Схема датчика уровня воды. Поплавковые и герконовые датчики уровня охлаждающей жидкости

Я опубликовал немало обзоров по поводу дачной автоматики, во многих из них фигурировали манипуляции с водой. Часто требуется узнать уровень жидкости, либо факт её отсутствия. Такую информацию удобно использовать в своих поделках, направленных на избавление от рутинных процедур. Чтобы узнать уровень многие, и я, в том числе, используют поплавковые датчики на герконах, основной проблемой при их применении является необходимость дырявить ёмкость, согласитесь, это не добавляет надежности и универсальности применения ёмкости, да и сверление с последующей герметизацией - не самые приятные манипуляции. Обозреваемое устройство (появилось в продаже недавно) призвано избавить от этого, обеспечив масштабируемость и перестраиваемость системы… Посмотрим что за зверь под катом.

Датчики доехали за 14 дней, упакованы были достаточно хорошо. Сами датчики в пакетиках:




Распаковываем:


Длина шнурка порядка 45 см:


Размеры:








Датчик очень легкий, вес:


Разъем имеет 4 контакта:


Слева направо:
- коричневый - питание
- желтый - сигнал
- синий - земля
- черный настройка
На датчике имеется индикатор, который при обнаружении воды, должен загораться, судя по описанию продавца. Питаться датчик умеет в диапазоне от 5 до 24 Вольта, что очень удобно. Корпус влагозащищенный (ip67), что позволяет размещать датчик на улице, либо во влажном помещении, не заботясь о его защите. чтобы сходу не ломать разъем, подключим модельные проводки:


У меня на даче имеется встроенный в стену самодельный регулируемый блок питания, подключим питание, 12 Вольт:




Подносим к бутылке с водой, индикатор загорается:


Если поднять выше уровня воды - индикатор гаснет:


Кстати если прислонить руку, индикатор также загорается:


Подключим мультиметр к проводкам питания, и убедимся в работоспособности


Далее: минус на землю, а плюс на вывод сигнала:


Подносим к бутылке и видим на выходе напряжение питания:


Если отвести датчик, напряжение на сигнальном выходе пропадает:


Выходной ток датчика в диапазоне 1-50 мА.
Продавец, заявляет работоспособность при питании в диапазоне 5-24 Вольта, попробуем снизить напряжение питания до 4-х Вольт:


Датчик отлично работает, попробуем снизить до 3-х Вольт:


Уверенная работа датчиков, позволяет сделать вывод об удачном его использовании с esp8266 без всяких преобразований - а это отличная новость!
При других напряжениях, датчик также хорошо работает:




Выходить за пределы 24-х Вольт я не решился.
Выставим 5 Вольт:


Датчик реагирует на свой пакетик:


Со стороны пробки бутылки тоже реагирует:


Приклеим двухсторонним скотчем 3М к бутылке:




Датчик отлично реагирует. При двух слоях скотча, датчик не всегда срабатывает:




Потребление составляет порядка 5-6 мА:




Ну и конечно попробуем применить в реальных условиях, работая с контроллером. В качестве контроллера возьмём Arduino Nano, также добавим индикаторный светодиод, получился такой комплект:


Светодиод подключим к выводу D3 и земле, а сигнальный выход датчика к выводу A0 (D14 - так как мы будем его использовать в цифровом режиме), также на датчик подадим питание от контроллера:


