Вещества в которых содержится углерод. Срочно!!! химические свойства углерода

1. Во всех органических соединениях атом углерода имеет валентность равную 4.

2. Углерод способен образовывать простые и очень сложные молекулы (высокомолекулярные соединения: белки, каучуки, пластмассы).

3. Атомы углерода соединяются не только с другими атомами, но и друг с другом, образуя различные углерод - углеродные цепи - прямые, разветвленные, замкнутые:


4. Для соединений углерода характерно явление изомерии, т.е. когда вещества имеют один и тот же качественный и количественный состав, но различное химическое строение, а следовательно, различные свойства. Например: эмпирической формуле С 2 Н 6 О соответствуют два различных строений веществ:

этиловый спирт, диметиловый эфир,

жидкость, t 0 кип. = +78 0 С газ, t 0 кип. = -23,7 0 С

Следовательно, этиловый спирт и диметиловый эфир – изомеры.

5. Водные растворы большинства органических веществ – неэлектролиты, молекулы их не распадаются на ионы.

Изомерия.

В 1823 г. было открыто явление изомерии – существование веществ с одинаковым составом молекул, но обладающих различными свойствами. В чем причина различия изомеров? Поскольку состав их одинаков, то причину можно искать только в разном порядке соединения атомов в молекуле.

Еще до создания теории химического строения А.М. Бутлеров предсказал, что для бутана С 4 Н 10 , имеющего линейное строение СН 3 – СН 2 – СН 2 – СН 3 t 0 (кип. -0,5 0 С) возможно существование другого вещества с той же молекулярной формулой, но с иной последовательностью соединения углеродных атомов в молекуле:

изобутан

t 0 кип. – 11,7 0 С

Итак, изомеры – это вещества, которые имеют одинаковую молекулярную формулу, но различное химическое строение, а следовательно и разные свойства. Существует два основных типа изомерии – структурная и пространственная.

Структурными называют изомеры, имеющие различный порядок соединения атомов в молекуле. Различают три вида ее:

Изомерия углеродного скелета:

С – С – С – С – С С – С – С – С

Изомерия кратной связи:

С = С – С – С С – С = С – С

- межклассовая изомерия:


пропионовая кислота

Пространственная изомерия. Пространственные изомеры имеют одинаковые заместители у каждого атома углерода. Но отличаются их взаимным расположением в пространстве. Различают два типа этой изомерии: геометрическую и оптическую. Геометрическая изомерия характерна для соединений, имеющих плоскостное строение молекул (алкенов, циклоалканов, алкадиенов и др.). Если одинаковые заместители у атомов углерода, например, при двойной связи находятся по одну сторону плоскости молекулы, то это будет цис-изомер, по разные стороны – транс-изомер:




Оптическая изомерия – характерна для соединений, имеющих асимметрический атом углерода, который связан с четырьмя различными заместителями. Оптические изомеры являются зеркальным изображением друг друга. Например:


Электронное строение атома.

Строение атома изучается в неорганической химии и физике. Известно, что атом определяет свойства химического элемента. Атом состоит из положительно заряженного ядра, в котором сосредоточена вся его масса, и отрицательно заряженных электронов, окружающих ядро.

Так как в процессе химических реакций ядра реагирующих атомов не изменяются, то физические и химические свойства атомов зависят от строения электронных оболочек атомов. Электроны могут уходить от одних атомов к другим, могут объединяться и т.д. Поэтому мы подробно рассмотрим вопрос о распределении электронов в атоме на основе квантовой теории строения атомов. Согласно этой теории электрон одновременно обладает свойствами частицы (массой, зарядом) и волновой функцией. Для движущихся электронов невозможно определить точное местонахождение. Они находятся в пространстве вблизи атомного ядра. Можно определить вероятность нахождения электрона в различных частях пространства. Электрон как бы «размазан» в этом пространстве в виде некоторого облака (рисунок 1), плотность которого убывает.

Рисунок 1.

Область пространства, в которой вероятность нахождения электрона максимальна (≈ 95%) называется орбиталью .



Согласно квантовой механике состояние электрона в атоме определяется четырьмя квантовыми числами: главным (n), орбитальным (l) , магнитным (m) и спиновым (s).

