Виды бактерий: вредные и полезные. Бактерия — друг человека! Какие микробы помогают организму

Размножение бактерий путем деления — самый распространенный метод увеличения численности микробной популяции. После деления происходит рост бактерий до исходного размера, для чего необходимы определенные вещества (факторы роста).

Способы размножения бактерий различны, но для большинства их видов присуща форма бесполового размножения способом деления. Способом почкования бактерии размножаются исключительно редко. Половое размножение бактерий присутствует в примитивной форме.

Рис. 1. На фото бактериальная клетка в стадии деления.

Генетический аппарат бактерий

Генетический аппарат бактерий представлен единственной ДНК — хромосомой. ДНК замкнута в кольцо. Хромосома локализована в нуклеотиде, не имеющем мембраны. В бактериальной клетке имеются плазмиды.

Нуклеоид

Нуклеоид является аналогом ядра. Он расположен в центре клетки. В нем локализована ДНК — носитель наследственной информации в свернутом виде. Раскрученная ДНК достигает в длину 1 мм. Ядерное вещество бактериальной клетки не имеет мембраны, ядрышка и набора хромосом, не делится митозом. Перед делением нуклеотид удваивается. Во время деления число нуклеотидов увеличивается до 4-х.

Рис. 2. На фото бактериальная клетка на срезе. В центральной части виден нуклеотид.

Плазмиды

Плазмиды представляют собой автономные молекулы свернутые в кольцо двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.

Рис. 3. На фото бактериальная плазмида.

Этапы деления

После достижения определенных размеров, присущих взрослой клетке, запускаются механизмы деления.

Репликация ДНК

Репликация ДНК предшествует клеточному делению. Мезосомы (складки цитоплазматической мембраны) удерживают ДНК до тех пор, пока процесс деления (репликации) не завершится.

Репликация ДНК осуществляется с помощью ферментов ДНК-полимеразами. При репликации водородные связи в 2-х спиральной ДНК разрываются, в результате чего из одной ДНК образуются две дочерние односпиральные. В последующем, когда дочерние ДНК заняли свое место в разделенных дочерних клетках, происходит их восстановление.

Как только репликация ДНК завершилась, в результате синтеза появляется перетяжка, разделяющая клетку пополам. Вначале делению подвергается нуклеотид, затем цитоплазма. Синтез клеточной стенки завершает деление.

Рис. 4. Схема деления бактериальной клетки.

Обмен участками ДНК

У сенной палочки процесс репликации ДНК завершается обменом участками 2-х ДНК.

После деления клетки образуется перемычка, по которой ДНК одной клетки переходит в другую. Далее обе ДНК сплетаются. Некоторые отрезки обоих ДНК слипаются. В местах слипания происходит обмен отрезками ДНК. Одна из ДНК по перемычке уходит обратно в первую клетку.

Рис. 5. Вариант обмена ДНК у сенной палочки.

Типы делений бактериальных клеток

Если клеточное деление опережает процесс разделения, то образуются многоклеточные палочки и кокки.

При синхронном клеточном делении образуются две полноценные дочерние клетки.

Если нуклеотид делится быстрее самой клетки, то образуются многонуклеотидные бактерии.

Способы разделения бактерий

Деление с помощью разламывания

Деление с помощью разламывания характерно для сибиреязвенных бацилл. В результате такого деления клетки переламываются в местах сочленения, разрывая цитоплазматические мостики. Далее отталкиваются друг от друга, образуя цепочки.

Скользящее разделение

При скользящем разделении после деления клетка обосабливается и как бы скользит по поверхности другой клетки. Данный способ разделения характерен для некоторых форм эшерихий.

Секущееся разделение

При секущемся разделении одна из разделившихся клеток свободным концом описывает дугу круга, центром которого является точка ее контакта с другой клеткой, образуя римскую пятерку или клинопись (коринебактерии дифтерии, листерии).

Рис. 6. На фото бактерии палочковидной формы, образующие цепочки (сибиреязвенные палочки).

Рис. 7. На фото скользящий способ разделения кишечных палочек.

Рис. 8. Секущийся способ разделения коринебактерий.

Вид скоплений бактерий после деления

Скопления делящихся клеток имеют разнообразную форму, которая зависит от направления плоскости деления.

Шаровидные бактерии располагаются по одному, по двое (диплококки), пакетами, цепочками или как гроздья винограда. Палочковидные бактерии — цепочками.

Спиралевидные бактерии — хаотично.

Рис. 9. На фото микрококки. Они круглые, гладкие, имеют белую, желтую и красную окраску. В природе микрококки распространены повсеместно. Живут в разных полостях человеческого организма.

Рис. 10. На фото бактерии диплококки — Streptococcus pneumoniae.

Рис. 11. На фото бактерии сарцины. Кокковидные бактерии соединяются в пакеты.

Рис. 12. На фото бактерии стрептококки (от греческого «стрептос» — цепочка). Располагаются цепочками. Являются возбудителями целого ряда заболеваний.

Рис. 13. На фото бактерии «золотистые» стафилококки. Располагаются, как «гроздья винограда». Скопления имеют золотистую окраску. Являются возбудителями целого ряда заболеваний.

Рис. 14. На фото извитые бактерии лептоспиры — возбудители многих заболеваний.

