TL494 схема включения, принцип работы, примеры схем, чертежи печатных плат. TL494CN: схема включения, описание на русском, схема преобразователя Как усилить выходной сигнал


Микросхема TL494 реализует функционал ШИМ-контроллера и потому очень часто используется для построения импульсных двухтактных блоков питания (именно эта микросхема чаще всех встречается в компьютерных блоках питания).

Импульсные блоки питания выгодно отличаются от трансформаторных повышенным КПД, уменьшенным весом и габаритами, стабильностью выходных параметров. Однако, при этом они являются источниками ВЧ-помех и предъявляют особые требования к минимальной нагрузке (без нее БП может не запуститься).

Структурная схема TL494 выглядит следующим образом.

Рис. 1. Блок-схема TL494

Назначение выводов TL494 в привязке к корпусу выглядит так.

Рис. 2. Назначение выводов TL494

Рис. 3. Внешний вид в корпусе ДИП

Могут быть и другие исполнения.

В качестве современных аналогов можно рассматривать:

1.Улучшенные версии исходного чипа - TL594 и TL598 (оптимизирована точность и добавлен повторитель на входе соответственно);

2.Прямые аналоги российского производства - К1006ЕУ4, КР1114ЕУ4.

Итак, как видно из изложенного выше, микросхема до сих пор не устарела и может активно использоваться в современных блоках питания как узловой элемент.

Один из вариантов импульсного блока питания на TL494

Схема БП ниже.

Рис. 4. Схема БП

Здесь за выравнивание тока отвечают два полевых транзистора (обязательно крепятся на теплоотвод). Они должны питаться от отдельного источника постоянного тока. Подойдет, например, модульный преобразователь DC-DC, такой как TEN 12-2413 или аналог.

С выходных обмоток трансформатора (можно объединять несколько) должно поступать около 34 В.

Рис. 5. Второй вариант БП

Эта схема реализует БП с регулируемым выходным напряжением (до 30В) и порогом по силе тока (до 5А).

В качестве гальванической развязки выступает понижающий трансформатор. На выходе вторичной обмотки (или набора соединенных вторичных обмоток) должно быть около 40В.

L1 – тороидальный дроссель. VD1 – диод Шоттки, устанавливается на радиатор, так как он задействован в схеме выпрямления.

Пары резисторов R9 и 10, а также R3 и 4, используются для подстройки "грубо-точно" напряжения и силы тока соответственно.

На радиатор помимо диода VD1 следует вынести:

1.Диодный мост (подойдет, например, KBPC 3510);

2.Транзистор (в схеме использовался КТ827А, можно аналоги);

3.Шунт (на схеме обозначен R12);

4.Дроссель (катушка L1).

Теплоотвод лучше всего обдувать принудительно с помощью вентилятора (например, 12 см кулер от ПК).

Индикаторы силы тока и напряжения могут быть цифровыми (лучше всего взять готовые) или аналоговыми (потребуется калибровка шкалы).

Третий вариант

Рис. 6. Третий вариант БП

Вариант конечной реализации.

Рис. 7. Внешний вид устройства

Ввиду того, что TL494 имеет малую мощность встроенных ключевых элементов, в помощь для управления основным трансформатором TR2, были задействованы транзисторы T3 и 4, они в свою очередь питаются от управляющего трансформатора TR1 (а он управляется транзисторами T1 и 2). Получается своего рода двойной каскад управления.

Дроссель L5 мотался вручную на желтом кольце (50 витков медным проводом 1,5 мм).
Самые нагревающиеся элементы – транзисторы T3 и 4, а также диод D15. Они должны монтироваться на теплоотводы (желательно с обдувом).

Дроссель L2 используется в схеме для гашения ВЧ-помех в бытовой сети.
Ввиду того, что TL494 не умеет работать на высоких напряжениях, для ее питания применяется отдельный трансформатор (Tr3 – это BV EI 382 1189, на выходе которого 9 В, 500 мА).

При таком количестве элементов схема в сборе легко помещается в корпус Z4A, правда, последний необходимо немного доработать для обеспечения обдува (вентилятор ставится сверху).

Полный перечень элементов приведен ниже.

БП подключается к сети переменного тока и обеспечивает питание постоянным напряжением в диапазоне 0-30В и силой тока более 15А. Ограничение тока и напряжения удобно регулируется.


Дата публикации: 22.01.2018

Мнения читателей
  • Александр / 04.04.2019 - 08:25
    А файлом печатки неподелитесь? Можно на почту [email protected]

ПРИНЦИП РАБОТЫ TL494
НА ПРИМЕРЕ АВТОМОБИЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ НАПРЯЖЕНИЯ

TL494 по сути уже легендарная микросхема для импульсных блоков питания. Некоторые могут конечно возразить, что мол сейчас уже есть более новые, более продвинутые ШИМ контроллеры и какой смысл возится с этим старьем. Лично я на это могу сказать только одно – Лев Толстой писал вообще от руки и как писал! А вот наличие на Вашем компе две тысячи тринадцатого Ворда чет ни кого не сподвигло на написание хотя бы нормального рассказа. Ну да ладно, кому интересно смотрим дальше, кому нет – всего наилучшего!
Сразу хочу оговориться – речь будет идти о TL494 производства Техас Инструментс. Дело в том, что данный контроллер имеет огромное количество аналогов, производимых разными заводами и хотя структурная схема у них ОЧЕНЬ похожа, но это все равно не совсем одинаковые микросхемы – даже усилители ошибки на разных микросхемах имеют разный коф усиления при одной и той же пассивной обвязке. Так что после замены ОБЯЗАТЕЛЬНО перепроверьте параметры ремонтируемого блока питания – на эти грабли я лично наступал.
Ну это была присказка, а вот и сказка начинается. Перед Вами структурная схема TL494 как раз от Техас Инструментс. Если вглядеться, то не так уж много в ней и начинки, однако именно такое сочетание функциональных узлов позволило данному контроллеру завоевать огромнейшую популярность при копеешной стоимости.

Микросхемы выпускаются как в обычных ДИПовских корпусах, так и в планарных, для поверхностного монтажа. Цоколевка в обоих случаях аналогична. Лично я по причине своей подслеповатости предпочитаю работать по старинке – обычные резисторы, ДИПовские корпуса и так далее.

На седьмой и двенадцатый вывода у нас подается напряжение питания, на седьмой МИНУС, ну или ОБЩИЙ, на двенадцатый ПЛЮС. Диапазон питающих напржений довольно большой – от пяти до сорока вольт. Для наглядности микросхема обвязана пассивными элементами, которые и задают режимы ее работы. Ну а что для чего предназначено будет понятно по мере запуска микросхемы. Да, да именно запуска, поскольку микросхема начинает работать не сразу при подачи питания. Ну обо всем по порядку.
Итак, при подключении питания разумеется на двенадцатом выводе TL494 напряжение появится не мгновенно – потребуется какое время на зарядку конденсаторов фильтра питания, а мощность реального источника питания разумеется не бесконечна. Да, это процесс довольно скоротечен, но он все равно есть – напряжение питания увеличивается от нуля до номинального значение за какой то промежуток времени. Допустим, что номинальное напряжение питания у нас 15 вольт и мы его подали на плату контроллера.
Напряжение на выходе стабилизатора DA6 будет почти равно напряжению питания всей микросхемы пока основное питание не достигнет напряжения стабилизации. Пока оно ниже 3,5 вольт на выходе компаратора DA7 будет присутствовать уровень логической единицы, поскольку данный компаратор следит за величиной внутреннего опорного напряжения питания. Эта логическая единица подается на логический элемент ИЛИ DD1. Принцип работы логического элемента ИЛИ заключается в том, что если хотя бы на одном из его входов присутствует логическая единица на выходе будет единица, т.е. если единица на первом входе ИЛИ на втором, ИЛИ на третьем ИЛИ на четвертом, то на выходе DD1 будет единица и что будет на остальных входах значения не имеет. Таким образом, если напряжение питания ниже 3,5 вольт DA7 блокирует прохождение сигнала тактового сигнала дальше и на выходах микросхемы ни чего не происходит – управляющих импульсов нет.

Однако как только напряжение питания превышает 3,5 вольт напряжение на инвертирующем входе становится больше, чем на не инвертирующем и компаратор меняет свое выходное напряжение на логический ноль, тем самым снимая первую ступень блокировки.
Вторая ступень блокировки контролируется компаратором DA5, который следит за величиной напряжения питания, а именно на его величиной в 5 вольт, поскольку внутренний стабилизатор DA6 не может выдать напряжение больше чем на его входе. Как только напряжение питания превысит 5 вольт оно станет больше на инвертирующем входе DA5, поскольку на не инвертирующем входе оно ограничено напряжением стабилизации стабилитрона VDвн5. Напряжение на выходе компаратора DA5 станет равно логическому нулю и попадая на вход DD1 снимается вторая ступень блокировки.
Внутреннее опорное напряжение 5 вольт используется и внутри микросхемы и выводится за ее пределы через вывод 14. Внутреннее использование гарантирует стабильную работу внутренних компараторов DA3 и DA4, поскольку данные компараторы формируют управляющие импульсы исходя из величины пилообразного напряжения, формируемого генератором G1.
Тут лучше по порядку. В микросхеме имеется генератор пилы, частота которой зависит от времязадающих конденсатора С3 и резистора R13. Причем R13 не принимает непосредственного участия в формировании пилы, а служит регулирующим элементом генератора тока, который и производит зарядку конденсатора С3. Таким образом уменьшая номинал R13 увеличивается ток зарядки, конденсатор заряжается быстрее и соответственно увеличивается тактовая частота, а амплитуда формируемой пилы сохраняется.