Главное квантовое число n – характеризует энергию электрона, расстояние орбитали от ядра, т.е. энергетический уровень и принимает значения 1, 2, 3 и т.д. или K, L, M, N и т.д. Значение n = 1 соответствует наименьшей энергии. С увеличением n энергия электрона возрастает. Максимальное число электронов, находящихся на энергетическом уровне, определяется по формуле: N = 2n 2 , где n – номер уровня, следовательно, при:

n = 1 N = 2 n = 3 N = 18

n = 2 N = 8 n = 4 N = 32 и т.д.

В пределах энергетических уровней электроны располагаются по подуровням (или подоболочкам). Число их соответствует номеру энергетического уровня, но характеризуются они орбитальным квантовым числом l, которое определяет форму орбитали. Оно принимает значения от 0 до n-1. При

n = 1 l = 0 n = 2 l = 0, 1 n = 3 l = 0, 1, 2 n = 4 l = 0, 1, 2, 3

Максимальное число электронов на подуровне определяется по формуле: 2(2l + 1). Для подуровней принимают буквенные обозначения:

l = 1, 2, 3, 4

Следовательно, если n = 1, l = 0, подуровень s.

n = 2, l = 0, 1, подуровень s, p.

Максимальное количество электронов на подуровнях:

N s = 2 N d = 10

N p = 6 N f = 14 и т.д.

Больше этих количеств электронов на подуровнях быть не может. Форму электронного облака определяет значение l . При
l = 0 (s-орбиталь) электронное облако имеет сферическую форму и не имеет пространственную направленность.

Рисунок 2.

При l = 1 (p-орбиталь) электронное облако имеет форму гантели или форму «восьмерки»:

Рисунок 3.

Магнитное квантовое число m характеризует
расположение орбиталей в пространстве. Оно может принимать значения любых чисел от –l до +l, включая 0. Число возможных значений магнитного квантового числа при данном значении l равно (2l + 1). Например:

l = 0 (s-орбиталь) m = 0, т.е. s-орбиталь имеет только одно положение в пространстве.

l = 1 (p-орбиталь) m = -1, 0, +1 (3 значения).

l = 2 (d-орбиталь) m = -2, -1, 0, +1, +2 и т.д.

p и d-орбитали имеют соответственно 3 и 5 состояний.

Орбитали p вытянуты по координатным осям и их обозначают р x , p y , p z -орбитали.

Спиновое квантовое число s - характеризует вращение электрона вокруг собственной оси по часовой стрелке и против нее. Оно может иметь только два значения +1/2 и -1/2. Строение электронной оболочки атома изображается электронной формулой, которая показывает распределение электронов по энергетическим уровням и подуровням. В этих формулах энергетические уровни обозначаются цифрами 1, 2, 3, 4…, подуровни – буквами s, p, d, f. Число электронов на подуровне записывается степенью. Например: максимальное число электронов на s 2 , p 6 , d 10 , f 14 .

Электронные формулы часто изображают графически, которые показывают распределение электронов не только по уровням и подуровням, но и по орбиталям, обозначаемым прямоугольником. Подуровни делятся на квантовые ячейки.

Свободная квантовая ячейка

Ячейка с неспаренным электроном

Ячейка со спаренными электронами

На s-подуровне одна квантовая ячейка.

На p-подуровне 3 квантовых ячейки.

На d-подуровне 5 квантовых ячеек.

На f-подуровне 7 квантовых ячеек.

Распределение электронов в атомах определяется принципом Паули и правилом Гунда . Согласно принципа Паули: в атоме не может быть электронов с одинаковыми значениями всех четырех квантовых чисел. В соответствии с принципом Паули в энергетической ячейке может быть один, максимально два электрона с противоположными спинами. Заполнение ячеек происходит по принципу Гунда, согласно которому электроны располагаются сначала по одному в каждой отдельной ячейке, затем, когда все ячейки данного подуровня окажутся занятыми, начинается спаривание электронов.

Последовательность заполнения атомных электронных орбиталей определена правилами В. Клечковскогов зависимости от суммы (n + l ):

вначале заполняются те подуровни, у которых эта сумма меньшая;

при одинаковых значениях суммы (n + l ) вначале идет заполнение подуровня с меньшим значением n .