Рис. 15. На фото палочковидные бактерии рода Vibrio.

Скорость деления бактерий

Скорость деления бактерий крайне высока. В среднем одна бактериальная клетка делится каждые 20 минут. В течение только одних суток одна клетка образует 72 поколения потомства. Микобактерии туберкулеза делятся медленно. Весь процесс деления занимает у них около 14 часов.

Рис. 16. На фото отображен процесс деления клетки стрептококка.

Половое размножение бактерий

В 1946 году учеными было обнаружено половое размножение в примитивной форме. При этом гаметы (мужские и женские половые клетки) не образуются, однако некоторые клетки обмениваются генетическим материалом (генетическая рекомбинация ).

Передача генов осуществляется в результате конъюгации — однонаправленного переноса части генетической информации в виде плазмид при контакте бактериальных клеток.

Плазмиды представляют собой молекулы ДНК небольшого размера. Они не связаны с геномом хромосом и способны удваиваться автономно. В плазмидах содержаться гены, которые повышают устойчивость бактериальных клеток к неблагоприятным условиям внешней среды. Бактерии часто передают эти гены друг другу. Отмечается так же передача генной информации бактериям другого вида.

При отсутствии истинного полового процесса именно конъюгация играет огромную роль при обмене полезными признаками. Так передается способность бактерий проявлять лекарственную устойчивость. Для человечества особо опасным является передача устойчивости к антибиотикам между болезнетворными популяциями.

Рис. 17. На фото момент конъюгации двух кишечных палочек.

Фазы развития бактериальной популяции

При посевах на питательную среду развитие бактериальной популяции проходит несколько фаз.

Исходная фаза

Исходная фаза — это период от момента посева до их роста. В среднем исходная фаза длится 1 — 2 часа.

Фаза задержки размножения

Это фаза интенсивного роста бактерий. Ее длительность составляет около 2-х часов. Она зависит от возраста культуры, периода приспособления, качества питательной среды и др.

Логарифмическая фаза

В эту фазу отмечается пик скорости размножения и увеличения бактериальной популяции. Ее длительность составляет 5 — 6 часов.

Фаза отрицательного ускорения

В эту фазу отмечается спад скорости размножения, уменьшается количество делящихся и увеличивается число погибших бактерий. Причина отрицательного ускорения — истощение питательной среды. Ее длительность составляет около 2-х часов.

Стационарная фаза максимума

В стационарную фазу отмечается равное количество погибших и вновь образованных особей. Ее длительность составляет около 2-х часов.

Фаза ускорения гибели

В эту фазу прогрессивно нарастает количество погибших клеток. Ее длительность составляет около 3-х часов.

Фаза логарифмической гибели

В эту фазу клетки бактерий отмирают с постоянной скоростью. Ее длительность составляет около 5-и часов.

Фаза уменьшения скорости отмирания

В эту фазу оставшиеся живыми клетки бактерий переходят в состояние покоя.

Рис. 18. На рисунке отображена кривая роста бактериальной популяции.

Рис. 19. На фото колонии синегнойной палочки сине-зеленого цвета, колонии микрококков желтого цвета, колонии Bacterium prodigiosum кроваво-красного цвета и колонии Bacteroides niger черного цвета.

Рис. 20. На фото колонии бактерий. Каждая колония — потомство одной-единственной клетки. В колонии число клеток исчисляется миллионами. вырастает колония за 1 — 3 суток.

Деление магниточувствительных бактерий

В 1970-х годах были открыты бактерии, обитающие в морях, которые обладали чувством магнетизма. Магнетизм позволяет этим удивительным существам ориентироваться по линиям магнитного поля Земли и находить серу, кислород и другие, так необходимые ей вещества. Их «компас» представлен магнитосомами, которые состоят из магнита. При делении магниточувствительные бактерии делят свой компас. При этом перетяжки при делении становится явно недостаточно, поэтому бактериальная клетка сгибается и делает резкий перелом.

Рис. 21. На фото момент деления магниточувствительной бактерии.

Рост бактерий

Вначале деления бактериальной клетки две молекулы ДНК расходятся в разные концы клетки. Далее клетка делится на две равноценные части, которые отделяются друг от друга и увеличиваются до исходного размера. Скорость деления многих бактерий составляет в среднем 20 — 30 минут. В течение только одних суток одна клетка образует 72 поколения потомства.

Масса клеток в процессе роста и развития быстро поглощает питательные вещества из окружающей среды. Этому способствуют благоприятные факторы внешней среды — температурный режим, достаточное количество питательных веществ, необходимая pH среды. Для клеток аэробов необходим кислород. Для анаэробов он представляет опасность. Однако безграничное размножение бактерий в природе не происходит. Солнечный свет, сухой воздух, недостаток пищи, высокая температура окружающей среды и другие факторы губительно действуют на бактериальную клетку.

Рис. 22. На фото момент деления клетки.

Факторы роста

Для роста бактерий необходимы определенные вещества (факторы роста), часть из которых синтезируется самой клеткой, часть поступает из окружающей среды. Потребность в факторах роста у всех бактерий разная.

Потребность в факторах роста является постоянным признаком, что позволяет использовать его для идентификации бактерий, подготовке питательных сред и использовать в биотехнологии.