Далее пила попадает на инвертирующий вход компаратора DA3. На не инвертирующем входе которого находится опорное напряжение величиной 0,12 вольта. Это как раз соответствует пяти процентам от всей длительности импульса. Другими словами не зависимо от частоты на выходе компаратора DA3 появляется логическая единица ровно на пять процентов от длительности всего управляющего импульса, тем самым блокируя элемент DD1 и обеспечивая время паузы между переключениями транзисторов выходного каскада микросхемы. Это не совсем удобно – если частота в процессе эксплуатации изменяется, то время паузы следует учитывать для максимальной частоты, ведь как раз время пауз будет минимальным. Однако эта проблема решает довольно легко, если величину опорного напряжения 0,12 вольт увеличить, соответственно увеличчится длительность пауз. Это можно сделать собрав делитель напряжения на резисторах или использовать диод с малым падением напряжения на переходе.

Так же пила с генератора попадает на компаратор DA4, который сравнивает ее величину с напряжением, формируемым усилителями ошибки на DA1 и DA2. Если величина напряжения с усилителя ошибки располагается ниже амплитуды пилообразного напряжения, то управляющие импульсы проходят без изменения на формирователь, если же на выходах усилителей ошибки имеется какое напряжение и оно больше минимального значения и меньше максимального напряжения пилы, то при достижении пилообразного напряжения уровня напряжения с усилителя ошибки компаратор DA4 формирует уровень логической единицы и выключает управляющий импульс, идущий на DD1.

После DD1 стоит инвертор DD2, который формирует фронты для работающего по фронту D-триггера DD3. Триггер с свою очередь делит тактовый сигнал на два и поочередно разрешает работу элементов И. Суть работы элементов И заключается в том, что на выходе элемента появляется логическая единица лишь в том случае, когда на его одном входе будет логическая единица И на остальных входах тоже будет присутствовать логическая единица. Вторые выводы этих логических элементов И соединены между собой и выведены на тринадцатый вывод, который может использоваться для внешнего разрешения работы микросхемы.
После DD4, DD5 стоит пара элементов ИЛИ-НЕ. Это уже знакомый элемент ИЛИ, только выходное напряжение у него инвертировано, т.е. НЕ соответствует истине. Другими словами, если хоть на одном из входов элемента будет присутствовать логическая единица, то на его выходе будет НЕ единица, т.е. ноль. А для того, чтобы на выходе элемента появилась логическая единица на обоих его входах должен присутствовать логический ноль.
Вторые входа элементов DD6 и DD7 соединены и подключены непосредственно на выход DD1, что блокирует элементы пока на выходе DD1 присутствует логическая единица.
С выходов DD6 и DD7 управляющие импульсы попадают на базы транзисторов выходного каскада ШИМ контроллера. Причем сама микросхема использует только базы, а коллекторы и эмиттеры выведены за приделы микросхемы и могут использоваться пользователем по своему усмотрению. Например соединив эмиттеры с общим проводом и подключив к коллекторам обмотки согласующего трансформатора мы можем непосредственно микросхемой управлять силовыми транзисторами.
Если же коллекторы транзисторов выходного каскада соединить с напряжением питания, а эмиттеры нагрузить резисторами, то получаем управляющие импульсы для непосредственного управления затворами силовых транзисторов, разумеется не очень мощных – ток коллектора транзисторов выходного каскада не должен превышать 250 мА.
Так же мы можем использовать TL494 для управления однотактными преобразователями, соединив коллекторы и эмиттеры транзисторов между собой. По этой схемотехнике можно строить и импульсные стабилизаторы – фиксированное время пауз не даст намагнитится индуктивности, а можно использовать и как многоканальный стабилизатор.
Теперь несколько слов схеме включения и об обвязке ШИМ контроллера TL494. Для большей наглядности возьмем несколько схем из интернета и попробуем в них разобраться.

СХЕМЫ АВТОМОБИЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ НАПРЯЖЕНИЯ
С ИСПОЛЬЗОВАНИЕМ TL494

Для начала разберем автомобильные преобразователи. Схемы взяты КАК ЕСТЬ, поэтому я позволю кроме пояснений подчеркнуть некоторые нюансы, которые я бы сделал по другому.
Итак, схема номер 1 . Автомобильный преобразователь напряжения, имеющий стабилизированное выходное напряжение, причем стабилизация осуществляется косвенным образом – контролируется не выходное напряжение преобразователя, а напряжение на дополнительной обмотке. Разумеется, что выходные напряжения трансформатора взяимосвязаны, поэтому увеличение нагрузки на одной из обмоток вызывает провал напряжение не только на ней, но и на всех обмотках, которые намотаны на этом же сердечнике. Напряжение на дополнительной обмотке выпрямляется диодным мостом, проходит аттенюатор на резисторе R20, сглаживается конденсатором С5 и через резистор R21 попадает на первую ногу микросхемы. Вспоминаем структурную схему и видим, что первый вывод у нас есть не инвертирующий вход усилителя ошибки. Второй вывод – инвертирующий вход, через который с выход усилителя ошибки (вывод 3) заведена отрицательная обратная связь через резистор R2. Обычно параллельно этому резистору ставят конденсатор на 10…47 нано фарад – это несколько замедляет скорость реакции усилителя ошибки, но в тоже время значительно увеличивает стабильность его работы и полностью исключает эффект перерегулирования.

Перерегулирование – слишком сильная реакция контроллера на изменение нагрузки и вероятность возникновения колебательного процесса. К этому эффекту мы вернемся, когда полностью разберемся со всеми процессами в данной схеме, поэтому возвращаемся к выводу 2, на который подано смещение с вывода 14, который является выходом внутреннего стабилизатора на 5 вольт. Сделано это для более корректной работы усилителя ошибки – у усилителя однополярное напряжение питания и работать с напряжениями близкими по значению к нулю ему довольно сложно. Поэтому в таких случаях формируются дополнительные напряжения, чтобы загнать усилитель в рабочие режимы.
Кроме всего прочего стабилизированное напряжение 5 вольт используется для формирования «мягкого» старта – через конденсатор С1 оно подается на 4 вывод микросхемы. Напоминаю – от величины напряжения на этом выводе зависит время пауз между управляющими импульсами. Из этого не сложно сделать вывод, что пока конденсатор С1 будет разряжен время пауз будет настолько большим, что превысит длительность самих импульсов управления. Однако по мере зарядки конденсатора напряжение на четвертом выводе начнет уменьшаться уменьшая и время пауз. Длительность управляющих импульсов начнет увеличиваться пока не достигнет своего значения в 5 %. Данное схемотехническое решение позволяет ограничить ток через силовые транзисторы на время заряда конденсаторов вторичного питания и исключает перегрузку силового каскада, поскольку действующее значение выходного напряжения увеличивается постепенно.
Восьмой и одиннадцатый вывода микросхемы подключены к напряжению питания, следовательно выходной каскад работает в качестве эмиттерного повторителя, а так оно и есть – девятый и десятый выводы через токоограничивающие резисторы R6 и R7 подключены к резисторам R8 и R9, а так же к базам VT1 и VT2. Таким образом выходной каскад контроллера усилен – открытие силовых транзисторов осуществляется через резисторы R6 и R7, последовательно которым подключены диоды VD2 и VD3, а вот закрытие, на которое нужно гораздо больше энергии, происходит при помощи VT1 и VT2, включенных как эмиттерные повторители, но обеспечивающие большие ток именно при формировании на затворах нулевого напряжения.
Далее у нас по 4 силовых транзистора в плече, включенных параллельно, для получения большего тока. Откровенно говоря вызывает некоторое смущении использование именно этих транзисторов. Вероятней всего у автора данной схемы они попросту были в наличии и он решил их пристроить. Дело в том, что у IRF540 максимальный ток равен 23 амперам, энергия, запасенная в затворах равна 65 нано Кулонам, а наиболее популярные транзисторы IRFZ44 имеют максимальный ток в 49 ампер, при этом энергия затвора составляет 63 нано Кулона. Другими словами используя две пары IRFZ44 мы получаем небольшой прирост максимального тока и двухкратное снижения нагрузки на выходной каскад микросхемы, что лишь увеличивает надежность данной конструкции с точки зрения параметров. Да и формулу «Меньше деталей – больше надежность» ни кто не отменял.