Например:

а) рассмотрим заполнение подуровней 3d и 4s. Определим сумму (n + l ):

у 3d (n + l ) = 3 + 2 = 5, у 4s (n + l ) = 4 + 0 = 4, следовательно сначала заполняется 4s, а затем 3d подуровень.

б) у подуровней 3d, 4p, 5s сумма значений (n + l ) = 5. В соответствии с правилом Клечковского заполнение начинается с меньшим значением n, т.е. 3d → 4p → 5s. Заполнение электронами энергетических уровней и подуровней атомов происходит в следующей последовательности:валентность n = 2 n = 1

У Be спаренная пара электронов на 2s 2 подуровне. Для подведения энергии извне эту пару электронов можно разъединить и сделать атом валентным. При этом происходит переход электрона с одного подуровня на другой подуровень. Этот процесс называется возбуждением электрона. Графическая формула Be в возбужденном состоянии будет иметь вид:


и валентность равна 2.

Характеристика элемента

6 С 1s 2 2s 2 2p 2



Изотопы: 12 С (98,892 %); 13 С (1,108%); 14 С (радиоактивный)



Кларк в земной коре 0,48 % по массе. Формы нахождения:


в свободном виде (каменный уголь, алмазы);


в составе карбонатов (СаСO 3 , МgСO 3 и др.);


в составе горючих ископаемых (уголь, нефть, газ);


в виде СO 2 - в атмосфере (0,03 % по объему);


в Мировом океане - в виде анионов НСO 3 - ;


в составе живой материи (-18 % углерода).


Химия соединений углерода - это, в основном, органическая химия. В курсе неорганической химии изучаются следующие С-содержащие вещества: свободный углерод, оксиды (СО и СO 2), угольная кислота, карбонаты и гидрокарбонаты.

Свободный углерод. Аллотропия.

В свободном состоянии углерод образует 3 аллотропные модификации: алмаз, графит и искусственно получаемый карбин. Эти видоизменения углерода различаются кристаллохимическим строением и физическими характеристиками.

Алмаз

В кристалле алмаза каждый атом углерода связан прочными ковалентными связями с четырьмя другими, размещенными вокруг него на одинаковых расстояниях.


Все атомы углерода находятся в состоянии sp 3 -гибридизации. Атомная кристаллическая решетка алмаза имеет тетраэдрическое строение.


Алмаз - бесцветное, прозрачное, сильно преломляющее свет вещество. Отличается самой большой твердостью среди всех известных веществ. Алмаз хрупкий, тугоплавкий, плохо проводит тепло и электрический ток. Небольшие расстояния между соседними атомами углерода (0,154 нм) обусловливают довольно большую плотность алмаза (3,5 г/см 3).

Графит

В кристаллической решетке графита каждый атом углерода находится в состоянии sp 2 -гибридизации и образует три прочные ковалентные связи с атомами углерода, расположенными в том же слое. В образовании этих связей участвуют по три электрона каждого атома, углерода, а четвертые валентные электроны образуют л-связи и являются относительно свободными (подвижными). Они обусловливают электро- и теплопроводность графита.


Длина ковалентной связи между соседними атомами углерода в одной плоскости равна 0,152 нм, а расстояние между атомами С в различных слоях больше в 2,5 раза, поэтому связи между ними слабые.


Графит - непрозрачное, мягкое, жирное на ощупь вещество серо-черного цвета с металлическим блеском; хорошо проводит тепло и электрический ток. Графит имеет меньшую плотность по сравнению с алмазом, легко расщепляется на тонкие чешуйки.


Разупорядоченная структура мелкокристаллического графита лежит в основе строения различных форм аморфного углерода, важнейшими из которых являются кокс, бурые и каменные угли, сажа, активированный (активный) уголь.

Карбин

Эту аллотропную модификацию углерода получают каталитическим окислением (дегидрополиконденсацией) ацетилена. Карбин - цепочечный полимер, имеющий две формы:


С=С-С=С-... и...=С=С=С=


Карбин обладает полупроводниковыми свойствами.