Учитывая, что датчик предназначен для воды, работая с ним очень важно защитится от дребезга контактов, например при волнах, когда работает насос. Также, я покажу как организовать такую защиту не пользуясь задержками в программе, собственно код:
// Текущее состояние сенсора bool SensorState = false; // Время начала смены unsigned long SensorStartChange = 0; // Защитный интервал между сменами состояния unsigned long TIMEOUT = 3000; // Текущее время unsigned long CurrentTime = 0; void setup() { // Светодиод это выход pinMode(LED_PIN, OUTPUT); // Вначале не светим digitalWrite(LED_PIN, LOW); // Сенсор это вход pinMode(SENS_PIN, INPUT); } void loop() { // Устанавливаем текущее время CurrentTime = millis(); // считываем сенсор boolean CurrentState = digitalRead(SENS_PIN); // если текущее состояние сенсора отличается считанного if (CurrentState != SensorState) { // если отсчет таймера смены состояния не начат, начинаем if (SensorStartChange == 0) SensorStartChange = CurrentTime; // если новое состояние приняло свое значение за время большее чем время таймаута if (CurrentTime - SensorStartChange > TIMEOUT) { // меняем состояние сенсора SensorState=!SensorState; // сбрасываем время начала смены состояния SensorStartChange = 0; // если текущее состояние сенсора 1, то включаем светодиод if(SensorState){ digitalWrite(LED_PIN, HIGH); // если текущее состояние сенсора 0, то выключаем светодиод }else{ digitalWrite(LED_PIN, LOW); } } // смена состояния не состоялась, сбрасываем таймер }else{ SensorStartChange = 0; } }
Я прокомментировал все строчки, чтобы было все понятно. Инициализируем выходы и проверяем смену состояния сигнального выхода датчика с защитой от дребезга контактов. В данном коде, защитный интервал составляет 3000 мс = 3 секунды, часто этот интервал целесообразно увеличить до минуты, чтобы исключить влияние волн от насоса. Код простой, однако на его основе легко, например, организовать защиту от сухого хода насоса (очень нежелательно большинству насосов работать без воды), такие устройства стоят неразумных денег, а тут можно вполне обойтись малой кровью, да еще и реализовать автовосстановление работы насоса при появлении воды и еще ряд приятных плюшек - типа индикации. Для этого нужно такой датчик приклеить или как то закрепить ближе ко дну ёмкости, а насос подключить через реле управляемое контроллером. По умолчанию насос будет включен, как датчик распознает отсутствие воды - контроллер отключит насос, а при появлении воды - включит. Также на этом датчике можно организовать защиту от протечек, особенно учитывая его влагозащищенность, в общем, каждый сможет приспособить этот простой код под свои нужды. А главное датчики можно перемещать по ёмкости без ее повреждения - регулируя под себя уровни.

Видео иллюстрирующее работу датчика и контроллера с указанным кодом:

Я собрал такой макет для тестирования разных емкостей:


С макетом обошел дачный участок, датчик сумел обнаружить воду во всех неметаллических ёмкостях, включая довольно толстостенное ведро. Поэтому на текущем этапе могу его вполне рекомендовать, надежность покажет время.

Время реакции датчика составляет порядка 500 мс. Толщина стенки сосуда из диэлектрика может достигать 1 см.

Просили проверить чувствительность, так вот иллюстрация лучше всяких слов:


Как датчик протечек будет работать отлично.

Разные фотки по просьбам

с этим вообще никак - левый спирт:


фэри:


толстая канистра 40 литров:


дистиллированная вода:


крепкие напитки:




бутыль кулера в самом толстом месте:


уайт спирит - нет:


Через керамический унитазный бачок легко находит воду:




Открыл крышку, внутри залито компаундом, но имеется вывод потенциометра, после выкручивания вправо - датчик перестал реагировать на воду, после выкручивания влево начал реагировать на боковые прикосновения пальцем, похоже это регулировка чувствительности.

Если будет интересно, продолжу писать про свои дачные поделки.
Спасибо всем, кто дочитал этот обзор до конца, надеюсь кому-то данная информация окажется полезной. Всем полного контроля над своими водными ресурсами и добра!

Планирую купить +255 Добавить в избранное Обзор понравился +181 +378

Для регулирования и контроля уровня жидкости либо твердого вещества (песка или гравия) на производстве, в быту используют специальный прибор. Он получил название датчик уровня воды (или другого интересующего вещества). Существует несколько разновидностей подобных устройств, значительно отличающихся друг от друга принципом действия. Как работает датчик, преимущества, недостатки его разновидностей, на какие тонкости при выборе устройства стоит обратить внимание и как сделать упрощенную модель с реле своими руками, читайте в этой статье.