Разумеется, что силовые транзисторы должны быть из одной партии, поскольку в этом случае разброс параметров между включенными в параллель транзисторами снижается. В идеале конечно же лучше подобрать транзисторы по коэффициенту усиления, но такая возможность случается не всегда, а вот приобрести транзисторы одной партии должно получится в любом случае.

Параллельно силовым транзисторам стоят последовательно соединенные резисторы R18, R22 и конденсаторы C3, C12. Это снаберы, которые призваны подавлять импульсы самоиндукции, которые неизбежно возникают при подаче на индуктивную нагрузку прямоугольных импульсов. Кроме этого дело усугубляется широтно-импульсной модуляцией. Тут стоит остановится подробней.
Пока силовой транзистор открыт через обмотку протекает ток, причем ток все время увеличивается и вызывает рост магнитного поля энергия которого передается во вторичную обмотку. Но как только транзистор закрывается ток через обмотку протекать перестает и магнитное поле начинает сворачиваться вызывая появление напряжение обратной полярности. Складываясь с уже имеющимся напряжением появляется короткий импульс, амплитуда которого может превышать приложенное первоначально напряжение. Это вызывает выброс тока вызывает повторную смену полярности наводимого самоиндукцией напряжения и теперь самоиндукция сокращает величину имеющегося напряжения и как только ток станет меньше снова происходит смена полярности импульса самоиндукции. Этот процесс носит затухающий характер, однако величины токов и напряжений самоиндукции прямопропорциональны габаритной мощности силового трансформатора.

В результате этих качелей в момент закрытия силового ключа на обмотке трансформатора наблюдаются ударные процессы и для их подавления как раз и используются снаберы – сопротивление резистора и емкость конденсатора подбираются таким образом, чтобы на зарядку конденсатора требовалось ровно столько времени, сколько требуется на смену полярности импульса самоиндукции трансформатора.
Зачем нужно бороться с этими импульсами? Все очень просто – в современных силовых транзисторах установлены диоды, причем напряжение падения у них значительно больше сопротивления открытого полевика и именно диодам приходится не сладко, когда они через себя начинаю гасить на шины питания выбросы самоиндукции и в основном корпуса силовых транзисторов греются не потому, что греются кристаллы переходов именно транзисторов, это греются внутренние диоды. Если же убрать диоды, то обратное напряжение буквально при первом же импульсе убьет силовой транзистор.
Если преобразователь не оснащен ШИМ стабилизацией, то время самоиндукционной болтанки сравнительно не велико – вскоре открывается силовой транзистор второго плеча и самоиндукция душится малым сопротивлением открытого транзистора.

Однако если же преобразователь имеет ШИМ контроль выходного напряжения, то паузы между открытием силовых транзисторов становятся довольно длинными и естественно время самоиндукционной болтанки значительно увеличивается, увеличивая нагрев диодов внутри транзисторов. Именно по этой причине при создании стабилизированных источников питания не рекомендуют закладывать запас выходного напряжения более 25 % - время пауз становится слишком длинным и это вызывает необоснованное повышение температуры выходного каскада даже при наличии снаберов.
По этой же причине подавляющее большинство заводских автомобильных усилителей мощности не имеют стабилизации даже если в качестве контроллера используется TL494 – экономят на площади теплоотводов преобразователя напряжения.
Ну теперь, когда основные узлы рассмотрены разберемся как работает ШИМ стабилизация. У нас на выходе заявлено двуполярное напряжение ±60 вольт. Из сказанного ранее становится понятно, что вторичная обмотка трансформатора должна быть рассчитана на выдачу 60 вольт плюс 25% процентов, т.е. 60 плюс 15 равно 75 вольта. Однако для получения действующего значения в 60 вольт длительность одной полуволны, точнее одного периода преобразования должен быть короче на 25% от номинального значения. Не забываем, что в любом случае вмешается еще время пауз между переключениями, следовательно вносимые формирователем пауз 5% отсекутся автоматически и наш управляющий импульс нужно уменьшить на оставшиеся 20%.
Эта пауза между периодами преобразования будет компенсироваться за счет накопленной в дросселе фильтра вторичного питания магнитной энергии и накопленного заряда в конденсаторах. Правда ставить перед дросселем электролиты я бы не стал, впрочем как и любые другие конденсаторы – кондеры лучше ставить после дросселя и кроме электролитов конечно же установить пленочные – они лучше подавляют как раз импульсные броски и помехи.
Стабилизация выходного напряжения осуществляется следующим образом. Пока нагрузки нет или она очень мала энергия с конденсаторов С8-С11 почти не расходуется и для ее восстановления требуется не много энергии и амплитуда выходного напряжения с вторичной обмотки будет достаточно большой. Соответственно и амплитуда выходного напряжения с дополнительной обмотки будет большой. Это вызовет увеличение напряжения на первом выводе контроллера, что в свою очередь повлечет увеличение выходного напряжения усилителя ошибки и длительность управляющих импульсов сократится до такой величины, при которой наступит баланс между потребляемой мощностью и отдаваемой в силовой трансформатор.
Как только потребление начинает увеличиваться происходит понижение напряжения на дополнительной обмотке и естественно уменьшается напряжение на выходе усилителя ошибки. Это вызывает увеличение длительности управляющих импульсов и увеличение отдаваемой в трансформатор энергии. Длительность импульса увеличивается до тех пор, пока снова не наступит баланс потребляемой и отдаваемой энергий. Если же нагрузка уменьшается, то снова происходит разбалансировка и контроллер вынужден будет теперь сократить длительность управляющих импульсов.

При неправильно выбранных номиналах обратной связи может возникнуть эффект перерегулирования. Это касается не только TL494, а так же всех стабилизаторов напряжения. В случае с TL494 эффект перерегулирования обычно возникает в случаях отсутствия замедляющих реакцию обратной связи цепочек. Разумеется, что замедлять реакцию слишком сильно не следует – может пострадать коэффициент стабилизации, однако и слишком быстрая реакция идет не на пользу. А проявляется это следующим образом. Допустим у нас увеличилась нагрузка, напряжение начинает проваливаться, ШИМ контроллер пытается восстановить баланс, но делает это слишком быстро и увеличивает длительность управляющих импульсов не пропорционально, а гораздо сильнее. В этом случае действующее значение напряжения резко увеличивается. Разумеется теперь контроллер видит, что напряжение выше напряжения стабилизации и резко сокращает длительность импульсов, пытаясь сбалансировать выходное напряжение и опорное. Однако длительность импульсов стала короче, чем должна быть и выходное напряжение становится гораздо меньше необходимого. Контроллер снова увеличивает длительность импульсов, но опять перестарался – напряжение получилось больше необходимого и ему ни чего не остается делать, как снижать длительность импульсов.
Таким образом на выходе преобразователя формируется не стабилизированное напряжение а колеблющееся на 20-40% от установленного, причем как в сторону превышения, так и в сторону занижения. Разумеется, что такое питание вряд ли понравится потребителям, поэтому после сборки любого преобразователя следует его проверить на скорость реакции на шунтах, дабы не расстаться с только что собранной поделкой.
Судя по предохранителю преобразователь довольно мощный, однако в таком случае емкостей С7 и С8 явно маловато, их следует добавить хотя бы еще по три штуки каждого. Диод VD1 служит для защиты от переполюсовки и если таковая случится, то он вряд ли останется в живых – пережечь предохранитель на 30-40 ампер не так-то просто.
Ну и под занавес остается добавить то, что данный преобразователь не снабжен системой стенбая, т.е. при подключении к напряжению питания он сразу запускается и остановить его можно только отключив питание. Это не очень удобно – потребуется довольно мощный переключатель.

Автомобильный преобразователь напряжения номер 2 , так же имеет стабилизированное выходное напряжение, о чем свидетельствует наличие оптрона, светодиод которого подключен к выходному напряжению. Причем подключен через TL431, что значительно увеличивает точность поддержания выходного напряжения. Фототранзистор оптрона подключен также к стабилизированному напряжению второй микрухой TL431. Суть данного стабилизатора лично от меня ускользнула – в микросхеме есть стабилизированные пять вольт и ставить дополнительный стабилизатор как бы смысла не имеет. Эмиттер фототранзистора идет на не инвертирующий вход усилителя ошибки (вывод 1). Усилитель ошибки охвачен отрицательной обратной связью, причем для замедления ее реакции введены резистор R10 конденсатор С2.

Второй усилитель ошибки используется для принудительной остановки преобразователя в не штанной ситуации – при наличии на шестнадцатом выводе напряжения большего по величине, чем формирует делитель R13 и R16, а это примерно два с половиной вольта контроллер начнет сокращать длительность импульсов управления вплоть до их полного исчезновения.
Мягкий старт организован точно так же, как и в предыдущей схеме – через формирование времени пауз, правда емкость конденсатора С3 несколько маловата – я бы туда поставил на 4,7…10 мкФ.
Выходной каскад микросхемы работает в режиме эмиттерного повторителя, для усиления тока используется полноценный дополнительный эмиттерный повторитель на транзисторах VT1-VT4, который в свою очередь нагружен на затворы силовых полевиков, правда номиналы R22-R25 я бы снизил до 22…33 Ом. Дальше снаберы и силовой трансформатор, после которого диодный мост и сглаживающий фильтр. Фильтр в этой схеме выполнен более корректно – он на одном сердечнике и содержит одинаковое количество витков. Такое включение обеспечивает максимально возможную фильтрацию, поскольку встречные магнитные поля компенсируют друг друга.
Режим стенбай организован на транзисторе VT9 и реле К1, контакты которого подают питание только на контроллер. Силовая же часть подключена к напряжению питания постоянно и пока с контроллера по появятся управляющие импульсы транзисторы VT5-VT8 будут закрытыми.
О том, что на контроллер подано напряжение питания свидетельствует светодиод HL1.