Химические свойства углерода

При обычной температуре обе модификации углерода (алмаз и графит) химически инертны. Мелкокристаллические формы графита - кокс, сажа, активированный уголь - более реакционноспособны, но, как правило, после их предварительного нагревания до высокой температуры.

С - активный восстановитель:

1. Взаимодействие с кислородом


С + O 2 = СO 2 + 393,5 кДж (в избытке O 2)


2С + O 2 = 2СО + 221 кДж (при недостатке O 2)


Сжигание угля - один из важнейших источников энергии.


2. Взаимодействие с фтором и серой.


С + 2F 2 = CF 4 тетрафторид углерода


С + 2S = CS 2 сероуглерод


3. Кокс - один из важнейших восстановителей, используемых в промышленности. В металлургии с его помощью получают металлы из оксидов, например:


ЗС + Fe 2 O 3 = 2Fe + ЗСО


С + ZnO = Zn + СО


4. При взаимодействии углерода с оксидами щелочных и щелочноземельных металлов восстановленный металл, соединяясь с углеродом, образует карбид. Например: ЗС + СаО = СаС 2 + СО карбид кальция


5. Кокс применяется также для получения кремния:


2С + SiO 2 = Si + 2СО


6. При избытке кокса образуется карбид кремния (карборунд) SiC.


Получение «водяного газа» (газификация твердого топлива)


Пропусканием водяного пара через раскаленный уголь получают горючую смесь СО и Н 2 , называемую водяным газом:


С + Н 2 О = СО + Н 2


7. Реакции с окисляющими кислотами.


Активированный или древесный уголь при нагревании восстанавливает анионы NO 3 - и SO 4 2- из концентрированных кислот:


С + 4HNO 3 = СO 2 + 4NO 2 + 2Н 2 О


С + 2H 2 SO 4 = СO 2 + 2SO 2 + 2Н 2 О


8. Реакции с расплавленными нитратами щелочных металлов


В расплавах KNO 3 и NaNO 3 измельченный уголь интенсивно сгорает с образованием ослепительного пламени:


5С + 4KNO 3 = 2К 2 СO 3 + ЗСO 2 + 2N 2

С - малоактивный окислитель:

1. Образование солеобразных карбидов с активными металлами.


Значительное ослабление неметаллических свойств у углерода выражается в том, что функции его как окислителя проявляются в гораздо меньшей степени, чем восстановительные функции.


2. Только в реакциях с активными металлами атомы углерода переходят в отрицательно заряженные ионы С -4 и (С=С) 2- , образуя солеобразные карбиды:


ЗС + 4Al = Аl 4 С 3 карбид алюминия


2С + Са = СаС 2 карбид кальция


3. Карбиды ионного типа - очень нестойкие соединения, они легко разлагаются под действием кислот и воды, что свидетельствует о неустойчивости отрицательно заряженных анионов углерода:


Аl 4 С 3 + 12Н 2 О = ЗСН 4 + 4Аl(ОН) 3


СаС 2 + 2Н 2 О = С 2 Н 2 + Са(ОН) 2


4. Образование ковалентных соединений с металлами


В расплавах смесей углерода с переходными металлами образуются карбиды преимущественно с ковалентный типом связи. Молекулы их имеют переменный состав, а вещества в целом близки к сплавам. Такие карбиды отличаются высокой устойчивостью, они химически инертны по отношению к воде, кислотам, щелочам и многим другим реагентам.


5. Взаимодействие с водородом


При высоких Т и Р, в присутствии никелевого катализатора, углерод соединяется с водородом:


С + 2НН 2 → СНН 4


Реакция очень обратима и не имеет практического значения.

Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.

Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа .

Атом углерода имеет 6 электронов: 1s 2 2s 2 2p 2 . Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2р х, а другой, либо 2р у , либо 2р z -орбитали.

Различие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1s 2 2s 1 2p x 1 2p y 1 2p z 1 . Именно такое состояние атома углерода характерно для решетки алмаза — тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.

Это явление, как известно, называют sp 3 -гибридизацией, а возникающие функции – sp 3 -гибридными. Образование четырех sp 3 -cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р-р- и одна s-s-связи. Помимо sp 3 -гибридизации у атома углерода наблюдается также sp 2 — и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp 2 — гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу. Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp 2 .


