митохондрии используют оба. Первый из них связан с окислением пирувата в матриксе. Второй связан уже с кристами органелл и непосредственно завершает процесс энергообразования.

В целом данный механизм достаточно сложен и происходит в несколько этапов. Выстраиваются длинные единственная цель которых - энергообеспечение других клеточных процессов. Поддержание организма на клеточном уровне позволяет сохранить его жизнедеятельность в целом. Именно поэтому учёные долгое время пытались разгадать, как именно происходят данные процессы. Со временем многие вопросы были решены, особенно в этом помогло изучение ДНК и структуры остальных небольших клеток микромира. Без этого вряд ли можно было бы представить развитие данной науки в целом, а также изучение организма человека и высокоразвитых животных.

Митохондрия - это спиральная, округлая, вытянутая или разветвленная органелла.

Впервые понятие митохондрия было предложено Бенда в 1897 г. Митохондрии можно обнаружить в живых клетках с помощью фазово-контрастной и интерференционной микроскопии в виде зерен, гранул или нитей. Это довольно подвижные структуры, которые могут перемещаться, сливаться друг с другом, делиться. При окраске специальными методами в погибших клетках при световой микроскопии митохондрии имеют вид мелких зерен (гранул), диффузно распределенных в цитоплазме или концентрирующихся в каких-то определенных ее зонах.

В результате разрушения глюкозы и жиров в присутствии кислорода в митохондриях образуется энергия, а органические вещества превращаются в воду и диоксид углерода. Именно таким образом получают основную энергию, необходимую для жизнедеятельности, животные организмы. Энергия накапливается в аденозинтрифосфате (АТФ), а точнее, в его макроэргических связях. Функция митохондрий тесно связана с окислением органических соединений и использованием освобождающейся при их распаде энергии для синтеза молекул АТФ. Поэтому митохондрии часто называют энергетическими станциями клетки, или органеллами клеточного дыхания. АТФ выполняет функцию поставщика энергии, перенося одну из своих богатых энергией концевых фосфатных групп на другую молекулу, и превращается при этом в АДФ.

Предполагают, что в эволюции митохондрии были прокариотическими микроорганизмами, которые стали симбиотами в организме древней клетки. В последующем они стали жизненно необходимы, что было связано с увеличением содержания кислорода в атмосфере Земли. С одной стороны, митохондрии удаляли избыток токсичного для клетки кислорода, а с другой - обеспечивали энергией.

Без митохондрий клетка практически не в состоянии использовать кислород как вещество, обеспечивающее поставку энергии, и может восполнять свои энергетические потребности лишь путем анаэробных процессов. Таким образом, кислород - это яд, но яд жизненно важный для клетки, причем избыток кислорода так же вреден, как и его недостаток.

Митохондрии могут изменять свою форму и перемещаться в те области клетки, где потребность в них наиболее высока. Так, в кардиомиоцитах митохондрии находятся вблизи миофибрилл, в клетках почечных канальцев вблизи базальных впячиваний и т. д. В клетке содержится до тысячи митохондрий, и их количество зависит от активности клетки.

Митохондрии имеют средние поперечные размеры 0,5…3 мкм. В зависимости от размеров выделяют мелкие, средние, крупные и гигантские митохондрии (формируют разветвленную сеть - митохондриальный ретикулум). Размеры и число митохондрий тесно связаны с активностью клетки и ее энергопотреблением. Они крайне изменчивы и в зависимости от активности клетки, содержания кислорода, гормональных влияний могут набухать, изменять число и структуру крист, варьировать в числе, форме и размерах, а также ферментативной активности.

Объемная плотность митохондрий, степень развития их внутренней поверхности и другие показатели зависят от энергетических потребностей клетки. В лимфоцитах имеется всего по несколько митохондрий, а в печеночных клетках их 2…3 тыс.

Митохондрии состоят из матрикса, внутренней мембраны, перимитохондриального пространства и наружной мембраны. Наружная митохондриальная мембрана отделяет органеллу от гиалоплазмы. Обычно она имеет ровные контуры и замкнута так, что представляет собой мембранный мешок.

Внешнюю мембрану от внутренней отделяет перимитохондриальное пространство шириной около 10…20 нм. Внутренняя митохондриальная мембрана ограничивает собственно внутреннее содержимое митохондрии - матрикс. Внутренняя мембрана образует многочисленные выпячивания внутрь митохондрий, которые имеют вид плоских гребней, или крист.