Следующая схема… Следующая схема это… Это третий вариант автомобильного преобразователя напряжения , но давайте по порядку…

Начнем с основных отличий от традиционных вариантов, а именно использования в автомобильном преобразователе полумостового драйвера. Ну с этим еще можно как то смириться – внутри микросхемы находятся 4 транзистора с хорошей скоростью открытия-закрытия, да еще и двухамперных. Произведя соответствующее подключение ее можно загнать в режим работы Пуш-пулла, однако микросхема не производит инверсию выходного сигнала, а на ее входы управляющие импульсы подаются с коллекторов контроллера, следовательно как только контроллер выдаст паузу между управляющими импульсами на коллекторах выходного каскада ТЛки появятся уровни соответствующие логической единицы, т.е. близкие к напряжению питания. Пройдя Ирку импульсы будут поданы на затворы силовых транзситоров, которые будут благополучно открыты. Оба… Одновременно. Я конечно понимаю, что ушатать транзисторы FB180SA10 с первого раза может и не получится – все таки 180 ампер придется развить, а при таких токах обычно уже дорожки начинают отгорать, но все ж это как то слишком жестко. Да и стоимость этих самых транзисторов больше тысячи за один.
Следующим загадочным моментом является использование трансформатора тока, включенного в шину первичного питания, по которой протекает постоянный ток. Понятно, что в этом трансформаторе будет все таки что то наводится за счет изменения тока в момент переключения, но все ж это как то не совсем правильно. Не, защита от перегрузки работать будет, но насколько корректно? Ведь и выход трансформатора тока тоже спроектирован, мягко говоря уж слишком оригинально – при увеличении тока на 15 выводе, который является инвертирующим входом усилителя ошибки будет уменьшаться напряжение, которое формирует резистор R18 совместно с делителем на R20. Разумеется, что уменьшение напряжения на этом выходе вызовет увеличение напряжения с усилителя ошибки, что в свою очередь укоротит управляющие импульсы. Однако R18 подключен непосредственно к шине первичного питания и весь происходящий бардак на этой шине будет непосредственно сказываться на работе защиты от перегрузки.
Регулировка стабилизации выходного напряжения выполнена… Ну в принципе так же, как и работа силовой части… После запуска преобразователя, как только выходное напряжение достигает значения при котором начинает светится светодиод оптрона U1.2 транзистор оптрона U1.1 открывается. Его открытие вызывает уменьшение созданного делителем на R10 и R11 напряжения. Это в свою очередь вызывает снижение выходного напряжения усилителя ошибки, поскольку это напряжение подключено к не инвертирующему входу усилителя. Ну а раз на выходе усилителя ошибки напряжение снижается то контроллер начинает увеличивать длительность импульсов, тем самым увеличивая яркость свечения светодиода оптрона, который еще сильнее открывает фототранзистор и еще сильнее увеличивает длительность импульсов. Это происходит до тех пор, пока напряжение на выходе не достигнет максимально возможной величины.
В общем схема настолько оригинальна, что отдать ее на повторение можно только врагу и за этот грех Вам обеспечены вечные муки в Аду. Я не знаю кто виноват… Лично у меня сложилось впечатление, что это чья то курсовая работа, а может и дипломная, но в это верить не хочется, ведь если она была опубликована, то значит была защищена, а это говорит о том, что квалификация преподавательского состава гораздо в худшем состоянии, чем я думал…

Четвертый вариант автомобильного преобразователя напряжения .
Не скажу, что идеальный вариант, тем не менее в свое время к разработке данной схемы приложил руку. Тут сразу небольшая порция успокоительного – пятнадцать и шестнадцать выводы соединены вместе и подключены на общий провод, хотя по логике следовало бы пятнадцатый вывод соединить с четырнадцатым. Тем не менее заземление входов второго усилителя ошибки на работоспособности ни как не отразилось. Поэтому куда подключать пятнадцатый вывод уже оставлю на Ваше усмотрение.

Выход внутреннего стабилизатора на пять вольт в данной схеме используется весьма интенсивно. Из пяти вольт формируется опорное напряжение, с которым будет сравниваться выходное напряжение. Делается это при помощи резисторов R8 и R2. Для уменьшения пульсаций опорного напряжения параллельно R2 подключен конденсатор С1. Поскольку резисторы R8 и R2 одинаковые, то величина опорного напряжения составляет два с половиной вольта.
Так же пять вольт используются для мягкого старта – конденсатор С6 в момент включения краткосрочно формирует пять вольт на четвертом выводе контроллера, т.е. пока он заряжается время принудительных пауз между управляющими импульсами будет изменяться от максимального до номинального значения.
Эти же пять вольт подключены к коллектору фототранзистора оптрона DA, а его эмиттер, через небольшой делитель на R5 и R4 подключен к не инвертирующему входу первого усилителя ошибки – вывод 1. На вывод 2 заведена отрицательная обратная связь с выхода усилителя ошибки. Обратная связь имеет замедляющий реакцию контроллера конденсатор С2, емкость которого может располагаться в пределах от десяти нано фарад до шестидесяти восьми нано фарад.
Выходной каскад контроллера работает в режиме повторителя, а усиление по току производится транзисторным драйверным каскадом на VT3-VT6. Разумеется, что мощности драйверного каскада хватит на управление не одно парой силовых транзисторов, собственно на это и делалась ставка – первоначально плата с контроллером выполнялась отдельно от силовой части, но в итоге это оказалось не совсем удобно. Поэтому печатные проводники были перенесены на основную плату, а трансформаторов, ну и конечно же силовых транзисторов уже варьировалось методом удлинения платы.
Силовой трансформатор к транзисторам подключен через трансформатор тока, который отвечает за работоспособность защиты от перегрузки. Снаберы в данном варианте не ставились – использовались серьезные радиаторы.
Как только на клемме УПР появляется напряжение, разрешающее работу преобразователя открывается транзистор VT2, который в свою очередь загоняет в насыщение VT1. На эмиттере VT1 находится напряжение с интегрального стабилизатора на 15, который безприпятственно пропускает напряжение питания подаваемое с диода VD5, ведь оно меньше напряжения стабилизации. На этот диод, через резистор R28 подается основное напряжение питания двенадцать вольт. Открывшись VT1 подает питание на контроллер и транзисторы драйвера и происходит запуск преобразователя. Как только на силовом трансформаторе появляются импульсы напряжение на его обмотка достигает удвоенного значения основного питания и оно, проходя диоды VD4 и VD6, подается на вход стабилизатора на 15 вольт. Таким образом после запуска преобразователя питание контроллера осуществляется уже стабилизированным питанием. Данное схемотехническое решение позволяет сохранять устойчивую работу преобразователя даже при питании шесть – семь вольт.
Стабилизация выходного напряжения осуществляется методом контроля свечения светодиода оптрона DA, светодиод которого подключен к нему через резистивный делитель. Причем контролируется только одно плечо выходного напряжения. Стабилизация второго плеча осуществляется через магнитную связь, которая возникает в сердечнике индуктивности L2 и L3, поскольку данный фильтр выполнен на одном сердечнике. Как только увеличивается нагрузка на положительном плече выходного напряжения сердечник начинает намагничиваться и в результате отрицательному напряжению с диодного моста труднее попадать на выход преобразователя, отрицательное напряжение начинает проваливаться, а на это у же реагирует светодиод оптрона, заставляя контроллер увеличить длительность управляющих импульсов. Другими словами дроссель кроме фильтрующих функций выполнять роль дросселя групповой стабилизации и работает точно так же, как он это делает в компьютерных блоках питания, стабилизируя сразу несколько выходных напряжений.
Защита от перегрузки несколько грубоватая, тем не менее вполне работоспособная. Порог защиты регулируется резистором R26. Как только ток через силовые транзисторы достигает критического значения напряжение с трансформатора тока открывает тиристор VS1, а он шунтирует на землю управляющее напряжение с клеммы УПР, тем самым снимая напряжение питания с контроллера. Кроме этого через резистор R19 происходит ускоренная разрядка конденсатора С7, емкость которого все таки лучше снизить до 100 мкФ.
Для сброса сработанной защиты необходимо снять, а затем снова подать напряжение на клемму УПР.
Еще одной особенностью данного преобразователя является использование конденсаторно-резистивного формирователя напряжения в затворах силовых транзисторов. Устанавливая эти цепочки удалось добиться на затворах отрицательного напряжения, которое призвано ускорить закрытие силовых транзисторов. Однако данный способ закрытия транзисторов не повлек ни роста КПД, ни снижения температуры, даже с использованием снаберов и от нее отказались – меньше деталей – больше надежность.