При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.

Аллотрорпия углерода. Алмаз и графит

В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp 2 -гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил. Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода. Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества .

Химические свойства углерода

Наиболее характерные степени окисления: +4, +2.

При низких температурах углерод инертен, но при нагревании его активность возрастает.

Углерод как восстановитель:

— с кислородом
C 0 + O 2 – t° = CO 2 углекислый газ
при недостатке кислорода — неполное сгорание:
2C 0 + O 2 – t° = 2C +2 O угарный газ

— со фтором
С + 2F 2 = CF 4

— с водяным паром
C 0 + H 2 O – 1200° = С +2 O + H 2 водяной газ

— с оксидами металлов. Таким образом выплавляют металл из руды.
C 0 + 2CuO – t° = 2Cu + C +4 O 2

— с кислотами – окислителями:
C 0 + 2H 2 SO 4 (конц.) = С +4 O 2 ­ + 2SO 2 ­ + 2H 2 O
С 0 + 4HNO 3 (конц.) = С +4 O 2 ­ + 4NO 2 ­ + 2H 2 O

— с серой образует сероуглерод:
С + 2S 2 = СS 2 .

Углерод как окислитель:

— с некоторыми металлами образует карбиды

4Al + 3C 0 = Al 4 C 3

Ca + 2C 0 = CaC 2 -4

— с водородом — метан (а также огромное количество органических соединений)

C 0 + 2H 2 = CH 4

— с кремнием, образует карборунд (при 2000 °C в электропечи):

Нахождение углерода в природе

Ссвободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО 3 , доломита – MgCO 3 *CaCO 3 ; гидрокарбонатов – Mg(НCO 3) 2 и Са(НCO 3) 2 , СО 2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

Неорганические соединения углерода

Ни ионы С 4+ , ни С 4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.

Оксид углерода (II) СО

Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.

Получение
1) В промышленности (в газогенераторах):
C + O 2 = CO 2

2) В лаборатории — термическим разложением муравьиной или щавелевой кислоты в присутствии H 2 SO 4 (конц.):
HCOOH = H 2 O + CO­

H 2 C 2 O 4 = CO­ + CO 2 ­ + H 2 O

Химические свойства

При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.

1) с кислородом

2C +2 O + O 2 = 2C +4 O 2

2) с оксидами металлов

C +2 O + CuO = Сu + C +4 O 2

3) с хлором (на свету)

CO + Cl 2 – hn = COCl 2 (фосген)

4) реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (формиат натрия)

5) с переходными металлами образует карбонилы

Ni + 4CO – t° = Ni(CO) 4

Fe + 5CO – t° = Fe(CO) 5

Оксид углерода (IV) СO 2

Углекислый газ, бесцветный, без запаха, растворимость в воде — в 1V H 2 O растворяется 0,9V CO 2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO 2 называется «сухой лёд»); не поддерживает горение.

Получение

  1. Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:

CaCO 3 – t° = CaO + CO 2

  1. Действием сильных кислот на карбонаты и гидрокарбонаты:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 ­

NaHCO 3 + HCl = NaCl + H 2 O + CO 2 ­

Химические свойства СO 2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты

Na 2 O + CO 2 = Na 2 CO 3

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

NaOH + CO 2 = NaHCO 3

При повышенной температуре может проявлять окислительные свойства

С +4 O 2 + 2Mg – t° = 2Mg +2 O + C 0

Качественная реакция

Помутнение известковой воды:

Ca(OH) 2 + CO 2 = CaCO 3 ¯(белый осадок) + H 2 O

Оно исчезает при длительном пропускании CO 2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

CaCO 3 + H 2 O + CO 2 = Сa(HCO 3) 2

Угольная кислота и её соли

H 2 CO 3 — Кислота слабая, существует только в водном растворе:

CO 2 + H 2 O ↔ H 2 CO 3

Двухосновная:
H 2 CO 3 ↔ H + + HCO 3 — Кислые соли — бикарбонаты, гидрокарбонаты
HCO 3 — ↔ H + + CO 3 2- Cредние соли — карбонаты

Характерны все свойства кислот.