Факторы роста бактерий (бактериальные витамины) — химические элементы, большинством из которых являются водорастворимые витамины группы В. В эту группу входят так же гемин, холин, пуриновые и пиримидиновые основания и другие аминокислоты. При отсутствии факторов роста наступает бактериостаз.

Бактерии используют факторы роста в минимальных количествах и в неизменном виде. Ряд химических веществ этой группы входят в состав клеточных ферментов.

Рис. 23. На фото момент деления палочковидной бактерии.

Важнейшие бактериальные факторы роста

  • Витамин В1 (тиамин) . Принимает участие в углеводном обмене.
  • Витамин В2» (рибофлавин) . Принимает участие в окислительно-восстановительных реакциях.
  • Пантотеновая кислота является составной частью кофермента А.
  • Витамин В6 (пиридоксин) . Принимает участие в обмене аминокислот.
  • Витамины В12 (кобаламины — вещества, содержащие кобальт). Принимают активное участие в синтезе нуклеотидов.
  • Фолиевая кислота . Некоторые ее производные входят в состав ферментов, катализирующих процессы синтеза пуриновых и пиримидиновых оснований, а также некоторых аминокислот.
  • Биотин . Участвует в азотистом обмене, а также катализирует синтез ненасыщенных жирных кислот.
  • Витамин РР (никотиновая кислота). Участвует в окислительно-восстановительных реакциях, образовании ферментов и обмене липидов и углеводов.
  • Витамин Н (парааминобензойная кислота). Является фактором роста многих бактерий, в том числе населяющих кишечник человека. Из парааминобензойной кислоты синтезируется фолиевая кислота.
  • Гемин . Является составной частью некоторых ферментов, которые принимают участие в реакциях окислениях.
  • Холин . Принимает участие в реакциях синтеза липидов клеточной стенки. Является поставщиком метильной группы при синтезе аминокислот.
  • Пуриновые и пиримидиновые основания (аденин, гуанин, ксантин, гипоксантин, цитозин, тимин и урацил). Вещества необходимы главным образом в качестве компонентов нуклеиновых кислот.
  • Аминокислоты . Эти вещества являются составляющими белков клетки.

Потребность в факторах роста некоторых бактерий

Ауксотрофы для обеспечения жизнедеятельности нуждаются в поступлении химических веществ из вне. Например, клостридии не способны синтезировать лецитин и тирозин. Стафилококки нуждаются в поступлении лецитина и аргинина. Стрептококки нуждаются в поступлении жирных кислот — компонентов фосфолипидов. Коринебактерии и шигеллы нуждаются в поступлении никотиновой кислоты. Золотистые стафилококки, пневмококки и бруцеллы нуждаются в поступлении витамина В1. Стрептококки и бациллы столбняка — в пантотеновой кислоте.

Прототрофы самостоятельно синтезируют необходимые вещества.

Рис. 24. Разные условия окружающей среды по-разному влияют на рост колоний бактерий. Слева — стабильный рост в виде медленно расширяющегося круга. Справа — быстрый рост в виде «побегов».

Изучение потребности бактерий в факторах роста позволяет ученым получать большую микробную массу, так необходимую при изготовлении антимикробных препаратов, сывороток и вакцин.

Подробно о бактерияx читай в статьях:

Размножение бактерий является механизмом повышения числа микробной популяции. Деление бактерий — основной способ размножения. После деления бактерии должны достигнуть размеров взрослых особей. Рост бактерий происходит путем быстрого поглощения питательных веществ их окружающей среды. Для роста необходимы определенные вещества (факторы роста), часть из которых синтезирует сама бактериальная клетка, часть поступает из окружающей среды.

В нашем мире существует огромное количество бактерий. Среди них есть хорошие, а есть и плохие. Какие то мы знаем лучше, другие хуже. В нашей статье мы подобрали список наиболее известных бактерий живущих среди нас и в нашем организме. Статья написана с долей юмора, поэтому строго не судите.

Обеспечивает “фейс – контроль” в твоих внутренностях

Лактобактерии (Lactobacillus plantarum) живущие в пищеварительном тракте человека с доисторических времен, делают большое и важное дело. Как чеснок вампиров, они отпугивают болезнетворные бактерии, не давая им поселиться в твоем животе и привести кишечник в расстройство. добро пожаловать! Соленые огурцы и помидоры, квашеная капуста укрепят силы вышибал, но знай, что тяжелые тренировки и стресс от физической нагрузки сокращают их ряды. Добавь в протеиновый коктейль немного черной смородины. Эти ягоды снижают стресс от фитнеса за счет содержащихся в них антиоксидантов.

2. ЗАЩИТНИК ПУЗА Helicobacter pylori

Остановит приступы голода в 3 часа дня

Еще одни живущие в пищеварительном тракте бактерии, Helicobacter pylori, развиваются с твоего детства и помогают поддерживать здоровый вес на протяжении всей жизни, контролируя гормоны, отвечающие за чувство голода! Съедай по 1 яблоку каждый день.

Эти фрукты вырабатывают в желудке молочную кислоту, в которой не выживает большинство вредных бактерий, но которую обожают Helicobacter pylori. Однако держи Н. pylori в рамках, они могут пойти против тебя и стать причиной язвы желудка. Приготовь на завтрак яичницу со шпинатом: нитраты из этих зеленых листьев у плотняют стенки желудка, защищая его от избытка молочной кислоты.

