Абсолютно чёрное тело. Абсолютно черное тело – проблема ньютоновской физики

Абсолютно чёрное тело

Абсолютно чёрное тело - физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (то есть имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце.

Термин был введён Густавом Кирхгофом в 1862 году.

Практическая модель

Модель абсолютно чёрного тела

Абсолютно чёрных тел в природе не существует (кроме чёрных дыр), поэтому в физике для экспериментов используется модель. Она представляет собой замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение. Поскольку излучение, испущенное внутренними стенками полости, прежде, чем выйдет (ведь отверстие очень мало), в подавляющей доле случаев претерпит огромное количество новых поглощений и излучений, то можно с уверенностью сказать, что излучение внутри полости находится в термодинамическом равновесии со стенками. (На самом деле, отверстие для этой модели вообще не важно, оно нужно только чтобы подчеркнуть принципиальную наблюдаемость излучения, находящегося внутри; отверстие можно, например, совсем закрыть, и быстро приоткрыть только тогда, когда равновесие уже установилось и проводится измерение).

Законы излучения абсолютно чёрного тела

Классический подход

Изначально к решению проблемы были применены чисто классические методы, которые дали ряд важных и верных результатов, однако полностью решить проблему не позволили, приведя в конечном итоге не только к резкому расхождению с экспериментом, но и к внутреннему противоречию - так называемой ультрафиолетовой катастрофе .

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики.

Первый закон излучения Вина

В 1893 году Вильгельм Вин, воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу:

где u ν - плотность энергии излучения,

ν - частота излучения,

T - температура излучающего тела,

f - функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана - Больцмана, но нельзя найти значения постоянных, входящих в эти законы.

Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином «закон смещения Вина» называют закон максимума.

Второй закон излучения Вина

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

где C 1 , C 2 - константы. Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C 1 и C 2 . С учётом этого, второй закон Вина можно записать в виде:

где h - постоянная Планка,

k - постоянная Больцмана,

c - скорость света в вакууме.

Закон Рэлея - Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея - Джинса:

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.

Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой Рэлея - Джинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Зависимость мощности излучения чёрного тела от длины волны.

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка :

где -мощность излучения на единицу площади излучающей поверхности в единичном интервале частот в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с −1 ·м −2 ·Гц −1 ·ср −1).

Эквивалентно,

где - мощность излучения на единицу площади излучающей поверхности в единичном интервале длин волн в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с −1 ·м −2 ·м −1 ·ср −1).

Полная (т.е. испускаемая во всех направлениях) спектральная мощность излучения с единицы поверхности абсолютно чёрного тела описывается этими же формулами с точностью до коэффициента π: ε(ν, T ) = πI (ν, T ), ε(λ, T ) = πu (λ, T ).

Закон Стефана - Больцмана

Общая энергия теплового излучения определяется законом Стефана - Больцмана, который гласит:

Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:

где - мощность на единицу площади излучающей поверхности, а

Вт/(м²·К 4) - постоянная Стефана - Больцмана .

Таким образом, абсолютно чёрное тело при = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Для нечёрных тел можно приближённо записать:

где - степень черноты (для всех веществ, для абсолютно чёрного тела).

Константу Стефана - Больцмана можно теоретически вычислить только из квантовых соображений, воспользовавшись формулой Планка. В то же время общий вид формулы может быть получен из классических соображений (что не снимает проблемыультрафиолетовой катастрофы).

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

где - температура вкельвинах, а - длина волны с максимальной интенсивностью вметрах.

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна егодавление равно Очень близко по своим свойствам к чернотельному так называемоереликтовое излучение, или космический микроволновой фон - заполняющее Вселеннуюизлучение с температурой около 3 К.

Цветность чернотельного излучения

Цвета даны в сравнении с рассеянным дневным светом. Реально воспринимаемый цвет может быть искажён адаптацией глаза к условиям освещения.