Датчик уровня воды используется для следующих целей:

Возможные методы определения загруженности резервуара

Существует несколько методов измерения уровня жидкости:

  1. Бесконтактный - зачастую приборы такого типа используются для контроля уровня вязких, токсичных, жидких либо твердых, сыпучих веществ. Это емкостные (дискретные) приборы, ультразвуковые модели;
  2. Контактный - устройство располагается непосредственно в резервуаре, на его стенке, на определенном уровне. По достижению водой этого показателя датчик срабатывает. Это поплавковые, гидростатические модели.

По принципу действия различают следующие виды датчиков:

  • Поплавкового типа;
  • Гидростатические;
  • Емкостные;
  • Радарные;
  • Ультразвуковые.

Кратко о каждом виде приборов


Поплавковые модели бывают дискретные и магнитострикционные. Первый вариант - дешевый, надежный, а второй - дорогой, сложной конструкции, но гарантирует точное показание уровня. Однако общий недостаток поплавковых приборов - это необходимость погружения в жидкость.

Поплавковый датчик определения уровня жидкости в баке

  1. Гидростатические устройства - в них все внимание обращено на гидростатическое давление столба жидкости в резервуаре. Чувствительный элемент прибора воспринимает давление над собой, отображает его по схеме для определения высоты столба воды.

Главные преимущества таких агрегатов - компактность, непрерывность действия и доступность по ценовой категории. Но использовать их в агрессивных условиях нельзя, потому как без контакта с жидкостью не обойтись.

Гидростатический датчик уровня жидкости

  1. Емкостные приборы - для контроля уровня воды в баке предусмотрены пластины. По изменению показателей емкости можно судить о количестве жидкости. Отсутствие подвижных конструкций и элементов, простая схема устройства гарантируют долговечность, надежность работы прибора. Но нельзя не отметить недостатки - это обязательность погружения в жидкость, требовательность к температурному режиму.
  2. Радарные устройства - определяют степень повышения воды путем сравнения частотного сдвига, задержки между излучением и достижением отраженного сигнала. Таким образом, датчик действует как излучатель и улавливатель отражения.

Подобные модели считаются лучшими, точными, надежными устройствами. Они обладают рядом достоинств:


К недостаткам модели можно отнести только их высокую стоимость.

Радарный датчик уровня жидкости в резервуаре

  1. Ультразвуковые датчики - принцип функционирования, схема устройства аналогичны радарным приборам, только используется ультразвук. Генератор создает ультразвуковое излучение, которое по достижению поверхности жидкости отражается и попадает через некоторое время на приемник датчика. После небольших математических вычислений, зная временную задержку и скорость движения ультразвука, определяют расстояние до поверхности воды.

Плюсы радарного датчика присущи и ультразвуковому варианту. Единственное, менее точные показатели, более простая схема работы.

Тонкости выбора подобных устройств

При покупке агрегата обратите внимание на функциональность прибора, некоторые его показатели. Крайне важные вопросы при покупке прибора - это:


Варианты датчиков определения уровня воды или твердых сыпучих веществ

Датчик уровня жидкости своими руками

Можно сделать элементарный датчик для определения и контроля уровня воды в скважине или баке своими руками. Для выполнения упрощенного варианта необходимо:


Выполненное своими руками устройство можно использовать для регулирования воды в бачке, скважине или насосе.

Для изготовления датчика, или индикатора уровня воды в баке, цистерне, бассейне и другой ёмкости, можно применить микросхему 4093 (отечественная 561ТЛ1) либо на микроконтроллере Ардуино. Начнём с первого варианта.

Необходимые для датчика материалы

  • 2 микросхемы 4093;
  • 2 панельки для микросхем;
  • 7 по 500 ом резисторы;
  • 7 по 2,2 Мом резисторы;
  • батарея 9 В;
  • гнездо для батареи;
  • плата для схемы 10 х 5 см;
  • 8 латунных винтов для датчиков;
  • двухсторонний скотч или шурупы для крепления коробки к стене;
  • сетевой кабель. Длина кабеля зависит от расстояния от резервуара для воды до места, где будет расположен дисплей.