3. ГОЛОВОЧЕС Pseudomonas aeruginosa

Любит душ, горячие ванны и бассейны

Живущая в теплой воде бактерия Pseudomonas aeruginosa забирается под кожу черепа через поры волосяных фолликулов, вызывая инфекцию, сопровождаемую зудом и болью в пораженных участках.

Не хочешь напяливать шапочку для купания каждый раз, когда принимаешь ванну?Отрази вторжение чесальщика бутербродом с курицей или лососем и яйцами. Большое количество белка необходимо фолликулам, чтобы быть здоровыми и эффективно бороться с инородными телами. Не забудь еще про жирные кислоты, которые абсолютно необходимы для здоровой кожи головы. В этом тебе помогут 4 банки консервированного тунца или 4 средних авокадо в неделю. Больше не надо.

4. Вредные бактерии Corynebacterium minutissimum

Высокотехнологичное простейшее

Вредные бактерии могут таиться в самых неожиданных местах. Вот, например, Corynebacterium minutissimum, вызывающая сыпь, очень любит жить на тачскринах телефонов и планшетных компьютеров. Уничтожь их!

Странно, но никто до сих пор не разработал бесплатного приложения, борющегося с этими микробами. Зато многие компании производят чехлы для телефонов и планшетников с антибактериальным покрытием, которое гарантированно останавливает размножение бактерий. И старайся не тереть руки друг о друга, когда сушишь их после мытья – это может снизить популяцию бактерий на 37%.

5. БЛАГОРОДНЫЙ НЕГОДЯЙ Escherichia coli

Хорошая плохая бактерия

Бактерия Escherichia coli считается причиной десятков тысяч инфекционных заболеваний ежегодно. Но она доставляет нам проблемы,только когда находит способ покинуть толстую кишку и мутировать в болезнетворный штамм. В норме она вполне себе полезна для жизни и обеспечивает организм витамином К, который поддерживает здоровье артерий, предотвращая сердечные приступы.

Чтобы держать в узде эту частенько мелькающую в заголовках новостей бактерию, включи в свой рацион бобовые пять раз в неделю. Клетчатка бобов не расщепляется, а движется в толстую кишку, где Е. coli могут пировать на ней и продолжать нормальный цикл размножения. Наиболее богата клетчаткой черная фасоль, потом идетлимская, или луновидная и только потом -привычная нам обычная красная. Бобовые не только держат бактерии под контролем, но и ограничивают своей клетчаткой твой послеобеденный аппетит, а также повышают эффективность усвоения питательных веществ организмом.

6. НАРЫВАЮЩИЙСЯ Staphylococcusaureus

Поедает молодость твоей кожи

Чаще всего фурункулы и прыщи вызваны бактерией Staphylococcusaureus, которая живет на коже большинства людей. Прыщи -это, конечно, малоприятно, но, проникнув через поврежденную кожу внутрь тела, эта бактерия может вызвать более серьезные заболевания: пневмонию и менингит.

Природный антибиотик дермицидин, токсичный для этих бактерий, содержится в человеческом поте. Хотя бы раз в неделю включай в тренировку высокоинтенсивные упражнения, стараясь работать на 85% от максимума возможностей. И всегда пользуйся чистым полотенцем.

7. МИКРОБ – ОБЖОРА Bifidobacterium animalis

® Живет в кисломолочных продуктах

Бактерии Bifidobacterium animalis населяют содержимое банок с йогуртом, бутылок с кефиром, простоквашей, ряженкой и прочими подобными продуктами. Они сокращают время прохода пищи по толстой кишке на 21%. Пища не застаивается, не происходит образование лишних газов – ты с меньшей вероятностью познаешь проблему под кодовым названием “Пир духа”.

Подкорми бактерии, например, бананом – съешь его после обеда. А на сам обед отлично пойдет паста с артишоками и чесноком. Все эти продукты богаты фруктоолиго – сахаридами – Bifidobacterium animalis обожает этот вид углеводов и ест их с удовольствием, после чего с не меньшим удовольствием размножается. А с ростом популяции увеличиваются твои шансы на нормальное пищеварение.

Мы стараемся дать максимально актуальную и полезную информацию для вас и вашего здоровья. Материалы, размещенные на данной странице, носят информационный характер и предназначены для образовательных целей. Посетители сайта не должны использовать их в качестве медицинских рекомендаций. Определение диагноза и выбор методики лечения остается исключительной прерогативой вашего лечащего врача! Мы не несёт ответственности за возможные негативные последствия, возникшие в результате использования информации, размещенной на сайте сайт

Какие бывают бактерии: виды бактерий, их классификация

Бактерии — это крошечные микроорганизмы, которые появились много тысячелетий назад. Увидеть микробы невооруженным глазом невозможно, но не следует забывать об их существовании. Существует огромное количество бацилл. Их классификацией, изучением, разновидностями, особенностями строения и физиологии занимается наука микробиология.

Микроорганизмы по-разному называются, в зависимости от своего рода действий и функций. Под микроскопом можно наблюдать, как эти маленькие существа взаимодействуют друг с другом. Первые микроорганизмы были довольно примитивными по форме, но и их значение ни в коем случае нельзя преуменьшать. С самого начала бациллы развивались, создавали колонии, пытались выжить в изменчивых климатических условиях. Разные вибрионы способны обмениваться аминокислотами, чтобы в результате нормально расти, развиваться.