Ну и последний, пятый автомобильный преобразователь . Данная схема является логическим продолжением предыдущей, но оснащена дополнительными функциями, улучшающими ее потребительские свойства. Управляющее напряжение REM подается через восстанавливаемый термопредохранитель KSD301 на 85 градусов, который установлен на радиатор преобразователя. В идеале радиатор должен быть один и на усилитель мощности и на преобразователь напряжения.

Если контакты термопредохранителя замкнуты, т.е. температура меньше восьмидесяти пяти градусов, то управляющее напряжение с клеммы REM открывает транзистор VT14, тот в свою очередь открывает VT13 и на вход пятнадцати вольтовой КРЕНки попадает двенадцать вольт от основного источника питания. Поскольку входное напряжение ниже напряжения стабилизации КРЕНки на ее выходе оно появится почти без изменений – лишь падение на регулирующем транзисторе внесет небольшое падение. С КРЕНки питание подается на сам контроллер и транзисторы драйверного каскада VT4-VT7. Как только внутренний пяти вольтовый стабилизатор выдаст напряжение начнет заряжаться конденсатор С6 уменьшая длительность пауз между управляющими импульсами. Управляющие импульсы начнут открывать силовые транзисторы на вторичных обмотках трансформатора появятся и начнут увеличивать действующее значение вторичные напряжения. С первой вторичной обмотки напряжение величиной 24 вольта через выпрямитель со средней точкой попадет на плюсовой вывод конденсатора С18 и поскольку его напряжение больше, чем основное двенадцативольтовое диод VD13 закроется и теперь контроллер будет питаться от собственно вторичной обмотки. Кроме этого двадцать четыре вольта больше, чем пятнадцать, следовательно в работу включится пятнадцати вольтовый стабилизатор и теперь контроллер будет питаться стабилизированным напряжением.
По мере роста управляющих импульсов действующее значение напряжения будет увеличиваться и на второй вторичной обмотке и как только оно достигнет значения при котором начнет светиться светодиод оптрона DA фототранзистор начнет открываться и система начнет обретать устойчивое состояние – длительность импульсов перестанет увеличиваться, поскольку эмиттер фототранзистора подключен в не инвертирующему выводу усилителя ошибки контроллера. При увеличении нагрузки выходное напряжение начнет проседать, естественно яркость светодиода начнет уменьшаться, уменьшится и напряжение на первом выводе контроллера и контроллер увеличит длительность импульса ровно на столько, чтобы снова восстановить яркость свечения светодиода.
Контроль выходного напряжения осуществляется по отрицательному плечу, а реакция на изменения потребления в положительном плече осуществляется за счет дросселя групповой стабилизации L1. Для ускорения реакции контролируемого напряжения отрицательное плечо дополнительно нагружено резистором R38. Тут сразу следует оговориться – не нужно на вторичное питания навешивать слишком большие элеткролиты – на больших частотах преобразования от них не много толка, а вот на общий коэффициент стабилизации они могут оказать существенное влияние – чтобы напряжение в положительном плече начало увеличиваться в случае увеличения нагрузки напряжение в отрицательном плече должно тоже уменьшится. Если же в отрицательном плече потребление не большое, а емкость конденсатора довольно большая С24, то разряжаться он будет довольно долго и контроле попротсу не успеет отследить, что на положительном плече напряжение провалилось.
Именно по этой причине настоятельно рекомендуется на самой плате преобразователя ставить не более 1000 мкФ в плечо и по 220…470 мкФ на платах усилителя мощности и не более.
Не хватку же мощности на пиках звукового сигнала придется компенсировать габаритной мощностью трансформатора.
Защита от перегрузки выполнена на трансформаторе тока, напряжение с которого выпрямляется диодами VD5 и VD6 и попадает на регулятор чувствительности R26. Далее проходя диод VD4, который является некоторым ограничителем амплитуды, напряжение попадает на базу транзистора VT8. Коллектор этого транзистора подключен к входу триггера Шмидта, собранного на VT2-VT3 и как только транзистор VT8 откроется он закроет VT3. Напряжение на коллекторе VT3 увеличится и откроется VT2, открывая VT1.
И триггер и VT1 запитаны от пяти вольтового стабилизатора контроллера и при открытии VT1 пять вольт попадает на шестнадцатый вывод контроллера, резко сокращая длительность импульсов управления. Так же пять вольт через диод VD3 попадает на вывод четыре, увеличивая время принудительных пауз до максимально возможного значения, т.е. управляющие импульсы сокращаются сразу двумя способами – через усилитель ошибки, который не имеет отрицательной обратной связи и работает как компаратор сокращая длительность импульсов практически мгновенно, и через формирователь длительности пауз, который теперь через разряженный конденсатор начнет увеличивать длительность импульсов постепенно и если нагрузка по прежнему слишком большая снова сработает защита как только откроется VT8. Однако у триггера на VT2-VT3 есть еще одна задача – он следит за величиной основного первичного напряжения 12 вольт и как только оно станет меньше 9-10 вольт подаваемого на базу VT3 через резисторы R21 и R22 смещения будет не достаточно и VT3 закроется, открывая VT2 и VT1. Контроллер остановится и вторичное питание пропадет.
Данный модуль оставляет шанс на заводку автомобиля, если вдруг его владелец решит послушать музыку на не заведенной машине, а так же предохраняет усилитель мощности от резких провалов напряжения в момент запуска стартера автомобиля – преобразователь просто пережидает момент критического потребления оберегая и усилитель мощности и собственные силовые ключи.
Чертеж печатной платы данного преобразователя , причем там два варианта – одно и двух трансформаторные.
Зачем два трансформатора?
Для получения большей мощности. Дело в том, что габаритная мощность трансформатора в автомобильных преобразователях ограничена напряжением питания двенадцать вольт, которое требует определенного количества витков на трансформаторе. На кольце должно быть не менее четырех витков в первичной полуобмотке, для ш-образного феррита количество витков можно снизить до трех.

Это ограничение связанно прежде всего с тем, что при меньшем количестве витков магнитное поле уже становится не однородным и возникают слишком большие его потери. Отсюда так же вытекает не возможность увести частоту преобразования на более высокие частоты – придется сокращать количество витков, а это не допустимо.
Вот и получается, что габаритная мощность ограничена количеством витков первичной обмотки и не большим частотным диапазоном преобразования – ниже 20 кГц спускаться нельзя – помехи от преобразователя не должны находиться в звуковом диапазоне, поскольку они приложат все усилия, чтобы их стало слышно в динамиках.
Выше 40 кГц тоже не поднимешься – количество витков первичной обмотки становится слишком маленьким.
Если же хочется получить мощности побольше, то остается единственное решение – увеличивать количество трансформаторов и два это далеко не максимум от возможного.
Но тут встает ребром другой вопрос – как следить за всеми трансформаторами? Городить слишком серьезный дроссель групповой стабилизации или вводить энное количество оптронов не хочется. Поэтому единственным способом контроля остается последовательное соединение вторичных обмоток. В этом случае исключается и перекосы в потреблении и контролировать выходное напряжение значительно легче, однако к сборке и фазировке трансформаторов придется уделить максимальное внимание.
Теперь немного об отличиях принципиальной схемы и платы. Дело в том, что на данной принципиалке обозначены лишь самые основные моменты схемы, на печатной же элементы расставлены согласно реальности. Например на принципиалке нет пленочных конденсаторов по питанию, а на плате они есть. Разумеется посадочные отверстия под них сделаны согласно размерам тех конденсаторов, которые были в наличии на момент разработки. Разумеется, что в случае отсутствия емкости на 2,2 мкФ можно использовать на 1 мкФ, но не ниже 0,47 мкФ.
По питанию на схеме так же установлены электролиты на 4700 мкФ, однако на плате вместо них стоит целый набор кондеров на 2200 мкФ на 25 вольт, причем конденсаторы должны быть с малым ESR, это те самые, которые позиционируются продавцами как «для материнских плат». Они обычно маркированы либо серебристой, либо золотистой краской. Если будет возможность приобрести на 3300 мкФ на 25 вольт, то это будет даже лучше, но в наших краях такие попадаются довольно редко.
Несколько слов о якобы джамперах – это такие перемычки, которые соединяют дорожки сами с собой. Сделано это не просто так – толщина меди на плате ограничена, а протекающие по проводникам тока довольно большие и чтобы компенсировать потери в проводнике дорожку нужно либо буквально пролить припоем, а это по нынешним временам дороговато, либо продублировать токоведущими проводниками, тем самым увеличив суммарное сечение проводника. Данные джампера выполняются из медного одножильного провода сечением не менее два с половиной квадрата, в идеале конечно же потолше – квадрата четыре или шесть.
Диодный мост вторичного питания. На схеме указаны диоды в корпусе ТО-247, плата подготовлена под использования диодов в корпусе ТО-220. Тип диодов напрямую зависит от планируемого тока в нагрузке, ну и конечно же диоды лучше выбирать более быстрые – будет меньше саморазогрев.
Теперь несколько слов о моточных деталях.
Самым подозрительным в схеме является трансформатор тока – толстючими проводами первичной обмотки кажется будет трудно намотать пол витка, да еще в разные направления. На самом деле это самый простой компонент из моточных деталей. Для изготовления трансформатора тока используется телевизионный фильт питания, если ВДРУГ такой найти не удалось, то можно использовать ЛЮБОЙ ш-образный ферритовый сердечник, например солгасующий трансформатор от компьютерного блока питания. Сердечник прогревается градусов до 110-120 в течении десяти – двадцати минут и затем ращелкивается. Обмотки удаляются, на каркасе мотается вторичная обмотка, состоящая из 80-120 витков проводом 0,1…0,2 мм, разумеется сложенным в двое. Затем начало одной обмотки соединяется с концом второй, провода фиксируются любым удобным для Вас способом и каркас с обмоткой надевается на половинку сердечника. Затем в одно окно прокладывается один жгут силвой первичной обмотки, во втрое – второй и одевается вторая половинка сердечника. Вот и все! Две обмотки по пол витка в первичке и 100 витков во вторичке. Почему число витков не указано точно? Число витков должно быть таким, чтобы на резисторе R27 при максимальных токах получилось три – пять вольт. Но я ведь не знаю какой ток Вы сочтете максимальным, какие транзисторы будет использовать. А величину напряжения на R27 всегда можно подкорректировать подбором номинала этого самого резистора. Главное, чтобы трансформатор тока был перегружен по вторичной обмотке, а для этого нужно не менее 60-70 витков во вторичке – в этом случае будет минимальный нагрев сердечника.