Итак, основа - это CI4093, что имеет четыре элемента. В этом проекте использовано две микросхемы. Тут мы имеем порты с одним входом на высоком уровне, а другие подключенные через резистор, обеспечивая высокий логический уровень. При помещении в эту логику нулевого входного сигнала, выход инвертора будет на высоком уровне и включает светодиод. Всего использовано семь из восьми элементов, из-за ограничений в кабельной сети.

Сбоку размещена линейка светодиодов разных цветов, указывающая на уровень воды. Красные индикаторы - воды совсем мало, жёлтые - бак наполовину пуст, зелёные - полный. Центральная большая кнопка используется для подключения насоса и накачки бака.


Схема работает только при нажатии на центральную кнопку. Остальное время она находится в дежурном режиме. Но даже при срабатывании цепи индикации, ток минимален и батарейки хватит на долго.

Схема подключения датчика

Провода проходят внутри труб. Старайтесь расположить датчики таким образом, чтоб вода, попадающая в поле с помощью поплавкового клапана, никак не могла пройти мимо датчиков. Внутри трубы с датчиками, чтобы сделать нужный вес, был насыпан песок.

В собранном виде схема находится в коробке и установлена на стене.

Второй вариант схемы датчика уровня

Это полностью функциональный контроллер уровня воды, управляемый МК Arduino. Схема отображает уровень воды в баке и переключает двигатель, когда уровень воды опускается ниже заданного уровня. Она автоматически отключает мотор, когда бак полный. Уровень воды и другие важные данные отображаются на ЖК-дисплее 16х2 точек. В авторском варианте схема контролирует уровень воды в дренажном баке (резервуаре). Если уровень бака низкий, электродвигатель насоса не включится, что обеспечивает защиту двигателя от холостого хода. Дополнительно звуковой сигнал генерируется, когда уровень в дренажном баке слишком низкий.

Схема уровня воды с помощью контроллера Arduino показано выше. Датчик в сборе состоит из четырех алюминиевых проволок длинной в 1/4, 1/2, 3/4 и полный уровень в баке. Сухие концы этих проводов подключены к аналоговым входам A1, A2, A3 и A4 Arduino соответственно. Пятый провод размещен в нижней части бака. Резисторы R6 - R9 уменьшают потенциал входов. Сухой конец провода подключен к +5V DC. Когда вода касается конкретного зонда, происходит электрическое соединение между зондом и +5V, потому что вода обладает некоторой электропроводностью. В результате ток течет через зонд и этот ток преобразуется в пропорциональное ему напряжение. Arduino читает падении напряжения по каждому из входных резистор для зондирования уровня воды в баке. Транзистор Q1 включает зуммер, резистор R5 ограничивает ток базы Q1. Транзистор Q2 управляет реле. Резистор R3 ограничивает ток базы Q2. Переменник R2 используется для регулировки контрастности ЖК-дисплея. резистор R1 ограничивает ток через его LED подсветку. Резистор R4 ограничивает ток через светодиодный индикатор питания. Полную


Простой, но очень полезный и эффективный указатель уровня воды сделаем сами. А эта статья поможет вам сделать такое нужное и очень полезное дело.


Для начала рассмотрим принципиальную схему этого устройства.


Схема указателя уровня воды.

Схема очень простая, но работает прекрасно. В конце статьи будет видео, где наглядно показана работа этого указателя уровня воды, который мы сделаем вместе с вами.
Для начала работы соберём детали, которые нам потребуются для изготовления устройства.


Детали для изготовления схемы указателя уровня воды.

Нам понадобится:
Микросхема ULN2004 или ей подобная, контактная площадка для установки микросхемы на плату. При наличии такой площадки отсутствует риск перегреть ножки микросхемы паяльником или повредить её внутреннее устройство статическим электричеством. Да и ремонт схемы, при необходимости, сокращается до нескольких секунд. Достаточно вынуть из гнезда горелую микросхему и вставить на её место новую. Сплошная выгода, особенно для не очень опытных радиолюбителей.
Резисторы R1 - R7 - 47Kom.
R8 - R14 - 1Kom.
Светодиоды любого цвета по вашему выбору, диаметром 3 - 5 мм.
Конденсатор 100Mkf 25v.
Клеммные колодки любого типа, а можно и вообще без них, но удобство пользования устройством несколько снизится.
Макетная плата любая, лишь бы все компоненты влезли. Я пользуюсь такими платами, потому что не хочется заморачиваться на изготовление печатной платы, просто так мне удобнее и более привычно.