Сегодня трудно сказать, сколько на земле есть видов этих микроорганизмов (это число превышает миллион), но самые известные и их названия знакомы практически каждому человеку. Неважно, какие бывают и как называются микробы, все они имеют одно преимущество — они живут колониями, так им намного легче адаптироваться и выживать.

Для начала давайте разберемся, какие существуют микроорганизмы. Самая простая классификация — это хорошие и плохие. Другими словами те, которые несут вред человеческому организму, становятся причиной многих болезней и те, которые приносят пользу. Далее мы поговорим детально, какие есть основные полезные бактериии дадим их описание.

Можно также классифицировать микроорганизмы соответственно их форме, характеристике. Наверное, многие помнят, что в школьных учебниках была специальная таблица с изображением разных микроорганизмов, а рядышком было значение и их роль в природе. Есть несколько типов бактерий:

  • кокки — небольшие шарики, которые напоминают цепочку, так как располагаются друг за дружкой;
  • палочковидные;
  • спириллы, спирохеты (имеют извитую форму);
  • вибрионы.

Бактерии разных форм

Мы уже упоминали, что одна из классификаций делит микробы на виды в зависимости от их форм.

Бактерии палочки тоже имеют некоторые особенности. Например, есть виды палочковидных с заостренными полюсами, с утолщенными, с закругленными или же с прямыми концами. Как правило, палочковидные микробы очень разные и всегда находятся в хаосе, они не выстраиваются цепочкой (за исключением стрептобацилл), не крепятся друг к дружке (кроме диплобацилл).

К микроорганизмам шаровидных форм микробиологи относят стрептококки, стафилококки, диплококки, гонококки. Это могут быть пары или же длинные цепочки из шариков.

Изогнутые бациллы — это спириллы, спирохеты. Они всегда активны, но не производят спор. Спириллы безопасны для людей, для животных. Отличить спириллы от спирохет можно, если обратить внимание на количество завитков, они менее извиты, имеют специальные жгутики на конечностях.

Виды болезнетворных бактерий

Например, группа микроорганизмов под названием кокки, а более детально стрептококки и стафилококки становятся причиной настоящих гнойных заболеваний (фурункулез, стрептококковая ангина).

Анаэробы прекрасно живут и развиваются без кислорода, для некоторых типов этих микроорганизмов кислород вообще становится смертельным. Аэробные микробы нуждаются в кислороде для полноценного существования.

Археи— это практически бесцветные одноклеточные организмы.

Патогенных бактерий нужно остерегаться, ведь они вызывают инфекции, грамотрицательные микроорганизмы считаются устойчивыми к антителам. Много информации есть о почвенных, гнилостных микроорганизмах, которые бывают вредными, полезными.

В общей сложности спириллы не представляют собой опасности, но некоторые виды могут вызывать содоку.

Разновидности полезных бактерий

О том, что бациллы бывают полезные и вредные, знают даже школьники. Некоторые названия люди знают на слух (стафилококк, стрептококк, чумная палочка). Это вредные существа, которые мешают не только внешней среде, но и человеку. Есть микроскопические бациллы, которые вызывают пищевые отравления.

Обязательно нужно знать полезную информацию о молочнокислых, пищевых, пробиотических микроорганизмах. Например, пробиотики, иными словами хорошие организмы, часто применяют в медицинских целях. Вы спросите: для чего? Они не позволяют вредным бактериям размножаться внутри человека, укрепляют защитные функции кишечника, хорошо влияют на иммунную систему человека.

Бифидобактерии также очень полезны для кишечника. Молочнокислые вибрионы включают в себя около 25 видов. В человеческом организме они имеются в огромных количествах, но не являются опасными. Наоборот, защищают желудочно-кишечный тракт от гнилостных и других микробов.

Говоря о хороших, нельзя не упомянуть и огромный вид стрептомицетов. Они известны тем, кто принимал левомицетин, эритромицин и подобные препараты.

Есть такие микроорганизмы, как азотобактеры. Они много лет живут в грунтах, благотворно влияют на почву, стимулируют рост растений, очищают землю от тяжелых металлов. Они незаменимы в медицине, сельском хозяйстве, медицине, пищевой промышленности.

Виды изменчивости бактерий

По своей природе микробы очень непостоянные, они быстро умирают, они могут быть спонтанными, индуцированными. Мы не будем вдаваться в подробности об изменчивости бактерий, так как эта информация больше интереснатем, кого интересует микробиология и все ее ответвления.

Виды бактерий для септиков

Жители частных домов понимают острую необходимость очищать сточные воды, а также выгребные ямы. Сегодня быстро и качественно очистить стоки можно с помощью специальных бактерий для септиков. Для человека это огромное облегчение, так как заниматься чисткой канализации—дело не из приятных.

Мы уже прояснили, где применяется биологический вид очистки стоков, а теперь поговорим о самой системе. Бактерии для септиков выращиваются в лабораториях, они убивают неприятный запах стоков, дезинфицируют дренажные колодцы, выгребные ямы, уменьшают объем сточных вод. Есть три вида бактерий, которые используются для септиков:

  • аэробные;
  • анаэробные;
  • живые (биоактиваторы).

