Электромагнитное излучение в квартирах и домах. Средства экранирования электромагнитных полей

Выбор материала экрана проводится исходя из обеспечения требуемой эффективности экранирования в заданном диапазоне частот при определенных ограничениях. Эти ограничения связаны с массогабаритными характеристиками экрана, его влиянием на экранируемый объект, с механической прочностью и устойчивостью экрана против коррозии, с технологичностью его конструкции и т. д.

Металлические материалы, применяемые для экранирования, изготавливаются в виде листов, сеток и фольги (сталь, медь, алюминий, цинк, латунь). Все эти материалы удовлетворяют требованию устойчивости против коррозии при использовании соответствующих защитных покрытий.

Наиболее технологичными являются конструкции экранов из стали, так как при их изготовлении и монтаже можно широко использовать сварку. Толщина стали выбирается исходя из назначения конструкции экрана и условий его сборки, а также из возможности обеспечения сплошных сварных швов при изготовлении.

Сетчатые экраны проще в изготовлении, удобны для сборки и эксплуатации, обеспечивают облегченный тепловой режим радиоэлектронной аппаратуры. Для защиты от коррозии сетки целесообразно покрывать антикоррозийным лаком. К недостаткам сетчатых экранов следует отнести невысокую механическую прочность и меньшую эффективность экранирования по сравнению с листовыми экранами.

Экраны, изготавливаемые из фольги, имеют толщину 0,01- 0,05 мм. Монтаж экранов из фольги достаточно прост, крепление фольги к основе экрана проводится чаще всего с помощью клея. Ряд предприятий промышленности выпускает экранирующую фольгу из металлов с высокой магнитной проницаемостью. Из нее вырезают ленту соответствующих размеров, предусмотрев широкие участки перекрытия, и осторожно придают экрану соответствующую форму. Экраны и прокладки из такой фольги можно получать штамповкой.

Материалы-диэлектрики также используются в качестве основы для создания экранов. Сами по себе диэлектрики не могут экранировать электромагнитные поля. Поэтому они чаще всего встречаются в сочетании либо с проводящими включениями, либо с дополнительными металлическими элементами и конструкциями.

Экраны из композиционных материалов представляют собой сложные образования, содержащие в своей основе проводящие или полупроводящие включения, в которых связующим звеном выступают аморфные диэлектрики - полимеры, в совокупности образующие упорядоченные цепочечные плоские или объемные структуры. Такие композиции характеризуются относительной диэлектрической проницаемостью порядка 2-11 и удельной проводимостью порядка 1- 1000 .

На практике для улучшения экранирующих свойств диэлектрических экранов без существенного изменения их массы и конструкционных характеристик применяют проводящее покрытие экранов напылением металлов в виде тонких пленок или склеивание проводящей фольгой. С помощью вакуумного напыления можно нанести слой алюминия толщиной 4-5 мкм.

Нанесение медных, никелевых или серебряных покрытий с толщиной слоя от 50 до 75 мкм обеспечивает эффективность экранирования 30-60 дБ.

С помощью химического осаждения на медь можно наносить никель; такое покрытие обеспечивает эффективность экранирования 55-110 дБ.

Качество наносимого слоя металла должно соответствовать физико-химическим свойствам материала подложки, его прочностным и деформационным характеристикам. Наиболее распространенным покрытием является цинк. Цинковое покрытие технологично, обеспечивает достаточно высокую эффективность экранирования и хорошую механическую прочность.

В общем случае при прочих равных условиях эффективность экранирования металлизированным слоем ниже, чем сплошным металлическим листом. Это объясняется отличием химического состава покрытия от структуры исходного металла, в результате чего проводимость покрытия обычно меньше проводимости самого металла.

Металлизация поверхности может применяться для экранирования отдельных отсеков радиоэлектронной аппаратуры при наличии неметаллических несущих конструкций, пластмассовых корпусов аппаратуры и т. д. К металлизированным поверхностям могут быть припаяны контакты для заземления и подключения других цепей.

Для улучшения защитных свойств диэлектрических экранов наряду с применением проводящих покрытий используют армирование диэлектрических экранов тонкой металлической сеткой или проволочной канителью.