Компоненты все собрали и приступаем к изготовлению нашего устройства.


Размещаем на плате часть компонентов.
Сразу запаиваем установленные детали, иначе они будут постоянно выскакивать из гнёзд.


Запайка деталей по очереди.
Устанавливаем следующие детали схемы.


Никакой системы нет, работайте как вам удобнее и проще.


Нужно просто постоянно сверяться со схемой, какой бы простой она не была. Запутаться может каждый, а переделывать уже выполненную работу не хочется.


Аккуратность и внимательность, тоже не лишняя штука.


И так по порядку. Устанавливаем деталь, запаиваем и переходим к следующей.





Приближаемся к финишу.


Я установил светодиоды с обратной стороны платы только лишь потому, что этот блок схемы указателя уровня воды будет устанавливаться в щиток управления на лицевую панель. Панель будет просверлена под светодиоды, а снаружи будут нарисованы очертания ёмкости. И на щите будет наглядно отображаться наличие количества воды. Плата закрепится на четыре болтика в существующие отверстия.


Это первый готовый элемент будущей системы очистки воды от железа, бактерий, всяческих вредных примесей и прочей «каки». Система у меня дома работает уже почти три года, показала себя как надёжная, удобная и вообще мне нравится. Качеством воды полностью доволен. Но настало время для модернизации. Появились новые требования (у меня), хочется чтобы было более удобное обслуживание, хочу чтобы вся информация о работе системы была постоянно перед глазами. Первую систему очистки воды я строил без всякого опыта и допустил некоторые ошибки, о которых непременно напишу в следующих статьях, но в целом было всего две незначительных поломки. В одной поломке виноват я, а в другой не качественное комплектующее изделие (опять я виноват, немного сэкономил и купил не то, что следовало).

Всё оборудование будет блочным (так возрастают возможности модернизации и упрощается ремонт), по возможности дешёвым и простым, чтобы многие могли повторить.

Для чего нужны белые проводки расскажу в одной из следующих статей.
Указатель (сигнализатор) уровня воды готов.

Кабель, который идёт к датчикам уровня, можно поставить любой восьмижильный сигнальный, их продают сейчас всякие и в разных магазинах, которые занимаются сигнализацией, электрикой. Сечение жил и длина кабеля не играют особой роли. Есть кабели совсем тоненькие и дешёвые.

Как изготовить датчики уровня, нужно думать и изготавливать по месту применения. Контакты датчика выполнить лучше всего из нержавейки. Плюсовой общий электрод нужен массивный. Я делал из маленькой нержавеющей ложки, электрод работает нормально и совсем не поддаётся электрохимическому растворению. Места где припаиваются провода к электродам, лучше всего заизолировать при содействии любого клеевого пистолета (надёжно сохраняются от растворения).

Впрочем, если запитать схему посредством кнопки без фиксации, то растворения не будет. Нужно посмотреть, сколько воды - нажал на кнопку. Отпустил и питание схемы выключилось. На даче питание схемы можно применить от батареек или пальчиковых аккумуляторов, соединённых последовательно, и с кнопкой (хватит на длительный период) или от старенького аккумулятора. Данное устройство не требовательно к напряжению питания.

Удачи вам.

Для автоматизации многих производственных процессов необходимо контролировать уровень воды в резервуаре, измерение проводится при помощи специального датчика, подающего сигнал, когда технологическая среда достигнет определенного уровня. Без уровнемеров невозможно обойтись и в быту, яркий пример этому – запорная арматура бачка унитаза или автоматика для отключения насоса скважины. Давайте рассмотрим различные виды датчиков уровня, их конструкцию и принцип работы. Эта информация будет полезной при выборе устройства под определенную задачу или изготовлении датчика своими руками.