Карбонаты и гидрокарбонаты могут превращаться друг в друга:

2NaHCO 3 – t° = Na 2 CO 3 + H 2 O + CO 2 ­

Na 2 CO 3 + H 2 O + CO 2 = 2NaHCO 3

Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:

CuCO 3 – t° = CuO + CO 2 ­

Качественная реакция — «вскипание» при действии сильной кислоты:

Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2 ­

CO 3 2- + 2H + = H 2 O + CO 2 ­

Карбиды

Карбид кальция:

CaO + 3 C = CaC 2 + CO

CaC 2 + 2 H 2 O = Ca(OH) 2 + C 2 H 2 .

Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:

2 LaC 2 + 6 H 2 O = 2La(OH) 3 + 2 C 2 H 2 + H 2 .

Be 2 C и Al 4 C 3 разлагаются водой с образованием метана:

Al 4 C 3 + 12 H 2 O = 4 Al(OH) 3 = 3 CH 4 .

В технике применяют карбиды титана TiC, вольфрама W 2 C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).

Цианиды

получают при нагревании соды в атмосфере аммиака и угарного газа:

Na 2 CO 3 + 2 NH 3 + 3 CO = 2 NaCN + 2 H 2 O + H 2 + 2 CO 2

Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:

C= O: [:C= N:] –

Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:

2 Au + 4 KCN + H 2 O + 0,5 O 2 = 2 K + 2 KOH.

При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды :
KCN + S = KSCN.

При нагревании цианидов малоактивных металлов получается дициан: Hg(CN) 2 = Hg + (CN) 2 . Растворы цианидов окисляются до цианатов :

2 KCN + O 2 = 2 KOCN.

Циановая кислота существует в двух формах:

H-N=C=O; H-O-C= N:

В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH 4 OCN = CO(NH 2) 2 при упаривании водного раствора.

Это событие обычно рассматривается как победа синтетической химии над «виталистической теорией».

Существует изомер циановой кислоты – гремучая кислота

H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC) 2) используются в ударных воспламенителях.

Синтез мочевины (карбамида):

CO 2 + 2 NH 3 = CO(NH 2) 2 + H 2 O. При 130 0 С и 100 атм.

Мочевина является амидом угольной кислоты, существует и ее «азотный аналог» – гуанидин.

Карбонаты

Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H 2 CO 3 – слабая кислота (К 1 =1,3·10 -4 ; К 2 =5·10 -11). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:

H 2 CO 3 ↔ H + + HCO 3 — .

При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO 2 + H 2 O ↔ H 2 CO 3 .

При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:

H + + CO 3 2- ↔ HCO 3 —

CaCO 3 (тв.) ↔ Ca 2+ + CO 3 2-

Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует «парниковому эффекту» – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na 2 CO 3) используется в производстве стекла.


Углерод является шестым элементом периодической системы Менделеева. Его атомный вес равен 12.


Углерод находится во втором периоде системы Менделеева и в четвёртой группе этой системы.


Номер периода сообщает нам, что шесть электронов углерода располагаются на двух энергетических уровнях.


А четвёртый номер группы говорит, что на внешнем энергетическом уровне у углерода находится четыре электрона. Два из них это спаренные s -электроны, а два другие – не спаренные р -электроны.


Структура внешнего электронного слоя атома углерода может быть выражена следующими схемами:

Каждая ячейка вэтих схемах означает отдельную электронную орбиталь, стрелка – элетрон, находящийся на орбитали. Две стрелки внутри одной ячейки – это два электрона, находящиеся на одной орбитали, но имеющие противоположно направленные спины.


При возбуждении атома (при сообщени ему энергии) один из спаренных S -электронов занимает р -орбиталь.


Возбуждённый атом углерода может учавствовать в образовании четырёх ковалентных связей. Поэтому в подавляющем большинстве своих соединений углерод проявляет валентность, равную четырем.


Так, простейшее органическое соединение углеводород метан имеет состав СН 4 . Строение его может быть выражено структурной или электронной формулами:



Электронная формула показывает, что атом углерода в молекуле метана имеет устойчивую восьмиэлектронную внешнюю оболочку, а атомы водорода – устойчивую двухэлектронную оболочку.