Стекла с токопроводящим покрытием должны обеспечивать требуемую эффективность экранирования при ухудшении их оптических характеристик не ниже заданных граничных значений. Электрические и оптические свойства стекол с токопроводящим покрытием зависят от природы окислов, составляющих пленку, условий и методов ее нанесения и свойств самого стекла. При условии сохранения прозрачности стекол с потерями не более 20% и обеспечения достаточной электропроводности толщина пленки покрытия может колебаться в широких пределах. Наибольшее распространение получили пленки на основе оксида олова, оксида индия - олова и золота, так как они обеспечивают наибольшую механическую прочность, химически устойчивы и плотно соединяются со стеклянной подложкой.

Стекла с токопроводящим покрытием в основном используются в смотровых окнах и шкальных системах радиоэлектронной аппаратуры, а также в экранированных камерах при необходимости обеспечения в них освещенности. Выпускаемые промышленностью стекла с токопроводящим покрытием имеют поверхностное сопротивление не менее 6 Ом при ухудшении прозрачности не более чем на 20%. Эффективность экранирования у таких стекол в радиодиапазоне составляет около 30 дБ.

Специальные ткани содержат в своей структуре металлические нити, наличие которых приводит к отражению электромагнитных волн. Например, ткань типа РТ изготавливается из капроновых нитей, скрученных с посеребренной медной проволокой диметром 30- 50 мкм. В ткани артикула 4381 нитка свита с эмалированным проводом ПЭЛ-0,06. Число металлических ниток может составлять 30x30, 20x20, 10x10 и 6x6 на 1 см". Такие ткани предназначены для защиты от электромагнитного поля в диапазоне сверхвысоких частот. Они могут также быть использованы для изготовления специальных костюмов для индивидуальной биологической защиты.

Токопроводящие к/мскисоздаются на основе диэлектрического пленкообразующего материала с добавлением в него проводящих компонентов, пластификатора и отвердителя. В качестве токопроводящих составляющих используются графит, сажа, коллоидное серебро, окиси металлов, порошковая медь, алюминий.

Электропроводный клей создается на основе эпоксидной смолы, заполняемой металлическими порошками (железо, кобальт, никель и др.). Электропроводный клей обладает высокой прочностью на отрыв, удельной электропроводностью, химической стойкостью к влаге и различным агрессивным средам, обеспечивает незначительную усадку после отвердения.

Электропроводный клей применяется наряду с пайкой, сваркой и болтовым соединением, а также в целях электромагнитного экранирования. Заполнение щелей и малых отверстий, установка экрана на несущей конструкции, крепление различных элементов экранов - эти и другие операции могут быть успешно выполнены с помощью электропроводного клея. Эффективность экранирования, обеспечиваемая с применением эпоксидного клея, составляет 50-65 дБ.

Радиопоглощающие материалы могут применяться в качестве покрытий различных поверхностей с целью уменьшения отражения от этих поверхностей электромагнитных волн. Принцип действия таких материалов заключается в том, что падающая на них электромагнитная волна преобразуется внутри их структуры в другие виды энергии. При этом имеют место явления рассеяния, поглощения, интерференции, а в ряде покрытий и дифракции электромагнитных волн. В зависимости от свойств радиопоглощающие материалы - покрытия могут быть широкодиапазонными и узкодиапазонными.

Структуру широкодиапазонных радиопоглощающих материалов образуют частицы ферромагнетика, введенные в слой изоляционного материала из немагнитного диэлектрика (пенополистирола, каучука, кремнийорганической пены и т. п.). Узкодиапазонные покрытия изготавливают из различных пластмасс и каучука. Чтобы такие покрытия обладали поглощающими свойствами, в их состав вводят ферромагнетики с примесями сажи или порошка графита в качестве поглотителя.

Радиопоглощающие материалы, используемые в качестве покрытий, могут быть однослойными, многослойными с переменными от слоя к слою параметрами, а также структурно неоднородными, т. е. с включением в состав материала различного рода структур, например дифракционных решеток.

Эффективность таких материалов достаточно высока. Коэффициент отражения большинства современных радиопоглощающнх покрытий не превышает единиц процентов.