Дроссель L2 выполнялся на сердечнике силового трансформатора импульсного блока питания телевизоров подходящего размера. В принципе его можно намотать и на сердечнике от трансформатора от компьютерного блока питания, но придется организовать не магнитный зазор 0,5…0,7 мм. Для его создания достаточно бросить внутрь каркаса с вставленной половинкой сердечника НЕ ЗАМКНУТОЕ колечко из обмоточного провода соответствующего диаметра.
Намотка дросселя производится до заполнения, а вот каким проводом придется рассчитать. Лично я предпочитаю работать либо со жгутами, либо с лентой. Лента конечно же компактней, с ее помощью получается очень большая плотность намотки но на ее изготовление уходит уйма времени, ну и клей конечно же на дороге не валяется. Изготовить жгут гораздо легче – для этого достаточно выяснить примерную длину проводника, сложить провод в несколько раз, а затем при помощи дрели свить его в жгут.
Какого и сколько провода нужно использовать? Тут уже зависит от предъявляемым к конечному изделию требованиям. В данном случае речь идет об автомобильной технике, которая по определению имеет очень плохие условия охлаждения, следовательно саморазогрев нужно свести к минимуму, а для этого нужно вычислить сечение проводника при котором он будет греться не сильно, либо вообще не греться. Последнее конечно предпочтительней, но это вызывает увеличение габаритов, а машина это не Икарус, в котором уйма места. Поэтому будем исходить из минимального нагрева. Разумеется, что можно конечно поставить вентиляторы, чтобы они в принудиловку продували и усилитель и преобразователь, да вот только пыль от наших дорог больно быстро убивает вентиляторы, поэтому лучше танцевать от естественного охлаждения и возьмем за основу напряженность в три ампера на квадратный миллиметр сечения проводника. Это довольно популярная напряженность, которую рекомендуют закладывать в расчет при изготовлении традиционного трансформатора на ш-образном железе. Для импульсных устройств рекомендуют ложить пять-шесть ампер на квадратный миллиметр, однако это подразумевает хорошую конвекцию воздуха, а у нас корпус закрытый, поэтому все таки берем три ампера.
Убедил что лучше три? А теперь даем поправку на то, что нагрузка то у усилителя не постоянная, ведь чистую синусоиду, да еще приближенную к клипингу ни кто не слушает, поэтому нагрев будет происходить не постоянно, поскольку действующее значение мощности усилителя равно примерно 2/3 от максимальной. Следовательно напряженность можно увеличить на тридцать процентов без каких либо рисков, т.е. довести ее до четырех ампер на квадратный миллиметр.
Еще разик, для большего понимания цифр. Условия охлаждения гадкие, провод от больших токов начинает греться, если он сильно тонкий, а если он смотан ееще в катушку, то нагревает сам себя. Для решения проблемы закладываем напряженность в два с половиной – три ампера на квадратный миллиметр сечения провода если нагрузка постоянная, если будем питать усилитель мощности, то напряженность увеличиваем до четырех – четырх с половиной ампер на квадратный миллиметр сечении проводника.
Теперь запускаем Эксель, надеюсь у всех есть такой калькулятор, и в верхней строке пишем по порядку: «Напряженность», затем «Диаметр провода», далее «Количество проводов», потом «Максимальный ток» и в последней ячейке «Мощность». Переходим в начало следующей строки и пишем пока цифру три, пусть пока будет три ампера на квадратный миллиметр. В следующей ячейке пишем цифру один, пусть пока будет провод диаметром один миллиметр. В следующей ячейке пишем десять, это будет количество проводов в жгуте.
А вот дальше уже ячейки в которых будут формулы. Для начала вычисляем сечение. Для этого диаметр делим на 2 – нам нужен радиус. Затем радиус умножаем на радиус, на всякий случай, чтобы наш калькулятор не затупил берем вычисление радиусов в скобки и все это умножаем на число пи. В результате получаем пи эр квадрат, т.е. площадь круга, которая и является сечением проводника. Затем, не выходя из редактирования ячейки умножаем получившийся результат на наш диаметр провода и умножаем на количество проводов. Нажимаем ЭНТЕР и видим цифру с кучей знаков после запятой. Такая большая точность не нужна поэтому округляем наш результат до одного знака после запятой, причем в большую сторону, чтобы был небольшой технологический запас. Для этого заходим в редактирование ячейки, выделяем нашу формулу и нажимаем КОНТРЛ ИКС – вырезать, затем нажимаем кнопку ФОРМУЛА и в строке МАТЕМАТИЧЕСКИЕ ДЕЙСТВИЯ выбираем ОКРУГЛИТЬ ВВЕРХ. Появляется диалоговое окно с вопросом что округлить и до скольки знаков. Ставим курсор в верхнее окошко и КОНТРЛ ВЭ вставляем вырезанную ранее формулу, а в нижнем окошке ставим единицу, т.е. округляем до одного знака и нажимаем ОК. Теперь в ячейке число с одной цифрой после запятой.
Осталось вставить формулу в последнюю ячейку, ну тут все просто – закон Ома. Мы имеем максимальный ток, который можем пользовать, а бортовое напряжение пусть будет двенадцать вольт, хотя на заведенном авто оно порядка тринадцати с хвостиком, но это не учитывается падение в соединительных проводах. Перемножаем получившийся ток на 12 и получаем максимальную расчетную мощность которая вызовет не сильный нагрев проводника, точнее жгута состоящего из десяти проводов диаметром один миллиметр.
На вопросы «А у меня нет такой кнопки, нет строки редактирования» я отвечать не буду уже снято и выложено более подроное описание использование Excel в расчетах блоков питания:

Возвращаемся к нашей поделке. С диаметрами проводов в жгуте и их количеством разобрались. Эти же расчеты можно использовать и при выяснении необходимого жгута в обмотках трансформатора, но напряженность можно увеличить до пяти - шести ампер на квадратный миллиметр – одна полуобмотка работает пятьдесят процентов времени, поэтому будет успевать охлаждаться. Можно напряженность в обмотке увеличить и до семи – восьми ампер, но тут уже начнет сказываться падение напряжения на активном сопротивлении жгута, а у нас вроде еще есть желание получить не плохой КПД, поэтому лучше не надо.
Если силовых транзисторов несколько, то необходимо сразу учесть, что количество проводов в жгуте должно быть кратно количеству транзисторов – жгут придется делить на количество силовиков и очень желательно равномерное распределение протекающих токов по обмотке.
Ну с расчетами вроде разобрались, можно приступать к намотке. Если это отечественное кольцо, то его необходимо подготовить, а именно сточить острые углы, чтобы не повредить изоляцию обмоточного провода. Затем кольцо изолируется тонким изолятором – использовать для этих целей изоленту не желательно. Виниловая потечет от температуры, а матерчатая имеет слишком большую толщину. В идеале – фторопластовая лента, но ее в продаже уже встретишь не часто. Термосктч – материал не плохой, но мотать им не совсем удобно, хотя если приловчится, то результат будет весьма не плохой. Одно время использовал автомобильный антигравий – кисточкой просто покрасил, дал высохнуть, еще раз покрасил и так три слоя. Механические свойства не плохие, а не большое пробивное напряжения данной изоляции не скажется на работе – в нашем случае все напряжение не большие. Сначала мотается вторичная обмотка, поскольку она более тонкая и витков в ней больше. Затем мотается первичная обмотка. Обе обмотки наматывают сразу в двое сложенными жгутами – так очень трудно ошибиться с количеством витков, которое должно быть одинаковым. Жгуты вызваниваются и соединяются в необходимой последовательности.