Все четыре ковалентных связи углерода в метане (и в других подобных соединениях) равноценны и симметрично направлены в пространстве. Атом углерода находится как бы в центре тетраэдра (правильной четырёхугольной пирамиды), а четыре соединённых с ним атома (в случае метана – четыре атома водорода) в вершинах тетраэдра.



Углы между направлениями любой пары связей одинаковы и составляют 109 градусов 28 минут.


Это объясняется тем, что в атоме углерода, когда он образует ковалентные связи с четырьмя другими атомами, из одной s - и трёх p -орбиталей в результате sp 3 -гибридизации образуются чтыре симметрично расположенные в пространстве гибридные sp 3 -орбитали, вытянутые в направлении к вершинам тетраэдра.

Особенность свойств углерода.

Количество электронов на внешнем энергетическом уровне является главным фактором, определяющим химические свойства элемента.


В левой части периодической системы расположены элементы с малозаполненным внешним электронным уровнем. У элементов первой группы на внешнем уровне один электрон, у элементов второй группы – два.


Элементы этих двух групп являются металлами . Они легко окисляются, т.е. теряют свои внешние электроны ипревращаются в положительные ионы.


В правой части периодической системы, наоборот, находятся неметаллы (окислители) . В сравнении с металлами они обладают ядром с большим числом протонов. Такое массивное ядро обеспечивает гораздо более сильное притяжение своего электронного облака.


Такие элементы с большим трудом теряют свои электроны, зато непрочь присоединить к себе дополнительные электроны других атомов, т.е. окислить их, а самим, при этом, превратиться в отрицательный ион.


Металлические свойства элементов по мере возрастания номера группы в периодической системе ослабляются, а их способность окислять другие элементы увеличивается.


Углерод находится в четвёртой группе, т.е. как раз посередине между металлами, легко отдающими электроны, и неметаллами, легко эти электроны присоединяющими.


По этой причине углерод не обладает ярко выраженной склонности отдавать или присоединять электроны .

Углеродные цепи.

Исключительным свойством углерода, обуславливающим многообразие органических соединений, является способность его атомов соединяться прочными ковалентными связями друг с другом, образуя углеродные схемы практически неограниченной длины.


Кроме углерода, цепи из одинаковых атомов образует его аналог из IV группы – кремний. Однако такие цепи содержат не более шести атомов Si. Известны длинные цепи из атомов серы, но содержащие их соединения непрочны.


Валентности атомов углерода, не задействованные для взаимного соединения, используются на присоединение других атомов или групп (в углеводородах – для присоединения водорода).


Так углеводороды этан (С 2 Н 6 ) и пропан (С 3 Н 8 ) содержат цепи соответственно из двух и трёх атомов углерода. Строение их выражают следующие структурные и электронные формулы:



Известны соединения, содержащие в цепях сотни и более атомов углерода.


Вследствии тетраэдрической направленности связей углерода, его атомы, входящие в цепь, располагаются не на прямой, а зигзагообразно. Причём, благодаря возможности вращения атомов вокруг оси связи, цепь в пространстве может принимать различные формы (конформации):

Такая структура цепей даёт возможность сближаться концевым или другим не смежным атомам углерода. В результате возникновения связи между этими атомами углеродные цепи могут замыкаться в кольца (циклы), например:



Таким образом, многообразие органических соединений определяется и тем, что при одинаковом числе атомов углерода в молекуле возможны соединения с открытой незамкнутой цепью углеродных атомов, а также вещества, молекулы которых содержат циклы.

Простые и кратные связи.

Ковалентные связи между атомами углерода, образованные одной парой обобщённых электронов, называются простыми связями.



Связь между атомами углерода может осуществляться не одной, а двумя или тремя общими парами электронов. Тогда получаются цепи с кратными – двойными или тройными связями. Эти связи можно изобразить следующим образом:



Простейшие соединения, содержащие кратные связи – углеводороды этилен (с двойной связью) и ацетилен (с тройной связью):



Углеводороды с кратными связями называются непредельными или ненасыщенными. Этилен и ацетилен – первые представители двух гомологических рядов – этиленовых и ацетиленовых углеводородов.