Радиопоглощающие материалы находят применение для создания безэховых камер. Такие камеры создаются путем оклейки стен помещений, в которых должны проводиться радиоизмерения, радиопоглощающими материалами (покрытиями). В результате создаются условия для проведения испытаний, приближающиеся к условиям свободного пространства.

Радиопоглощающие строительные материалы находят применение для строительства специальных сооружений, например монтажно-испытательных корпусов, в которых осуществляется сборка и испытание объектов, работающих с излучением электромагнитных волн в открытое пространство.

Электромагнитное экранирование – способ снижения интенсивности электромагнитных волн до заданного уровня с помощью специального материалов, оборудования и технологических решений. Снижение интенсивности поля необходимо для защиты людей или техники от влияния электромагнитного излучения либо для предотвращения нежелательной утечки информации, которая может переноситься электромагнитным излучением.

Экранирование обеспечивается созданием специальных экранов, от которых излучение может отражаться, в которых оно может поглощаться или рассеиваться, либо комбинацией этих способов. Экраны образуют замкнутые объемы, которые охватывают или объект защиты от излучения, либо объект, излучение от которого должно быть подавлено. Кроме того, необходимы специальные решения для ввода в электромагнитный экран или вывода наружу различных линий инженерных или информационных коммуникаций.

Экранирование от ЭМИ – защита людей, техники, информации

Во всех странах законодательно задается допустимый уровень излучения, которому может подвергаться человек без опасения за его здоровье. Применение экранов позволяет снизить потенциально опасные для здоровья уровни излучения до безопасных.

Под воздействием интенсивных полей наблюдаются сбои в работе электроники. Помехи, создаваемые мощными полями, могут вывести из строя интегральные микросхемы и полупроводниковые элементы.

Становится возможным несанкционированный доступ к конфиденциальной информации. Интенсивное излучение позволяет задействовать специальные дистанционные устройства, считывающие данные в процессе работы компьютера. Непроизвольным передатчиком секретной информации может стать любой электронный гаджет, например, смартфон.

Преграду электромагнитному полю создает экран с высокой магнитной или электрической проводимостью, оборудованный вокруг защищаемого пространства или полости. В требуемых случаях экранируют источник излучения, чтобы предотвратить его распространение.

Правильно оборудованный защитный экран позволяет:

  • ограничить негативное воздействие на электронные и радиотехнические устройства;
  • организовать безопасное рабочее место для обслуживающего персонала;
  • исключить несанкционированное проникновение к конфиденциальной информации.

Прежде чем использовать тот или иной метод защиты экранированием, необходимо обследование объекта специалистами для создания проекта.

В ряде случаев необходимо исследовать объект с помощью специального оборудования.

В процессе исследования анализируются частотные параметры ЭМИ, измеряется его уровень в разных точках. Поручив эту процедуру специалистам «НТЦ Фарадей», заказчик получает инструментально точные результаты и квалифицированные рекомендации по организации эффективного экранирования.

От чего зависит эффективность экранирования

Уровень экранирования определяется показателем коэффициента экранирования. Коэффициент экранирования – отношение величин интенсивности электромагнитного поля до экрана и за экраном.

На эффективность действия экрана в совокупности влияют несколько факторов:

  • частотный диапазон электромагнитных полей;
  • степень электропроводимости используемых материалов;
  • показатель магнитной проницаемости материалов;
  • габариты и расположение экрана.

Все эти факторы необходимо учитывать при разработке проекта экранирования для каждого конкретного объекта.

Зависимость экранирования от частотного диапазона

Экранирование полей высокочастотного диапазона основано на отражении и поглощении электромагнитной волны при переходе из одной среды в другую. Электромагнитная волна, взаимодействуя с экраном, частично отражается его поверхностью, частично поглощается материалом экрана. Эти процессы приводят к потере энергии, ослаблению и затуханию волны.

При экранировании низкочастотных полей (так называемые магнитные поля) используют свойства так называемых магнитомягких материалов.