Если звонить лень, или мало времени, то до намотки жгуты можно окрасить в разные цвета. Покупается по паре перманентных маркера разных цветов, содержимое их контейнеров для краски буквально вымывается растворителем и затем этой краской покрываются жгуты сразу после свивки. Краска держится не очень крепко, но даже обтершись с наружних проводов жгута ее все равно видно внутри жгута краску.
Закрепить моточные детали на плате можно довольно многим способами, а это нужно сделать не только с моточными деталями – высокие электролиты от постоянной тряски тоже могут расстаться со своими ногами. Поэтому все это приклеевается. Можно воспользоваться полиуритановым клеем, можно автомобильным греметиков, а можно все тем же антигравием. Прелесть последнего заключатся в том, что при необходимости что то демонтировать его можно расквасить – положить на него обильно намоченную растворителем 647 тряпку, сунуть это все в целлофановый пакет и выждать часов пять – шесть. Антигравий от паров растворителя размягчается и сравнительно легко удаляется.
На этом по автомобильным преобразователям все, переходим к сетевым.
Тем же, у кого есть не уемное желание поумничать, мол наговорил, а ни чего не собрал отвечу сразу – я вообще то делюсь своим опытом, а не хвастаюсь, что вот я мол собрал преобразователь и он работает. То, что мелькало в кадре это или не удачные варианты, не прошедшие финальных замеров, либо пошедшие на разборку прототипы. Я не занимаюсь изготовлением под заказ единичных аппаратов, а если и занимаюсь, то прежде всего лично мне это должно быть интересно либо схемотехнически, либо материально, но тут придется сильно заинтересить.

Каждому радиолюбителю, ремонтнику или просто мастеру необходим источник питания, чтобы питать свои схемы, тестировать их при помощи блока питания, либо же просто иногда необходимо зарядить аккумулятор. Случилось так, что и я увлекся этой темой некоторое время назад и мне так же стал необходим подобный девайс. Как обычно, по этому вопросу было перелопачено много страниц в интернете, следил за многими темами на форумах, но точно того, что было нужно мне в моем представлении не было нигде - тогда было решено все сделать самому, собрав всю необходимую информацию по частям. Таким образом родился на свет импульсный лабораторный блок питания на микросхеме TL494.

Что особенного – да вроде мало чего, но я поясню – переделывать родной блок питания компьютера все на той же печатной плате мне кажется не совсем по фен-шую, да и не красиво. С корпусом та же история – дырявая железяка просто не смотрится, хотя если есть фанаты такого стиля, ничего против не имею. Поэтому в основе данной конструкции лежат лишь основные детали от родного компьютерного блока питания, а вот печатная плата (точнее печатные платы – их на самом деле три) сделана уже отдельно и специально под корпус. Корпус здесь состоит также из двух частей – само собой основа корпус Kradex Z4A, а так же вентилятор (кулер), который вы можете видеть на фото. Он является как бы продолжением корпуса, но обо всем по порядку.

Схема блока питания:

Список деталей вы можете увидеть в конце статьи. А теперь коротко разберем схему импульсного лабораторного блока питания. Схема работает на микросхеме TL494, существует много аналогов, однако рекомендую все же использовать оригинальные микросхемы, стоят они совсем недорого, а работают надежно в отличие от китайских аналогов и подделок. Можно также разобрать несколько старых блоков питания от компьютеров и насобирать необходимых деталей от туда, но я рекомендую по возможности использовать все же новые детали и микросхемы – это повысит шанс на успех, так сказать. По причине того, что выходная мощность встроенных ключевых элементов TL494 не достаточная, чтобы управлять мощными транзисторами, работающих на основной импульсный трансформатор Tr2, строится схема управления силовыми транзисторами T3 и T4 с применением управляющего трансформатора Tr1. Данный трансформатор управления использован от старого блока питания компьютера без внесения изменений в состав обмоток. Трансформатор управления Tr1 раскачивается транзисторами T1 и T2.

Сигналы управляющего трансформатора через диоды D8 и D9 поступают на базы силовых транзисторов. Транзисторы T3 и T4 используются биполярные марки MJE13009, можно использовать транзисторы на меньший ток – MJE13007, но здесь все же лучше оставить на больший ток, чтобы повысить надежность и мощность схемы, хотя от короткого замыкания в высоковольтных цепях схемы это не спасет. Далее эти транзисторы раскачивают трансформатор Tr2, который преобразует выпрямленное напряжение 310 вольт от диодного моста VDS1 в необходимое нам (в данном случае 30 – 31 вольт). Данные по перемотке (или намотке с нуля) трансформатора чуть позже. Выходное напряжение снимается с вторичных обмоток этого трансформатора, к которым подключается выпрямитель и ряд фильтров, чтобы напряжение было максимально без пульсаций. Выпрямитель необходимо использовать на диодах Шоттки, чтобы минимизировать потери при выпрямлении и исключить большой нагрев этого элемента, по схеме используется сдвоенный диод Шоттки D15. Здесь также чем больше допустимый ток диодов, тем лучше. При неосторожности при первых запусках схемы большая вероятность испортить эти диоды и силовые транзисторы T3 и T4. В выходных фильтрах схемы стоит использовать электролитические конденсаторы с низким ЭПС (Low ESR). Дроссели L5 и L6 были использованы от старых блоков питания компьютеров (хотя как старых – просто неисправных, но достаточно новых и мощных, кажется 550 Вт). L6 использован без изменения обмотки, представляет собой цилиндр с десятком или около того витков толстого медного провода. L5 необходимо перемотать, так как в компьютере используется несколько уровней напряжения – нам нужно только одно напряжение, которое мы будем регулировать.

L5 представляет собой кольцо желтого цвета (не всякое кольцо пойдет, так как могут применяться ферриты с разными характеристиками, нам нужно именно желтого цвета). На это кольцо нужно намотать примерно 50 витков медного провода диаметром 1,5 мм. Резистор R34 гасящий – он разряжает конденсаторы, чтобы при регулировке не возникло ситуации долгого ожидания уменьшения напряжения при повороте ручки регулировки.

Наиболее подверженные нагреву элементы T3 и T4, а также D15 устанавливаются на радиаторы. В данной конструкции они были также взяты от старых блоков и отформатированы (отрезаны и изогнуты под размеры корпуса и печатной платы).

Схема является импульсной и может вносить в бытовую сеть собственные помехи, поэтому необходимо использовать синфазный дроссель L2. Чтобы отфильтровывать уже имеющиеся помехи сети используются фильтры с применением дросселей L3 и L4. Терморезистор NTC1 исключит скачок тока в момент включения схемы в розетку, старт схемы получится более мягкий.

Чтобы управлять напряжением и током, а также для работы микросхемы TL494 необходимо напряжение более низкого уровня, чем 310 вольт, поэтому используется отдельная схема питания для этого. Построена она на малогабаритном трансформаторе Tr3 BV EI 382 1189. С вторичной обмотки напряжение выпрямляется и сглаживается конденсатором – просто и сердито. Таким образом, получаем 12 вольт, необходимые для управляющей части схемы блока питания. Далее 12 вольт стабилизируются до 5 вольт при помощи микросхемы линейного стабилизатора 7805 – это напряжение используется для схемы индикации напряжения и тока. Также искусственно создается напряжение -5 вольт для питания операционного усилителя схемы индикации напряжения и тока. В принципе можно использовать любую доступную схему вольтметра и амперметра для данного блока питания и при отсутствии необходимости данный каскад стабилизации напряжения можно исключить. Как правило, используются схемы измерения и индикации, построенные на микроконтроллерах, которым необходимо питания порядка 3,3 – 5 вольта. Подключение амперметра и вольтметра указано на схеме.

На фото печатная плата с микроконтроллером - амперметр и вольтметр, к панели прикреплены на болтики, которые ввинчиваются в гайки, надежно приклеенные к пластмассе супер клеем. Данный индикатор имеет ограничение по измерению тока до 9,99 А, что явно маловато для данного блока питания. Кроме как функций индикации модуль измерения тока и напряжения больше никак не задействован относительно основной платы устройства. Функционально подойдет любой измерительный модуль на замену.

Схема регулировки напряжения и тока построена на четырех операционных усилителях (используется LM324 – четыре операционных усилителя в одном корпусе). Для питания этой микросхемы стоит использовать фильтр по питания на элементах L1 и C1, C2. Настройка схемы заключается в подборе элементов, помеченных звездочкой для задания диапазонов регулирования. Схема регулировки собрана на отдельной печатной плате. Кроме того, для более плавной регулировки по току можно использовать несколько переменных резисторов соединенных соответствующим образом.