Очень часто люди используют комбинированные методы очистки. Строго следуйте инструкциям на препарате, следите, чтобы уровень воды способствовал нормальному выживанию бактерий. Также не забывайте использовать канализацию как минимум раз в две недели, чтобы бактериям было чем питаться, иначе они умрут. Не забывайте, что хлор из порошков и жидкостей для чистки, убивает бактерии.

Самыми популярными являются бактерии Доктор Робик, Септифос, Вэйст Трит.

Виды бактерий в моче

По идее бактерий в моче быть не должно, но после различных действий и ситуаций, крошечные микроорганизмы поселяются, где им вздумается: во влагалище, в носу, в воде и так далее. Если бактерии были обнаружены во время анализов, это означает, что человек страдает от болезней почек, мочевого пузыря или мочеточников. Есть несколько путей, по которым микроорганизмы попадают в мочу. Перед лечением очень важно исследовать и точно определить тип бактерий и способ попадания. Определить это можно при биологическом посеве мочи, когда бактерии помещают в благоприятную среду обитания. Далее проверяется реакция бактерий на различные антибиотики.

Мы желаем вам оставаться всегда здоровыми. Следите за собой, регулярно мойте руки, берегите свой организм от вредоносных бактерий!

Бактерии это одноклеточные организмы, лишенные хлорофилла.

Бактерии встречаются повсеместно, населяя все среды обитания. Наибольшее количество их находится в почве на глубине до 3 км (до 3 миллиардов в одном грамме почвы). Их много в воздухе (на высоте до 12 км), в организмах животных и растений (как живых, так и мертвых), не является исключением и организм человека.

Среди бактерий встречаются неподвижные и подвижные формы. Передви-гаются бактерии с помощью одного или нескольких жгути-ков, которые располагаются на всей поверхности тела или на определенном участке.

Клетки бактерий разнообразны по форме:

  • шаровидные - кокки,
  • палочковидные - ба-циллы,
  • в форме запятой - вибрионы,
  • извитые - спириллы.

Кокки :

Монококки: это отдельно расположенные клетки.

Диплококки: это парные кокки, после деления могут образовывать пары.

Гонококк Нейссера: возбудитель гонореи

Пневмококки: возбудитель крупозной пневмонии

Менингококки: возбудитель менингита (острое воспаление мозговых оболочек)

Стрептококки: это клетки округлой формы, которые после деления образуют цепочки.

α - зеленящие стрептококки

β - гемолитические стрептококки возбудители скарлатины, ангины, фарингита…

γ - не гемолитические стрептококки

Стафилококки: это группа микроорганизмов, которая не разошлась после деления, образует огромные беспорядочные грозди.

Возбудитель: гнойничковых заболеваний, сепсиса, фурункулов, абсцессов, флегмон, мастита, пиодермита и пневмонию у новорожденных.

Сарцины: это скопление кокков в группы в виде пакетиков по 8 и более кокков.

Палочковидные:

Это бактерии цилиндрической формы, похожие на палочки размером 1-5×0,5-1 мкм, чаще располагаются одиночно.

Собственно бактерии: это палочковидные бактерии, которые не образуют споры.

Бациллы: это палочковидные бактерии, которые образуют споры.

(бацилла Коха, кишечная палочка, возбудитель сибирской язвы, синегнойная палочка, возбудитель чумы, возбудитель коклюша, возбудитель мягкого шанкра, возбудитель столбняка, возбудитель ботулизма, возбудитель…)

Вибрионы:

Это слабо изогнутые клетки, напоминающие по форме запятые размером 1-3 мкм.

Холерный вибрион: возбудитель холеры. Обитает в воде, через которую происходит заражение.

Спириллы:

Это извитые микроорганизмы в виде спирали, с одни, двумя и более спиралевидными кольцами.

Безвредные бактерии, живущие в сточных водах и запруженных водоемах.

Спирохеты:

Это тонкие длинные топоровидные бактерии, представлены тремя видами: Трепонемы, Боррелия, Лертоспира. Для человека патогенна бледная трепонема - возбудитель сифилива передается половым путем.

Строение бактериальной клетки:

Структура бактериальной клетки хорошо изучена с помощью электронной микроскопии. Бактериальная клетка состоит из оболочки, наружный слой которой называется клеточная стенка, а внутренний - цитоплазматическая мембрана, а также цитоплазмы с включениями и нуклеотидами. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили, плазмиды;

Клеточная стенка - прочная, упругая структура, придающая бактерии определенную форму, и «сдерживающая» высокое осмотическое давление в бактериальной клетке. Она защищает клетку от дейст-вия вредных факторов внешней среды.

Наружная мембрана представлена липополисахаридами, фосфолипидами и белками. С ее внешней стороны расположен липо-полисахарид.

Между клеточной стенкой и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты.

Цитоплазматическая мембрана прилегает к внутренней по-верхности клеточной стенки бактерий и окружает наружную часть цитоплазмы бактерий. Она состоит из двойного слоя липидов, а также интегральных белков, пронизывающих ее насквозь.

Цитоплазма занимает основной объем бактериальной клетки и состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул - рибосом, ответст-венных за синтез белков. В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, жирных ки-слот и полифосфатов.