Для экранирования высокочастотных полей основное требование – высокая электропроводность материала экрана и отсутствие отверстий, щелей, плохого контакта элементов экрана. Даже небольшое отверстие при короткой длине волны превращается в так называемую щелевую антенну, в итоге пропускающую излучение через экран.

Элементы и сырье для экранирования

В производстве защитных экранов используются разнообразные материалы. Средством экранирования могут служить листовая медь, алюминий, сталь или фольга, а также современные специализированные ткани и сетки. Чем выше удельная проводимость материала экрана, тем эффективнее экранирование. Конкретное значение защитных способностей экрана зависит от конфигурации и объема помещения, площади оконных и дверных проемов, материала стен.

Сырьем для изготовления экранирующих конструкций и приспособлений служат:

  • стальные и медные пластины — для сооружения корпусов, камер, внутренней облицовки помещений;
  • тонкая фольга из мягкомагнитных сплавов – защита аппаратуры;
  • металлические ленты и оплетки – экранирование кабелей;
  • металлизированные шланги – защита кабельных жгутов;
  • металлические соты – для организации экранов с воздухопроницаемыми свойствами;
  • тонкая проволочная сетка – экранирование оконных проемов.

Надежное и качественное экранирование помещений и оборудования невозможно обеспечить без тщательного уплотнения оконных и дверных проемов, строительных стыков, всевозможных щелей и отверстий. В этих целях используются специальные материалы, которые в достаточной степени обладают такими качествами, как:

  • проводимость;
  • формуемость;
  • устойчивость к ЭМП разной интенсивности;
  • низкий уровень контактного сопротивления.

Данным требованиям соответствуют уплотнители, выполненные на основе силиконового каучука. Используются в экранах виде трубок, пластинок, кольцевидных шнуров.

Электромагнитная безопасность от «НТЦ Фарадей»

Создание условий для электромагнитной безопасности помещений, особенно в отношении защиты информации необходимо предусматривать на стадии проектных разработок. , используемые компанией «НТЦ Фарадей», позволяют выполнять качественное электромагнитное экранирование, как на стадии возведения объекта, так и уже существующих помещений, которые изначально не предназначались под специальное использование.

Специалисты компании разработают и реализуют уникальный проект экранов любой сложности по заказу и техзаданию заказчика:

  • цельносварные камеры и сборно-разборные камеры с требуемыми заказчику размерами;
  • экранирующие ворота и двери;
  • экраны-фильтры для оптоволокна;
  • специализированные стекла для отдельного наблюдения;
  • защитные материалы по линии ЭМС;
  • электрические фильтры (силовые и сигнальные);
  • вентиляционные фильтры.

Выполняется тестирование и постоянная техническая поддержка в процессе эксплуатации защитных систем электромагнитного экранирования.

С развитием приборостроения возникла необходимость создания экранирующих материалов и конструкций, которые защищают комнату, персонал и аппаратуру от электромагнитного излучения в разном диапазоне частот. Выбор материала зависит от сферы его применения, особенностей помещения и т.д.

Виды экранирующих материалов

На сегодняшний день разработаны следующие виды экранирующих материалов:

  • Сетки . Они изготавливаются из меди и используются для защиты от электромагнитных волн и предотвращения утечки информации. Экраны из тканой сетки не препятствуют поступлению света в помещение и обеспечивают хорошую вентиляцию. Они имеют малый вес, легко собираются и демонтируются, характеризуются высокой эффективностью и долговечностью. Единственный недостаток сетки – низкий показатель стойкости к механическим воздействиям. Выпускается два вида сетки – редкая и мелкая.
  • Пластины . Они представляют собой стальные листы толщиной до 3 мм и обеспечивают максимальную защиту от излучений. Несмотря на достаточно высокую стоимость изготовления и эксплуатации, экраны из пластин широко применяются для экранирования стен, дверей и ворот. Недостатками экранирующих пластин являются подверженность коррозии и напряженность сварочных швов, поэтому они менее надежны и долговечны, чем сетка, и требуют регулярной проверки и своевременного устранения дефектов.
  • Краски и грунтовки . В их состав входит тонкопроводной углерод (сажа, графит и т.п.), заменяющий металл, поэтому краски и грунтовки стоят на порядок дешевле. Они применяются в промышленных, медицинских, общественных, образовательных и жилых помещениях для защиты людей и приборов от излучений, и предотвращения возможности перехвата секретной информации. Среди преимуществ красок можно перечислить влагостойкость, воздухопроницаемость, универсальность, стойкость к химическим и механическим воздействиям, хороший уровень адгезии к разным поверхностям (гипсокартону, штукатурке, бетону), эстетичность.
  • Ткани. Есть два способа металлизации ткани – нанесение тонкого слоя металла на ее поверхность и вплетение металлизированных либо металлических нитей. Оба способа позволяют сохранить первоначальные свойства материала – гибкость, легкость, воздухопроницаемость. При этом ткань не теряет эстетичный внешний вид и приобретает дополнительные характеристики – стойкость к воздействию огня и агрессивных химикатов. Защитные конструкции из ткани (одежда для персонала, шторы, чехлы на аппаратуру для радиолокационного наблюдения) изготавливаются путем сшивания, склеивания или спаивания.