Конструкция и принцип действия

Конструктивное исполнение измерительных устройств данного типа определяется следующими параметрами:

  • Функциональностью, в зависимости от этого устройства принято делить на сигнализаторы и уровнемеры. Первые отслеживают конкретную точку заполнения резервуара (минимальную или максимальную), вторые осуществляют беспрерывный мониторинг уровня.
  • Принципом действия, в его основу может быть положены: гидростатика, электропроводность, магнетизм, оптика, акустика и т.д. Собственно, это основной параметр, определяющий сферу применения.
  • Методом измерения (контактный или бесконтактный).

Помимо этого, особенности конструкции определяет характер технологической среды. Одно дело — измерять высоту питьевой воды в баке, другое — проверять наполнение резервуаров для промышленных стоков. В последнем случае необходима соответствующая защита.

Виды датчиков уровня

В зависимости от принципа действия, сигнализаторы принято делить на следующие виды:

  • поплавочного типа;
  • использующие ультразвуковые волны;
  • устройства с емкостным принципом определения уровня;
  • электродные;
  • радарного типа;
  • работающие по гидростатическому принципу.

Поскольку эти типы наиболее распространены, рассмотрим каждый из них в отдельности.

Поплавковый

Это наиболее простой, но, тем не менее, действенный и надежный способ измерения жидкости в баке или другой емкости. С примером реализации можно ознакомиться на рисунке 2.


Рис. 2. Поплавковый датчик для управления насосом

Конструкция состоит из поплавка с магнитом и двух герконов, установленных в контрольных точках. Кратко опишем принцип действия:

  • Емкость опустошается до критического минимума (А на рис. 2), при этом поплавок опускается до уровня, где расположен геркон 2, он включает реле, подающее питание на насос, закачивающий воду из скважины.
  • Вода доходит до максимальной отметки, поплавок поднимается до места расположения геркона 1, он срабатывает и реле отключается, соответственно, двигатель насоса прекращает работать.

Такой герконовый сигнализатор сделать самостоятельно довольно просто, а его настройка сводится к установке уровней включения-выключения.

Заметим, что если правильно выбрать материал для поплавка, датчик уровня воды будет работать, даже при наличии слоя пены в резервуаре.

Ультразвуковой

Этот тип измерителей может использоваться как для жидкой, так и сухой среды, при этом у него может быть аналоговый или дискретный выход. То есть, датчик может ограничивать заполнение по достижению определенной точки или отслеживать его постоянно. Устройство включает в себя ультразвуковой излучатель, приемник и контроллер обработки сигнала. Принцип работы сигнализатора продемонстрирован на рисунке 3.


Рис. 3. Принцип работы ультразвукового датчика уровня

Работает система следующим образом:

  • излучается ультразвуковой импульс;
  • принимается отраженный сигнал;
  • анализируется длительность затухания сигнала. Если бак полный, она будет короткой (А рис. 3), а по мере опустошения начнет увеличиваться (В рис. 3).

Ультразвуковой сигнализатор бесконтактный и беспроводной, поэтому он может использоваться даже в агрессивных и взрывоопасных средах. После первичной настройки, такой датчик не требует никакого специализированного обслуживания, а отсутствие подвижных частей существенно продлевает срок эксплуатации.

Электродный

Электродные (кондуктометрические) сигнализаторы позволяют контролировать один или несколько уровней электропроводящей среды (то есть, для измерения наполнения бака дистиллированной водой они не подходят). Пример использования устройства приведен на рисунке 4.


Рисунок 4. Измерение уровня жидкости кондуктометрическими датчиками

В приведенном примере задействован трехуровневый сигнализатор, в котором два электрода контролируют заполнение емкости, а третий является аварийным, для включения режима интенсивной откачки.

Емкостной

При помощи этих сигнализаторов можно определять максимальное заполнение емкости, причем, в качестве технологической среды могут выступать как жидкость, так и сыпучие вещества смешанного состава (см. рис. 5).