Для задания частоты преобразователя необходимо подобрать номинал конденсатора C3 и номинал резистора R3. На схеме указана небольшая табличка с расчетными данными. Слишком большая частота может увеличить потери на силовых транзисторах при переключении, поэтому слишком увлекаться не стоит, оптимально, на мой взгляд, использовать частоту 70-80 кГц, а то и меньше.

Теперь о параметрах намотки или перемотки трансформатора Tr2. Основу я также использовал от старых блоков питания компьютера. Если большой ток и большое напряжения вам не нужны, то можно такой трансформатор не перематывать, а использовать готовый, соединив обмотки соответствующим образом. Однако если необходим больший ток и напряжение, то трансформатор необходимо перемотать, чтобы получить более лучший результат. Прежде всего придется разобрать сердечник, который у нас имеется. Это самый ответственный момент, так как ферриты достаточно хрупкие, а ломать их не стоит, иначе все на мусор. Итак, чтобы разобрать сердечник, его необходимо нагреть, так как для склеивания половинок обычно изготовитель использует эпоксидную смолу, которая при нагреве размягчается. Открытые источники огня использовать не стоит. Хорошо подойдет электронагревательное оборудование, в бытовых условиях – это, например электроплита. При нагреве аккуратно разъединяем половинки сердечника. После остывания снимаем все родные обмотки. Теперь нужно рассчитать необходимое количество витков первичной и вторичной обмоток трансформатора. Для этого можно использовать программу ExcellentIT(5000), в которой задаем необходимые нам параметры преобразователя и получаем расчет количества витков относительно используемого сердечника. Далее после намотки сердечник трансформатор необходимо обратно склеить, желательно также использовать высокопрочный клей или эпоксидную смолу. При покупке нового сердечника потребность в склейке может отсутствовать, так как часто половинки сердечника могут стягиваться металлическими скобами и болтиками. Обмотки необходимо наматывать плотно, чтобы исключить акустический шум при работе устройства. По желанию обмотки можно заливать какими-нибудь парафинами.

Печатные платы проектировались для корпуса Z4A. Сам корпус подвергается небольшим доработкам, чтобы обеспечить циркуляцию воздуха для охлаждения. Для этого по бокам и сзади сверлится несколько отверстий, а сверху прорезаем отверстие для вентилятора. Вентилятор дует вниз, лишний воздух уходит через отверстия. Можно вентилятор расположить и наоборот, чтоы он высасывал воздух из корпуса. По факту охлаждение вентилятором редко когда понадобится, к тому же даже при больших нагрузках элементы схемы сильно не греются.

Также подготавливаются лицевые панели. Индикаторы напряжения и тока используются с применением семисегментных индикаторов, а в качестве светофильтра для этих индикаторов используется металлизированная антистатическая пленка, наподобие той, в которую упаковывают радиоэлементы с пометкой чувствительности к электростатике. Можно также использовать полупрозрачную пленку, которую клеят на оконные стекла, либо тонирующую пленку для автомобилей. Набор элементов на лицевой панели спереди и сзади можно компоновать по любому вкусу. В моем случае сзади разъем для подключения к розетке, отсек предохранителя и выключатель. Спереди – индикаторы тока и напряжения, светодиоды индикации стабилизации тока (красный) и стабилизации напряжения (зеленый), ручки переменных резисторов для регулировки тока и напряжения и быстрозажимной разъем, к которому подключено выходное напряжение.

При правильной сборке блок питания нуждается только в подстройке диапазонов регулирования.

Защита по току (стабилизация по току) работает следующим образом: при превышении установленного тока на микросхему TL494 подается сигнал о снижении напряжения – чем меньше напряжение, тем меньше ток. При этом на лицевой панели загорается красный светодиод, сигнализирующий о превышении установленного тока, либо о коротком замыкании. В нормальном режиме стабилизации напряжения горит зеленый светодиод.

Основные характеристики импульсного лабораторного блока питания зависят в основном от применяемой элементной базы, в данном варианте характеристики следующие:

  • Входное напряжение – 220 вольт переменного тока
  • Выходное напряжение – от 0 до 30 вольт постоянного тока
  • Выходной ток составляет более 15 А (фактически тестированное значение)
  • Режим стабилизации напряжения
  • Режим стабилизации тока (защита от короткого замыкания)
  • Индикация обоих режимов светодиодами
  • Малые габариты и вес при большой мощности
  • Регулировка ограничения тока и напряжения

Подводя итог, можно отметить, что лабораторный блок питания получился достаточно качественный и мощный. Это позволяет использовать данный вариант блока питания как для тестирования каких-то своих схем, так и вплоть до зарядки автомобильных аккумуляторов. Стоит отметить также то, что емкости на выходе стоят достаточно большие, поэтому коротких замыканий лучше не допускать, так как разряд конденсаторов с большой вероятностью может вывести схему из строя (ту, к которой подключаемся), однако без этой емкости выходное напряжение будет хуже – возрастут пульсации. Это особенность именно импульсного блока, в аналоговых блока питания выходная емкость не превышает 10 мкФ как правило в силу своей схемотехники. Таким образом, получаем универсальный лабораторный импульсный блок питания способный работать в широком диапазоне нагрузок практически от нуля до десятков ампер и вольт. Блок питания прекрасно зарекомендовал себя как при питании небольших схем при тестировании (но тут защита от КЗ поможет мало из-за большой выходной емкости) с потреблением в миллиамперы, так и в применении в ситуациях, кода необходима большая выходная мощность за время моего скудного опыта в области электроники.

Этот лабораторный блок питания я сделал около 4 лет назад, когда только начинал делать первые шаги в электронике. До настоящего времени ни одной поломку с учетом того, что работал часто далеко за пределами 10 ампер (зарядка автомобильных аккумуляторов). При описании за счет давнего срока изготовления мог что-то упустить, вопросы, замечания складывайте в комментариях.

По для расчета трансформатора:

Прилагаю к статье печатные платы (вольтметр и амперметр сюда не входят - можно применять абсолютно любые).

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 ШИМ контроллер

TL494

1 В блокнот
IC2 Операционный усилитель

LM324

1 В блокнот
VR1 Линейный регулятор

L7805AB

1 В блокнот
VR2 Линейный регулятор

LM7905

1 В блокнот
T1, T2 Биполярный транзистор

C945

2 В блокнот
T3, T4 Биполярный транзистор

MJE13009

2 В блокнот
VDS2 Диодный мост MB105 1 В блокнот
VDS1 Диодный мост GBU1506 1 В блокнот
D3-D5, D8, D9 Выпрямительный диод

1N4148

5 В блокнот
D6, D7 Выпрямительный диод

FR107

2 В блокнот
D10, D11 Выпрямительный диод

FR207

2 В блокнот
D12, D13 Выпрямительный диод

FR104

2 В блокнот
D15 Диод Шоттки F20C20 1 В блокнот
L1 Дроссель 100 мкГн 1 В блокнот
L2 Синфазный дроссель 29 мГн 1 В блокнот
L3, L4 Дроссель 10 мкГн 2 В блокнот
L5 Дроссель 100 мкГн 1 на желтом кольце В блокнот
L6 Дроссель 8 мкГн 1 В блокнот
Tr1 Импульсный трансформатор EE16 1 В блокнот
Tr2 Импульсный трансформатор EE28 - EE33 1 ER35 В блокнот
Tr3 Трансформатор BV EI 382 1189 1 В блокнот
F1 Предохранитель 5 А 1 В блокнот
NTC1 Терморезистор 5.1 Ом 1 В блокнот
VDR1 Варистор 250 В 1 В блокнот
R1, R9, R12, R14 Резистор

2.2 кОм

4 В блокнот
R2, R4, R5, R15, R16, R21 Резистор

4.7 кОм

6 В блокнот
R3 Резистор

5.6 кОм

1 подбирать исходя из необходимой частоты В блокнот
R6, R7 Резистор

510 кОм

2 В блокнот
R8 Резистор

1 МОм

1 В блокнот
R13 Резистор

1.5 кОм

1 В блокнот
R17, R24 Резистор

22 кОм

2 В блокнот
R18 Резистор

1 кОм

1 В блокнот
R19, R20 Резистор

22 Ом

2 В блокнот
R22, R23 Резистор

1.8 кОм

2 В блокнот
R27, R28 Резистор

2.2 Ом

2 В блокнот
R29, R30 Резистор

470 кОм

2 1-2 Вт В блокнот
R31 Резистор

100 Ом

1 1-2 Вт В блокнот
R32, R33 Резистор

15 Ом

2 В блокнот
R34 Резистор

1 кОм

1 1-2 Вт В блокнот
R10, R11 Переменный резистор 10 кОм 2 можно 3 или 4 использовать В блокнот
R25, R26 Резистор

0.1 Ом

2 шунты, мощность зависит от выходной мощности БП В блокнот
C1, C8, C27, C28, C30, C31 Конденсатор 0.1 мкФ 7 В блокнот
C2, C9, C22, C25, C26, C34, C35 Электролитический конденсатор 47 мкФ 7 В блокнот
C3 Конденсатор 1 нФ 1 пленочный