  • Фольговые материалы . Алюминиевая, цинковая или латунная фольга предназначена для наклеивания на экранируемую поверхность. Выпускается также фольга на подложке из непроводящего материала (плотная бумага, пластмасса, стекло, древесина, ткань). Для ее изготовления расплавленный металл распыляется по поверхности подложки с помощью струи сжатого воздуха.

  • Клеи . В их состав входят эпоксидная смола, мелкодисперсные порошки никеля, кобальта или железа. Такие клеи применяются при сооружении электромагнитных экранов для пайки болтовых соединений или заполнения небольших отверстий и щелей.
  • Облицовочные панели . Это листы, состоящие из металлической подложки и наклеенных на нее диэлектрического и ферритового материалов. Они используются для экранирования внутренних стен, потолков и полов лабораторий, медицинских учреждений, помещений коммерческой и военной направленности.
  • Стекла . Токопроводящая пленка, наклеенная на стекло, обеспечивает высокий уровень экранирования и практически не ухудшает оптических свойств стекла. В зависимости от металла, напыляемого на пленку (алюминий или медь), она будет иметь серебристый или золотистый оттенок. Экранирующие стекла используются при изготовлении окон и дверей.

Правила экранирования помещений

Размер экранированной комнаты зависит от ее назначения. При проведении работ необходимо соблюдать следующие правила:

  • Соединение металлических сеток или листов по периметру должно быть достаточно прочным.
  • Листовые экраны соединяются непрерывной пайкой или сваркой.
  • Сетчатые экраны соединяются точечной пайкой или сваркой с интервалом не менее 15 мм.
  • При экранировании дверей нужно обеспечить надежный электрический контакт с сеткой или металлическими панелями стен по всему периметру двери.
  • Расстояние между слоями экранирующей сетки, установленной на окнах, должно составлять не менее 50 см.
  • В экранированном помещении следует обеспечить хорошее освещение и вентиляцию.
  • Вентиляционные отверстия закрываются сотовыми экранами (на частотах меньше 1000 МГц) или оснащаются электромагнитными ловушками (на частотах свыше 1000 МГц).

Если вас интересуют материалы и компоненты для экранирования от ЭМИ, то подробнее о них вы можете узнать на этом сайте

0

Рецепты читателей 16.12.2014

Жизнь современного человека сложно представить без мобильных телефонов, компьютеров, стиральных машин, СВЧ-печей и других достижений технического прогресса. Экономя время и силы, блага цивилизации подвергают наш организм серьезной опасности, являясь источниками электромагнитного излучения.

Электромагнитные волны имеют способность проникать сквозь стены, буквально пронизывая наше жизненное пространство. Такое воздействие может спровоцировать у человека развитие синдрома хронической усталости, гипертонию, вызвать образование злокачественных опухолей. Особенно пагубно электромагнитное излучение сказывается на здоровье детей.

Полностью избежать влияния электромагнитных волн практически невозможно, но свести к минимуму данный вид угроз помогут экранирующие материалы . Простые в применении, легкие, практически прозрачные, они станут незаметными защитниками на страже здоровья Вашей семьи.