Закон излучения Кирхгофа

Закон излучения Кирхгофа ­– физический закон, установленный немецким физиком Кирхгофом в 1859 году.

В современной формулировке закон звучит следующим образом:

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое телоизлучает энергию по некоторому закону , именуемымизлучательной способностью тела .

Величины имогут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него . Поэтому функциясовпадает с излучательной способностью абсолютно чёрного тела, описываемойзаконом Стефана - Больцмана, вследствие чего излучательная способность любого тела может быть найдена исходя лишь из его поглощательной способности.

Реальные тела имеют поглощательную способность меньше единицы, а значит, и меньшую чем у абсолютно чёрного тела излучательную способность. Тела, поглощательная способность которых не зависит от частоты, называются серыми. Их спектр имеет такой же вид, как и у абсолютно чёрного тела. В общем же случае поглощательная способность тел зависит от частоты и температуры, и их спектр может существенно отличаться от спектра абсолютно чёрного тела. Изучение излучательной способности разных поверхностей впервые было проведено шотландским ученым Лесли при помощи его же изобретения - куба Лесли.

Во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь . Спектр излучения абсолютно чёрного тела определяется только его температурой .

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).

Наиболее чёрные реальные вещества, например, сажа , поглощают до 99 % падающего излучения (то есть имеют альбедо , равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце .

Практическая модель

Модель абсолютно чёрного тела

Абсолютно чёрных тел в природе не существует (кроме чёрных дыр), поэтому в физике для экспериментов используется модель. Она представляет собой замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение. Поскольку излучение, испущенное внутренними стенками полости, прежде, чем выйдет (ведь отверстие очень мало), в подавляющей доле случаев претерпит огромное количество новых поглощений и излучений, то можно с уверенностью сказать, что излучение внутри полости находится в термодинамическом равновесии со стенками. (На самом деле, отверстие для этой модели вообще не важно, оно нужно только чтобы подчеркнуть принципиальную наблюдаемость излучения, находящегося внутри; отверстие можно, например, совсем закрыть, и быстро приоткрыть только тогда, когда равновесие уже установилось и проводится измерение).

Законы излучения абсолютно чёрного тела

Классический подход

Изначально к решению проблемы были применены чисто классические методы, которые дали ряд важных и верных результатов, однако полностью решить проблему не позволили, приведя в конечном итоге не только к резкому расхождению с экспериментом, но и к внутреннему противоречию - так называемой ультрафиолетовой катастрофе .

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики .

Первый закон излучения Вина

k - постоянная Больцмана , c - скорость света в вакууме.

Закон Рэлея - Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея - Джинса:

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением , поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой .

Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка , которая будет совпадать с формулой Рэлея - Джинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия , согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка :

где - мощность излучения на единицу площади излучающей поверхности в единичном интервале частот в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с −1 ·м −2 ·Гц −1 ·ср −1).

Эквивалентно,

где - мощность излучения на единицу площади излучающей поверхности в единичном интервале длин волн в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с −1 ·м −2 ·м −1 ·ср −1).

Полная (т.е. испускаемая во всех направлениях) спектральная мощность излучения с единицы поверхности абсолютно чёрного тела описывается этими же формулами с точностью до коэффициента π : ε(ν, T ) = πI (ν, T ) , ε(λ, T ) = πu (λ, T ) .

Закон Стефана - Больцмана

Общая энергия теплового излучения определяется законом Стефана - Больцмана, который гласит:

Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:

где j - мощность на единицу площади излучающей поверхности, а

Вт/(м²·К 4) - постоянная Стефана - Больцмана .

Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Для нечёрных тел можно приближённо записать:

где - степень черноты (для всех веществ , для абсолютно чёрного тела ).

Константу Стефана - Больцмана можно теоретически вычислить только из квантовых соображений, воспользовавшись формулой Планка. В то же время общий вид формулы может быть получен из классических соображений (что не снимает проблемы ультрафиолетовой катастрофы).