По форме кристы могут иметь вид пластинок (трабекулярные) и трубочек (мультивезикулярные на срезе), а направлены они продольно или поперечно по отношению к митохондрии.

Каждая митохондрия заполнена матриксом, который на электронных микрофотографиях выглядит плотнее, чем окружающая цитоплазма. Матрикс митохондрии однородный (гомогенный), иногда мелкозернистый, различной электронной плотности. В нем выявляют тонкие нити толщиной около 2…3 нм и гранулы размером около 15…20 нм. Нити матрикса представляют собой молекулы ДНК, а мелкие гранулы - митохондриальные рибосомы. В матриксе содержатся ферменты, одна одноцепочечная, циклическая ДНК, митохондриальные рибосомы, много ионов Са 2+ .

Автономная система белкового синтеза митохондрий представлена молекулами ДНК, свободными от гистонов. ДНК короткая, имеет форму кольца (циклическая) и содержит 37 генов. В отличие от ядерной ДНК в ней практически нет некодирующих последовательностей нуклеотидов. Особенности строения и организации сближают ДНК митохондрий с ДНК бактериальных клеток. На ДНК митохондрий происходит синтез молекул РНК разных типов: информационных, трансфертных (транспортных) и рибосомальных. Информационная РНК митохондрий не подвергается сплайсингу (вырезанию участков, не несущих информационной нагрузки). Малые размеры молекул митохондриальных ДНК не могут определить синтез всех белков митохондрий. Большинство белков митохондрий находится под генетическим контролем клеточного ядра и синтезируется в цитоплазме, так как ДНК митохондрий слабо выражена и может обеспечить образование лишь части ферментов цепи окислительного фосфорилирования. Митохондриальная ДНК кодирует не более десяти белков, которые локализованы в мембранах и представляют собой структурные белки, ответственные за правильную интеграцию отдельных функциональных белковых комплексов митохондриальных мембран. Синтезируются также белки, осуществляющие транспортные функции. Такая система белкового синтеза не обеспечивает всех функций митохондрии, поэтому автономия митохондрий ограниченная и относительная.

У млекопитающих митохондрии при оплодотворении передаются лишь через яйцеклетку, а спермий привносит в новый организм ДНК ядра.

В матриксе митохондрий образуются рибосомы, отличающиеся от рибосом цитоплазмы. Они участвуют в синтезе ряда митохондриальных белков, не кодируемых ядром. Митохондриальные рибосомы имеют число седиментации 60 (в отличие от цитоплазматических с числом седиментации 80). Число седиментации - это скорость осаждения при центрифугировании и ультрацентрифугировании. По строению митохондриальные рибосомы близки к рибосомам прокариотических организмов, но меньшего размера и отличаются чувствительностью к определенным антибиотикам (левомицетину, тетрациклину и др.).

Внутренняя мембрана митохондрии обладает высокой степенью избирательности при транспорте веществ. К ее внутренней поверхности прикрепляются тесно прилежащие друг к другу ферменты цепи окислительного фосфорилирования, белки-переносчики электронов, транспортные системы АТФ, АДФ, пируват и др. В результате тесного расположения ферментов на внутренней мембране обеспечивается высокая сопряженность (взаимосвязанность) биохимических процессов, повышающая скорость и эффективность каталитических процессов.

При электронной микроскопии выявляют грибовидные частицы, выступающие в просвет матрикса. Они обладают АТФ-синтетичной (образует АТФ из АДФ) активностью. Транспорт электронов идет по дыхательной цепи, локализованной во внутренней мембране, которая содержит четыре крупных ферментных комплекса (цитохромы). При прохождении электронов по дыхательной цепи ионы водорода откачиваются из матрикса в перимитохондриальное пространство, что обеспечивает формирование протонного градиента (помпы). Энергия этого градиента (различия в концентрации веществ и формирование мембранного потенциала) используется для синтеза АТФ и транспорта метаболитов и неорганических ионов. Содержащиеся на внутренней мембране белки-переносчики транспортируют через нее органические фосфаты, АТФ, АДФ, аминокислоты, жирные кислоты, три — и дикарбоновые кислоты.

Наружная мембрана митохондрии более проницаема для низкомолекулярных веществ, так как в ней много гидрофильных белковых каналов. На наружной мембране располагаются специфические рецепторные комплексы, через которые белки из матрикса транспортируются в перимитохондриальное пространство.