Надежно защитить помещение как изнутри, так и снаружи от источников высокочастотных электромагнитных излучений от трансформаторов, ЛЭП, силовых кабелей, можно с помощью экранирующих панелей . Они отражают все виды излучений мощных низкочастотных магнитных полей, высокочастотных РЧ-полей, электрических и электростатических полей.

В качестве строительных материалов — для монтажа в стены и даже в бетон можно использовать экранирующая сетку. Прочная (изготовлена из нержавеющей стали), и в тоже время гибкая, она обладает достаточной эффективностью экранирования во всем диапазоне радиочастот.

Экранирующее полотно можно скрыть под обоями, под ковром или в напольном покрытии. Оно выполнено из высококачественных материалов меди и полиэстера, благодаря чему мало весит, обладает воздухопроницаемостью, не гниет, не теряет своих свойств при окрашивании и температурном воздействии.

Защитить окна позволят сшитые из тканей с металлизированными нитями шторы и занавески, использование которых особенно актуально летом, когда приходится часто открывать окна. Экранирующая ткань обладает антисептическими свойствами и гипоаллергенна, что позволяет использовать ее в детских комнатах, к примеру, в качестве полога для кроватки.

При помощи экранирующей фольги Вы сможете защитить от всех видов электромагнитного излучения небольшие предметы провода, кейсы, мониторы, компьютеры. Фольга хорошо сгибается и режется обычными ножницами. Для удобства в наличии есть самоклеящаяся версия.

Тыква – это настоящий кладезь пользы. Многие врачи советуют употреблять тыкву при заболеваниях сердца. Этот овощ помогает ускорить кровообращение и улучшить работу сосудов.

Овощи и фрукты с яркой оранжевой мякотью часто становятся объектами наблюдения аллергологов. Разумно ли включать в противопоказания тыквенный сок? Почему полезные свойства тыквенного сока подвергаются сомнению?

В период лактации многие женщины часто спрашивают, можно ли кормящей маме употреблять чернику. Поскольку ягода является гипоаллергенным продуктом черника не приносит вреда ребенку.

Рацион беременной женщины должен включать в себя много овощей и фруктов. Но, врачи рекомендуют употреблять только местные. Можно ли беременным хурму? Сколько ее нужно есть, чтобы не навредить себе? И другие полезные факты о хурме.

Знаете ли вы как продлить жизнь мандаринам в домашних условиях, чтобы они были привлекательны не только внешне, но и внутренне? Для этого нужно знать правила как хранить мандарины и соответственно их придерживаться;

С каждым годом на рынке появляется все больше и больше экранирующих материалов. Но не все они обладают высоким качеством и заявленными экранирующими свойствами.

В статье постараюсь рассказать о ряде грунтовок или красок, не содержащих металла.

Одним из преимуществ неметаллических экранирующих грунтовок/красок является их более низкая рыночная стоимость по-отношению к своим металлическим собратьям. Низкая стоимость достигается за счет наличия в базе различных форм токопроводного углерода (сажа, графит и т.д.). Думаю, что некоторые читатели раньше пробовали подводить электрический ток к графитовому стержню карандаша и на практике наблюдали электрические свойства данного материала. В красках этот графит и прочие материалы заменяют металл, не пропуская электромагнитное излучение.

На рынке можно встретить ряд производителей из Германии, США, России и Китая, которые заверяют, что у них есть прекрасный продукт. Но так ли есть на самом деле?

Чтобы создать объективную картину, наша компания старается приобретать изделия различных фирм-производителей и проверять их на одном оборудовании при использовании одной методики в заданном диапазоне частот . Помимо этого ООО «Измерительные Системы и Технологии» ведет самостоятельную разработку защитного покрытия, которое в дальнейшем планируется применять по программе импортозамещения.

Методика оценки заключается в следующем:

  • Оценка качества материала, находящегося в жидком состоянии, визуальным путем;
  • Оценка качества материала, находящегося в твердом состоянии, визуальным путем;
  • Оценка материала на экранирующие свойства в коаксиальном тракте;
  • Оценка стоимости одного квадратного метра окрашенной поверхности.