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

где T - температура в кельвинах , а - длина волны с максимальной интенсивностью в метрах .

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна его давление равно Очень близко по своим свойствам к чернотельному так называемое реликтовое излучение , или космический микроволновой фон - заполняющее Вселенную излучение с температурой около 3 К.

Цветность чернотельного излучения

Цвета даны в сравнении с рассеянным дневным светом (

Понятие «абсолютно черного тела» было введено немецким ученым-физиком Густавом Кирхгофом в середине XIX века. Необходимость введения такого понятия была связана с развитием теории теплового излучения.

Абсолютно чёрное тело - идеализированное тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах длин волн и ничего не отражающее.

Таким образом, энергия любого падающего излучения полностью передается АЧТ и превращается в его внутреннюю энергию. Одновременно с поглащением АЧТ также излучает электромагнитное излучение и теряет энергию. Причем мощьность этого излучения и его спектральный остав определяются только температурой АЧТ. Именно температура АЧТ определяет сколько излучения оно испускает в инфракрасном, видимом, ультрафиолетовом и др. диапазонах. Поэтому АЧТ, несмотря на свое название, при достаточно высокой температуре будет излучать в видимом диапазоне и визуально иметь цвет. Наше Солнце – вот пример нагретого до температуры 5800°С объекта, при этом близкого по свойствам к АЧТ.

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Чаще всего это замкнутая полость с небольшим входным отверстием. Излучение, попадающее внутрь сквозь это отверстие, после многократных отражений полностью поглощается стенками. Никакая часть попавшего в отверстие излучения не отражается от него обратно - это соответствует определению АЧТ (полное поглащение и отсутствие отражения). При этом полость имеет собственное излучение, соответствующее ее температуре. Поскольку собственное излучение внутренних стенок полости также совершает огромное количество новых поглощений и излучений, то можно сказать, что излучение внутри полости находится в термодинамическом равновесии со стенками. Характеристики этого равновесного излучения определяются только температурой полости (АЧТ): суммарная (на всех длинах волн) энергия излучения по закону Стефана-Больцмана, а распределение энергии излучения по длинам волн описывается формулой Планка.

В природе не существует абсолютно черных тел. Есть примеры тел, которые лишь наиболее приближены по своим характеристикам к абсолютно черным. К примеру, сажа способна поглотить до 99 % падающего на нее света. Очевидно, что особенная шероховатость поверхности материала позволяет свести отражения к минимуму. Именно благодаря многократному отражению с последующим поглощением мы видим черными такие объекты, как черный бархат.

Объект очень близкий к АЧТ я однажды встретил на производстве бритвенных лезвий Gillette в Санкт-Петербурге, где мне довелось поработать еще до занятия тепловидением. Классические двухсторонние бритвенные лезвия в технологическом процессе собираются на «ножи» до 3000 лезвий в пачке. Боковая поверхность, состоящая из множества плотно прижатых друг к другу заточенных лезвий, имеет бархатный черный цвет, хотя каждое отдельное стальное лезвие имеет блестящую остро заточенную стальную кромку. Блок лезвий, оставленный на подоконнике в солнечную погоду, мог нагреться до 80°С. Вместе с тем, отдельные лезвия практически не нагревались, так как отражали большую часть излучения. Схожую форму поверхности имеют резьбы на болтах и шпильках, их коэффициент излучения выше, чем на гладкой поверхности. Это свойство часто используется при тепловизионном контроле электрооборудования.

Ученые работают над созданием материалов со свойствами, приближенным к свойствам абсолютно черных тел. Например в оптическом длипазоне достигнуты заначительные результаты. В 2004 году в Англии был разработан сплав из никеля и фосфора, который представлял собой микропористое покрытие и имел коэффициент отражения 0,16–0,18 %. Этот материал был занесен в Книгу рекордов Гиннеса, как самый черный материал в мире. В 2008 году американские ученые установили новый рекорд - выращенная ими тонкая пленка, состоящая из вертикальных углеродных трубочек, практически полностью поглощает излучение, отражая его на 0,045 %. Диаметр такой трубочки - от десяти нанометров и длиной от десяти до нескольких сотен микрометров. Созданный материал имеет рыхлую, бархатистую структуру и шероховатую поверхность.