Нуклеотид - эквивалент ядра у бактерий. Он расположен в цито-плазме бактерий в виде двух нитчатой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Обычно в бактериальной клетке содер-жится одна хромосома, представленная замкнутой в кольцо мо-лекулой ДНК.

Кроме нуклеотида в бактериальной клетке могут находиться внехромосомные факторы наследственности - плазмиды, пред-ставляющие собой ковалентно замкнутые кольца ДНК и способ-ные к репликации независимо от бактериальной хромосомы.

Капсула - слизистая структура, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние грани-цы. Обычно капсула состоит из полисахаридов, иногда из поли-пептидов,

Многие бактерии содержат микрокапсулу - слизистое образова-ние, выявляемое лишь при электронной микроскопии.

Жгутики бактерий определяют подвижность клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, они прикреплены к цитоплазматической мембране и клеточной стенке специальными дисками, имеют большую длину, они состоят из белка - флагеллина, закрученного в виде спирали. Жгутики выяв-ляют с помощью электронного микроскопа.

Споры - своеобразная форма покоящихся грамположительных бактерий, образующихся во внешней среде при неблагопри-ятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.).

L-формы бактерий .

У многих бактерий при частичном или полном разрушении клеточных стенок образуются L-формы. У некоторых они возникают спонтанно. Обра-зование L-форм происходит под действием пенициллина, который нарушает синтез мукопептидов клеточной стен-ки. По морфологии L-формы разных видов бактерий сходны между собой. Они представляют шаровидные, образования различной величины: от 1-8 мкм до 250 нм, они способных, как и вирусы, прохо-дить через поры фарфоровых фильтров. Однако в отли-чие от вирусов L-формы можно выращивать на искусст-венных питательных средах, добавляя к ним пенициллин, сахара, лошадиную сыворотку. При удалении из пита-тельной среды пенициллина L-формы вновь превращают-ся в исходные формы бактерий.

В настоящее время получены L-формы протея, кишечной палочки, холерного вибриона, бруцелл, возбудителей газовой гангрены и столбняка и других микроорганизмов.

Грамположительные микроорганизмы (гр + м/о).

К ним относят : золотистый и эпидермальный стафилококк и стрептококк...

Место обитания : верхние дыхательные пути и кожа.

Резервуар : кожа, воздух, предметы ухода, мебель, постельные принадлежности, одежду.

При высушивании не погибают.

Размножение: вне человека не размножаются, но способны к размножению в продуктах питания при не правильном хранении.

Грамотрицательные микроорганизмы (гр - м /о).

К ним относят : кишечная палочка, клебсиелла, цитробактер, протей, синегнойная палочка...

Место обитания : кишечник, слизистая мочевыводящих и дыхательных путей…

Резервуар : влажная ветошь, щетки для мытья посуды, дыхательная аппаратура, влажные поверхности, лекарственные и слабые дез. растворы.

При высушивании погибают.

Размножение: накапливаются во внешней среде, в дез. растворах с заниженной концентрацией.

Передаются : воздушно-капельным и контактно-бытовым путем.

История изучения

Основы общей микробиологии и изучения роли бактерий в природе заложили Бейеринк Мартинус Виллем и Виноградский Сергей Николаевич .

Изучение строения бактериальной клетки началось с изобретением электронного микроскопа в 1930-е годы . В 1937 году Э. Чаттон предложил делить все организмы по типу клеточного строения на прокариот и эукариот, и в 1961 году Стейниер и Ван Ниль окончательно оформили это разделение. Развитие молекулярной биологии привело к открытию в 1977 году К. Вёзе коренных различий и среди самих прокариот: между бактериями и археями.

Строение

Подавляющее большинство бактерий (за исключением актиномицетов и нитчатых цианобактерий) одноклеточны . По форме клеток они могут быть округлыми (кокки), палочковидными (бациллы , клостридии , псевдомонады), извитыми (вибрионы , спириллы , спирохеты), реже - звёздчатыми, тетраэдрическими , кубическими, C- или O-образными. Формой определяются такие способности бактерий, как прикрепление к поверхности, подвижность, поглощение питательных веществ. Отмечено, например, что олиготрофы , то есть бактерии, живущие при низком содержании питательных веществ в среде, стремятся увеличить отношение поверхности к объёму, например, с помощью образования выростов (т. н. простек).

Из обязательных клеточных структур выделяют три:

С внешней стороны от ЦПМ находятся несколько слоёв (клеточная стенка , капсула , слизистый чехол), называемых клеточной оболочкой , а также поверхностные структуры (жгутики , ворсинки). ЦПМ и цитоплазму объединяют вместе в понятие протопласт .

Строение протопласта

ЦПМ ограничивает содержимое клетки (цитоплазму) от внешней среды. Гомогенная фракция цитоплазмы, содержащая набор растворимых РНК , белков , продуктов и субстратов метаболических реакций, названа цитозолем . Другая часть цитоплазмы представлена различными структурными элементами.