Оценку прочностных параметров и химико-лабораторного анализа изделий мы не применяем в связи с тем, что при проведении вышеперечисленных этапов, большинство образцов не проходят контроль заявленного качества.

В данной статье приведем пример по грунтовкам из Германии, России (производитель находится в г.Санкт-Петербург), собственный опытный образец и образец из Китая.

Образец №1 (Китай)

Образец мы получили через 3 месяца после заказа. Железная банка, булькающая жидкость внутри, крайне мало информации по описанию изделия. Экранирующие свойства заявлены на неизвестной частоте на уровне 80-90%. . При открытии банки наружу вырвался очень едкий запах. После полного размешивания, получилась довольно однородная относительно жидкая субстанция. На второй день после нанесения материала на поверхность, грунтовка стала расслаиваться.

Стоимость материала составила 4000 руб за 5 литровое ведро. При заявленных 4-8 квадратных метрах на 1 литр получается 100-200 руб за квадратный метр. Очень хорошо. Но экранирующих свойств просто нет. Качества нет. Поэтому дальше краску не рассматриваем.

Образец №2 (собственный опытный образец)

Разработанный образец имеет жидкую равномерную структуру после короткого перемешивания. Наносится 1 литр на площадь 6-8 квадратных метров. Ложится ровно, адгезия хорошая, не расслаивается в процессе сушки. Сильно пачкает при прислонении.

Максимальные экранирующие свойства и токопроводность достигаются на третий день после нанесения. Имеет хуже токопроводность, по сравнению с немецким аналогом, но лучше китайского и российского БВ-1 и схожие экранирующие свойства с продукцией Yshield GmbH. Коэффициент экранирования составил 23,8…27,8 дБ в диапазоне частот 100МГц…7ГГц.

Стоимость материала выше, чем у , поэтому на текущий момент не представлена в ассортименте компании. Ведется доработка материала.

Образец №3 (грунтовка экранирующая БВ-1)

После длительного перемешивания имеет очень густую структуру. Встречаются комочки размером до 1 сантиметра в диаметре (даже после размешивания). На упаковке есть надпись «ПЕРЕД ПРИМЕНЕНИЕМ ТЩАТЕЛЬНО ПЕРЕМЕЩАТЬ ». Как «перемещать», куда «перемещать», не известно. Может поэтому остались в экранирующей грунтовке БВ-1 комочки (из-за неправильного «перемещения»)?

Через сутки после нанесения, покрытие начало частично расслаиваться . Для грунтовых покрытий данный материал однозначно не подойдет.

По экранирующим свойствам грунтовка абсолютно не соответствует заявленным свойствам!!!

Тестирования проводились на одном оборудовании (в компании ООО НПП «Радиострим». Методика и оборудование в конце статьи).

В диапазоне частот 100 МГц…7ГГц коэффициент ослабления фактически находился в коридоре 4,2…7дБ. Заявленное ослабление производителем 27…37 дБ. Обычная железобетонная стена толщиной 15 см обладает коэффициентом ослабления электромагнитных полей 10…20дБ (на частоте 1 ГГц). В протоколе испытаний (), предоставляемого производителем, имеется ряд несоответствий, что вызывает дополнительные сомнения о качестве продукта и компетенции испытательной лаборатории.

  1. Если внимательно посмотреть, то среди испытательного оборудования присутствует генератор сигналов SMT 02. В описании технических характеристик генератора, верхняя рабочая частота ограничена значением 1,5 ГГц, а в протоколе присутствуют частоты измерений 1,8ГГц, 2,1ГГц и 2,4ГГц. Волшебство какое-то получается.
  2. Поехали дальше. Зачем в перечне оборудования указаны логопериодическая антенна HyperLOG 7025 (не внесенная в Госреестр Средств Измерений) и рупорная антенна SAS 571 (скорее всего тоже не в Госреестре СИ)? На схеме и в измерениях данные антенны не принимают никакого участия.
  3. Теперь покажите мне антенны АДИ-2. Информации по существованию данных антенн я вообще не нашел на просторах интернета.