Каждый инфракрасный прибор проходит калибровку по модели(ям) АЧТ. Точность измерений температуры никогда не может быть лучше, чем точность калибровки. Поэтому качество калибровки очень важно. При калибровке (или поверке) с помощью эталонных излучателей воспроизводятся температуры из всего диапазона измерения тепловизора или пирометра. В практике используются эталонные тепловые излучатели в виде модели абсолютно черного тела следующих типов:

Полостные модели АЧТ. Имеют полость с малым входным отверстием. Температура в полости задается, поддерживается и измеряется с высокой точностьтю. В таких излучателях могут быть воспроизведены высокие температуры.

Протяженные или плоскостные модели АЧТ. Имеют площадку, окрашенную составом с высоким коэффициентом излучения (низким коэффициентом отражения). Температура площадки задается, поддерживается и измеряется с высокой точностьтю. В таких излучателях могут быть воспроизведены низкие отрицательные температуры.

При поиске информации об импортных моделях АЧТ используйте термин «black body». Также важно понимать разницу между проверкой, калибровкой и поверкой тепловизора. Об этих процедурах подробно написано на сайте в разделе о тепловизорах.

Использованы материалы: Википедия; БСЭ; Infrared Training Center (ITC); Fluke Calibration

Называется абсолютно черное тело таковым потому, что оно поглощает все попадающее на него (а точнее, в него) излучение как в видимом спектре, так и за его пределами. Но если тело не нагревается, энергия переизлучается обратно. Это излучение, испускаемое абсолютно черным телом, представляет особый интерес. Первые попытки по изучению его свойств были проделаны еще до возникновения самой модели.

В начале 19 века Джон Лесли проводил эксперименты с различными веществами. Как оказалось, черная сажа не только поглощает весь падающий на нее видимый свет. Она излучала в инфракрасном диапазоне значительно сильнее, чем другие, более светлые, вещества. Это было тепловое излучение, которое отличается от всех других видов несколькими свойствами. Излучение абсолютно черного тела равновесное, однородное, происходит без переноса энергии и зависит только от

При достаточно высокой температуре объекта тепловое излучение становится видимым, и тогда любое тело, в том числе и абсолютно черное, приобретает цвет.

Такой уникальный объект, который излучает исключительно определенный не мог не привлечь внимание. Поскольку речь идет о тепловом излучении, первые формулы и теории относительно того, как должен выглядеть спектр, были предложены в рамках термодинамики. Классическая термодинамика смогла определить, на какой должен находиться максимум излучения при данной температуре, в какую сторону и насколько он сместится при нагревании и охлаждении. Однако не удалось предсказать, каково распределение энергии в спектре абсолютно черного тела на всех длинах волн и, в частности, в ультрафиолетовом диапазоне.

По представлениям классической термодинамики, энергия может излучаться любыми порциями, в том числе сколь угодно малыми. Но чтобы абсолютно черное тело могло излучать на коротких длинах волн, энергия некоторых его частиц должна быть очень большой, а в области ультракоротких волн она ушла бы в бесконечность. В реальности это невозможно, бесконечность появилась в уравнениях и получила название Только о том, что энергия может излучаться дискретными порциями - квантами - помогла разрешить затруднение. Сегодняшние уравнения термодинамики являются частными случаями уравнений

Первоначально абсолютно черное тело представляли как полость с узким отверстием. Излучение извне попадает в такую полость и поглощается стенками. На спектр излучения, которым должно обладать абсолютно черное тело, в таком случае похож спектр излучения из входа в пещеру, отверстия колодца, окна в темную комнату солнечным днем и т.д. Но больше всего с ним совпадают спектры Вселенной и звезд, в том числе Солнца.