По своему химическому составу и свойствам наружная мембрана близка к другим внутриклеточным мембранам и плазмолемме. В ней содержатся ферменты, метаболизирующие жиры, активирующие (катализирующие) превращения аминов, аминооксидаза. Если ферменты наружной мембраны сохраняют активность, то это показатель функциональной сохранности митохондрий.

В митохондриях имеются два автономных субкомпартмента. Вели перимитохондриальное пространство, или наружная камера митохондрии (внешний субкомпартмент), формируется за счет проникновения белковых комплексов гиалоплазмы, то внутренний субкомпартмент (матрикс митохондрии) частично образован за счет синтетической активности митохондриальной ДНК. Во внутреннем субкомпартменте (матриксе) содержатся ДНК, РНК и рибосомы. Он отличается высоким уровнем ионов Са 2+ в сравнении с гиалоплазмой. Во внешнем субкомпартменте накапливаются ионы водорода. Ферментативная активность внешнего и внутреннего субкомпартментов, состав белков сильно различаются. Внутренний субкомпартмент имеет более высокую электронную плотность, чем внешний.

Специфические маркеры митохондрий - ферменты цитохром-оксидаза и сукцинатдегидрогеназа, выявление которых позволяет количественно охарактеризовать энергетические процессы в митохондриях.

Основная функция митохондрий - синтез АТФ. Вначале в гиалоплазме разрушаются сахара (глюкоза) до молочной и пировиноградной кислот (пирувата) с одновременным синтезом небольшого количества АТФ. В результате гликолиза одной молекулы глюкозы используется две молекулы АТФ, а образуется четыре. Таким образом, положительный баланс составляют всего две молекулы АТФ. Эти процессы совершаются без кислорода (анаэробный гликолиз).

Все последующие этапы выработки энергии происходят в процессе аэробного окисления, который обеспечивает синтез большого количества АТФ. При этом органические вещества разрушаются до СO 2 и воды. Окисление сопровождается переносом протонов на их акцепторы. Эти реакции осуществляются с помощью ряда ферментов цикла трикарбоновых кислот, которые находятся в матриксе митохондрии.

В мембраны крист встроены системы переноса электронов и сопряженного с ним фосфорилирования АДФ (окислительное фосфорилирование). При этом происходит перенос электронов от одного белка-акцептора электронов к другому и, наконец, связывание их с кислородом, вследствие чего образуется вода. Одновременно с этим часть энергии, выделяемой при таком окислении в цепи переноса электронов, запасается в виде макроэргической связи при фосфорилировании АДФ, что приводит к образованию большого числа молекул АТФ - основного внутриклеточного энергетического эквивалента. На мембранах крист митохондрий происходит процесс окислительного фосфорилирования с помощью расположенных здесь белков цепи окисления и фермента фосфорилирования АДФ АТФ-синтетазы. В результате окислительного фосфорилирования из одной молекулы глюкозы образуется 36 молекул АТФ.

К некоторым гормонам и веществам на митохондриях имеются специализированные (аффинные) рецепторы. Трийодтиронин в норме ускоряет синтетическую активность митохондрий. Интерлейкин-1 и высокие концентрации трийодтиронина разобщают цепи окислительного фосфорилирования, вызывают набухание митохондрий, что сопровождается увеличением образования тепловой энергии.

Новые митохондрии образуются путем деления, перетяжкой или почкованием. В последнем случае образуется протомитохондрия, постепенно увеличивающаяся в размерах.

Протомитохондрия - мелкая органелла с наружной и внутренней мембранами. Внутренняя мембрана не имеет или содержит слаборазвитые кристы. Органелла характеризуется низким уровнем аэробного фосфорилирования. При образовании перетяжки содержимое митохондрии распределяется между двумя новыми довольно крупными органеллами. При любом способе размножения в каждой из вновь образующихся митохондрий имеется собственный геном.

Старые митохондрии разрушаются путем аутолиза (самопереваривания клеткой с помощью лизосом) с образованием аутолизосом. Из аутолизосомы образуется остаточное тельце. При полном переваривании содержимое остаточного тельца, состоящее из низкомолекулярных органических веществ, выводится путем экзоцитоза. При неполном переваривании остатки митохондрий могут накапливаться в клетке в виде слоистых телец или гранул с нипофусцином. В части митохондрий накапливаются нерастворимые соли кальция с образованием кристаллов - кальцинатов. Накопление продуктов дегенерации митохондрий может привести к дистрофии клетки.