Что касается стоимости. Все прекрасно. Заявленная стоимость 1350 руб за 1 кг грунтовки. Стоимость 1 м2 при указанном производителем расходе составит 203…405 руб.

Итог: полный развод на деньги. Экранирующая грунтовка БВ-1 (производство Санкт-Петербург) практически не является экранирующей. Заявленные параметры, скорее всего, сфальсифицированы. Качество краски как покрытия оставляет желать лучшего.

Совет: за чуть большие денежные средства лучше применить металлическую сетку или краску другого производителя, а не иметь ослабление ВЧ полей на уровне кирпичных стен.

Что касается сертификатов, то Декларацию Соответствия или Сертификат Соответствия можно просто заказать без какой-либо отправки материала в испытательную лабораторию. Делается это элементарно.

Образец №4 (экранирующая краска/грунтовка HSF54. Страна производства - Германия)

Характеристики краски в ее жидком и высохшем состоянии оставляют хорошие впечатления. Легко перемешивается, достаточно жидкая. Если прикоснуться к высохшей поверхности, можно сильно испачкаться графитом. Имеет высокую стабильность.

По экранирующим свойствам не соответствует заявленным. Фактические параметры ниже заявленных, но имеют довольно неплохой уровень. Различия в коэффициентах экранирования могут быть обусловлены различными методиками измерений. АЧХ довольно линейна. В диапазоне частот 100 МГц…7ГГц имеет коэффициент ослабления на уровне 26…28 дБ.

Стоимость довольно высокая. 1 литр стоит 5000…5500 руб. В 5 л ведрах получается дешевле (24500 руб.). Цена за 1 квадратный метр будет колебаться в диапазоне 700…820 руб.

Итог: единственная на настоящий момент экранирующая грунтовка / краска без металлических компонентов, не имеющая пока равных на рынке в сегменте цена/качество. Легко конкурирует по данному параметру со специализированными сетками из нержавеющей стали и меди (В связи с применением минимума монтажных работ по нанесению краски на различные поверхности. Сетку нужно срастить, прибить к поверхности, заштукатурить и т.д.).

Методика испытаний

ОБЪЕКТЫ ИСПЫТАНИЙ.

  • Объектами испытаний являлись образцы краски, обеспечивающие электропроводность при нанесении на бумажную подложку. Краска предоставлена ООО «Измерительные Системы и Технологии».
  • Подготовка образцов и технология нанесения: перед покрытием проводилось встряхивание, без УЗ обработки. После одностороннего покрытия образцы выдерживались не менее 2 суток в нормальных (по ГОСТ) условиях.
  • В качестве основы образцов экранирующих материалов использованы:
  • писчая бумага (стандарт, плотность до 80 г/м 2), одностороннее покрытие.

ЦЕЛЬ ИСПЫТАНИЙ.

Оценка степени экранировки (коэффициента прохождения электромагнитного излучения K прох) в диапазоне частот: 100 МГц - 7 ГГц образцов бумаги и ткани, обработанных испытуемой краской.

МЕТОДИКИ ИСПЫТАНИЙ

Измерения в диапазоне частот 100 МГц...7 ГГц проводились на лабораторном стенде, на базе измерителя комплексных коэффициентов передачи "Обзор-804/1", сопряжённого с компьютерной системой регистрации и обработки сигнала. Образцы помещались в коаксиальную измерительную ячейку сечением 16/6.95 мм, согласованную с коаксиальным измерительным трактом и включенную в режим измерения ослаблений (пропускания). Тракт обеспечивает распространение волны ТЕМ-моды. Перед проведением измерений проводилась полная двухпортовая калибровка пустой измерительной ячейки. Образцы изготовлялись таким образом, чтобы обеспечить электрический контакт центрального и внешнего проводников по всему периметру.

Для подтверждения информации по экранирующим свойствам, можем выслать протоколы испытаний, проведенных в лаборатории ООО НПП «Радиострим» (по требованию).

Выводы делайте сами.

В настоящий момент хорошие экранирующие краски имеют экономическое преимущество перед экранирующими сетками из нержавеющей стали и меди.

В следующей статье пойдет сравнение экранирующих штукатурок.