Можно с уверенностью утверждать, что чем больше в том или ином объекте частиц, обладающих разными энергиями, тем сильнее его излучение будет напоминать чернотельное. Кривая распределения энергии в спектре абсолютно черного тела отражает статистические закономерности в системе этих частиц, с той лишь поправкой, что передаваемая при взаимодействиях энергия дискретна.

Абсолютно черное тело - это ментальный физический идеализированный объект. Интересно, что оно вовсе не обязательно должно быть черным на самом деле. Здесь дело в другом.

Альбедо

Все мы помним (или, по крайней мере, должны были бы помнить) из школьного курса физики, что понятие "альбедо" подразумевает под собой способность поверхности какого-либо тела отражать свет. Так, например, снежные покровы ледяных шапок нашей планеты способны отражать до 90% падающего на них солнечного света. Это значит, что они характеризуются высоким альбедо. Неудивительно, что сотрудники полярных станций нередко вынуждены работать в солнцезащитных очках. Ведь смотреть на чистый снег - почти то же, что и рассматривать невооруженным глазом Солнце. В этом отношении рекордную отражательную способность во всей Солнечной системе имеет спутник Сатурна Энцелад, который почти сплошь состоит из водяного льда, имеет белый цвет и отражает практически все излучение, падающее на его поверхность. С другой стороны, такое вещество, как сажа, обладает альбедо меньше 1%. То есть оно поглощает около 99% электромагнитного излучения.

Абсолютно черное тело: описание

Здесь мы подходим к самому главному. Наверняка читатель догадался, что абсолютно черное тело представляет из себя объект, поверхность которого способна поглощать абсолютно все падающее на него излучение. Вместе с тем, это вовсе не означает, что такой объект будет невидим и не сможет в принципе излучать свет. Нет, не стоит путать его с черной дырой. Он может обладать цветом и даже быть весьма хорошо видимым, однако излучение абсолютно черного тела всегда будет определяться его собственной температурой, но не отраженным светом. Кстати, здесь учитывается не только спектр, видимый человеческим глазом, но и ультрафиолетовое, инфракрасное излучение, радиоволны, рентгеновские лучи, гамма-излучение и так далее. Как уже было сказано, абсолютно черное тело не существует в природе. Однако его характеристикам в нашей звездной системе наиболее полно отвечает Солнце, излучающее, но почти не отражающее свет (исходящий от других звезд).

Лабораторная идеализация

Попытки вывести объекты, абсолютно не отражающие свет, предпринимались уже с конца XIX века. Собственно, эта задача стала одной из предпосылок к возникновению квантовой механики. Прежде всего, важно отметить, что любой фотон (или любая другая частица электромагнитного излучения), поглощенный атомом, тут же им испускается и поглощается соседним атомом, и снова испускается. Этот процесс будет продолжаться до тех пор, пока не будет достигнуто состояние равновесного насыщения в теле. Однако при нагревании абсолютно черного тела до подобного состояния равновесия интенсивность испускаемого им света уравнивается с интенсивностью поглощаемого.

В научной среде физиков проблема возникает при попытке подсчитать, какова же должна быть эта энергия излучения, которая сохраняется внутри черного тела в равновесии. И тут вытекает удивительный момент. Распределение энергии в спектре абсолютно черного тела в состоянии равновесия означает буквальную бесконечность энергии излучения внутри нее. Эта проблема была названа ультрафиолетовой катастрофой.

Решение Планка

Первым, кому удалось найти приемлемое решение этой задачи, стал немецкий физик Макс Планк. Он предположил, что любое излучение поглощается атомами не непрерывно, а дискретно. То есть порциями. Позднее такие порции и были названы фотонами. Более того, радиомагнитные волны могут поглощаться атомами лишь на определенных частотах. Неподходящие же частоты просто проходят мимо, что решает вопрос о бесконечной энергии необходимого уравнения.