Рис. 5. Емкостной датчик уровня

Принцип работы сигнализатора такой же, как у конденсатора: проводится измерение емкости между пластинами чувствительного элемента. Когда она достигнет порогового значения, подается сигнал на контроллер. В некоторых случаях задействовано исполнение «сухой контакт», то есть уровнемер работает через стенку бака в изоляции от технологической среды.

Данные устройства могут функционировать в широком температурном диапазоне, на них не влияют электромагнитные поля, а срабатывание возможно на большом расстоянии. Такие характеристики существенно расширяют сферу применения вплоть до тяжелых условий эксплуатации.

Радарный

Этот вид сигнализаторов можно действительно назвать универсальным, поскольку он может работать с любой технологической средой, включая агрессивную и взрывоопасную, причем, давление и температура не будут влиять на показания. Пример работы устройства приведен на рисунке ниже.


Устройство излучает радиоволны в узком диапазоне (несколько гигагерц), приемник ловит отраженный сигнал и по времени его задержки определяет наполняемость емкости. На измеряющий датчик не влияет давление, температура или характер технологической среды. Запыленность также не отражается на показаниях, чего не скажешь о лазерных сигнализаторах. Также необходимо отметить высокую точность приборов данного типа, их погрешность составляет не более одного миллиметра.

Гидростатический

Эти сигнализаторы могут измерять как предельное, так и текущее заполнение резервуаров. Их принцип действия продемонстрирован на рисунке 7.


Рисунок 7. Измерение заполнения гиростатическим датчиком

Устройство построено по принципу измерения уровня давления, произведенного столбом жидкости. Приемлемая точность и небольшая стоимость сделали данный вид довольно популярным.

В рамках статьи мы не можем осмотреть все типы сигнализаторов, например, ротационно-флажковых, для определения сыпучих веществ (идет сигнал, когда лепесток вентилятора застрянет в сыпучей среде, предварительно вырыв приямок). Так же нет смысла рассматривать принцип действия радиоизотопных измерителей, тем более рекомендовать их для проверки уровня питьевой воды.

Как выбрать?

Выбор датчика уровня воды в резервуаре зависит от многих факторов, основные из них:

  • Состав жидкости. В зависимости от содержания в воде посторонних примесей может меняться плотность и электропроводность раствора, что с большой вероятностью отразится на показаниях.
  • Объем резервуара и материал, из которого он изготовлен.
  • Функциональное назначение емкости для накопления жидкости.
  • Необходимость контролировать минимальный и максимальный уровень, или требуется мониторинг текущего состояния.
  • Допустимость интеграции в систему автоматизированного управления.
  • Коммутационные возможности устройства.

Это далеко не полный список для выбора измерительных приборов данного типа. Естественно, что для бытового назначения можно существенно сократить критерии отбора, ограничив их объемом резервуара, типом срабатывания и схемой управления. Существенное сокращение требований делает возможным самостоятельное изготовление подобного устройства.

Делаем датчик уровня воды в резервуаре своими руками

Допустим, есть задача автоматизировать работу погружного насоса для водоснабжения дачи. Как правило, вода поступает в накопительную емкость, следовательно, нам необходимо сделать так, чтобы насос автоматически выключался при ее заполнении. Совсем не обязательно для этой цели покупать лазерный или радиолокационный сигнализатор уровня, собственно, никакой приобретать не нужно. Несложная задача требует простого решения, оно показано на рисунке 8.


Для решения задачи понадобится магнитный пускатель с катушкой на 220 вольт и два геркона: минимального уровня — на замыкание, максимального — на размыкание. Схема подключения насоса проста и, что немаловажно, безопасна. Принцип работы был описан выше, но повторим его:

  • По мере набора воды поплавок с магнитом постепенно поднимается, пока не дойдет до геркона максимального уровня.
  • Магнитное поле размыкает геркон, отключая катушку пускателя, что приводит к обесточиванию двигателя.
  • По мере расхода воды, поплавок опускается, пока не достигнет минимальной отметки напротив нижнего геркона, его контакты замыкаются, и поступает напряжение на катушку пускателя, подающего напряжение на насос. Такой датчик уровня воды в резервуаре может работать десятилетиями, в отличие от электронной системы управления.