Вся необходимая для жизнедеятельности бактерий генетическая информация содержится в одной ДНК (бактериальная хромосома), чаще всего имеющей форму ковалентно замкнутого кольца (линейные хромосомы обнаружены у Streptomyces и Borrelia ). Она в одной точке прикреплена к ЦПМ и помещается в структуре, обособленной, но не отделённой мембраной от цитоплазмы, и называемой нуклеоид . ДНК в развёрнутом состоянии имеет длину более 1 мм. Бактериальная хромосома представлена обычно в единственном экземпляре, то есть практически все прокариоты гаплоидны , хотя в определённых условиях одна клетка может содержать несколько копий своей хромосомы, а Burkholderia cepacia имеет три разных кольцевых хромосомы (длиной 3,6; 3,2 и 1,1 млн пар нуклеотидов). Рибосомы прокариот также отличны от таковых у эукариот и имеют константу седиментации 70 S (80 S у эукариот).

Помимо этих структур, в цитоплазме также могут находиться включения запасных веществ.

Клеточная оболочка и поверхностные структуры

У бактерий существует два основных типа строения клеточной стенки, свойственных грамположительным и грамотрицательным видам.

Клеточная стенка грамположительных бактерий представляет собой гомогенный слой толщиной 20-80 нм, построенный в основном из пептидогликана с меньшим количеством тейхоевых кислот и небольшим количеством полисахаридов , белков и липидов (так называемый липополисахарид). В клеточной стенке имеются поры диаметром 1-6 нм, которые делают её проницаемой для ряда молекул.

У грамотрицательных бактерий пептидогликановый слой неплотно прилегает к ЦПМ и имеет толщину лишь 2-3 нм. Он окружён наружной мембраной, имеющей, как правило, неровную, искривлённую форму. Между ЦПМ, слоем пептидогликана и внешней мембраной имеется пространство, называемое периплазматическим и заполненное раствором, включающим в себя транспортные белки и ферменты .

С внешней стороны от клеточной стенки может находиться капсула - аморфный слой, сохраняющий связь со стенкой. Слизистые слои не имеют связи с клеткой и легко отделяются, чехлы же не аморфны, а имеют тонкую структуру. Однако между этими тремя идеализированными случаями есть множество переходных форм.

Размеры

Размеры бактерий в среднем составляют 0,5-5 мкм . Масса - 4⋅10 −13 г . Escherichia coli , например, имеет размеры 0,3-1 на 1-6 мкм , Staphylococcus aureus - диаметр 0,5-1 мкм , Bacillus subtilis - 0,75 на 2-3 мкм . Крупнейшей из известных бактерий является Thiomargarita namibiensis , достигающая размера в 750 мкм (0,75 мм ). Второй является Epulopiscium fishelsoni , имеющая диаметр 80 мкм и длину до 700 мкм и обитающая в пищеварительном тракте хирурговой рыбы Acanthurus nigrofuscus . Achromatium oxaliferum достигает размеров 33 на 100 мкм , Beggiatoa alba - 10 на 50 мкм . Спирохеты могут вырастать в длину до 250 мкм при толщине 0,7 мкм . В то же время к бактериям относятся самые мелкие из имеющих клеточное строение организмов. Mycoplasma mycoides имеет размеры 0,1-0,25 мкм , что соответствует размеру крупных вирусов , например, табачной мозаики , коровьей оспы или гриппа . По теоретическим подсчётам, сферическая клетка диаметром менее 0,15-0,20 мкм становится неспособной к самостоятельному воспроизведению, поскольку в ней физически не могут поместиться все необходимые биополимеры и структуры в достаточном количестве.

При линейном увеличении радиуса клетки её поверхность возрастает пропорционально квадрату радиуса, а объём - пропорционально кубу, поэтому у мелких организмов отношение поверхности к объёму выше, чем у более крупных, что означает для первых более активный обмен веществ с окружающей средой. Метаболическая активность, измеренная по разным показателям, на единицу биомассы у мелких форм выше, чем у крупных. Поэтому небольшие даже для микроорганизмов размеры дают бактериям и археям преимущества в скорости роста и размножения по сравнению с более сложноорганизованными эукариотами и определяют их важную экологическую роль.

Многоклеточность у бактерий

Многоклеточный организм должен отвечать следующим условиям:

  • его клетки должны быть агрегированы,
  • между клетками должно осуществляться разделение функций,
  • между агрегированными клетками должны устанавливаться устойчивые специфические контакты.

Многоклеточность у прокариот известна, наиболее высокоорганизованные многоклеточные организмы принадлежат к группам цианобактерий и актиномицетов . У нитчатых цианобактерий описаны структуры в клеточной стенке, обеспечивающие контакт двух соседних клеток - микроплазмодесмы . Показана возможность обмена между клетками веществом (красителем) и энергией (электрической составляющей трансмембранного потенциала). Некоторые из нитчатых цианобактерий содержат помимо обычных вегетативных клеток функционально дифференцированные: акинеты и гетероцисты . Последние осуществляют фиксацию азота и интенсивно обмениваются метаболитами с вегетативными клетками.

Способы передвижения и раздражимость

Многие бактерии подвижны. Имеется несколько принципиально различных типов движения бактерий. Наиболее распространено движение при помощи жгутиков: одиночных бактерий и бактериальных ассоциаций (роение). Частным случаем этого также является движение спирохет , которые извиваются благодаря аксиальным нитям, близким по строению к жгутикам , но расположенным в периплазме. Другим типом движения является скольжение бактерий , не имеющих жгутиков, по поверхности твёрдых сред и движение в воде безжгутиковых бактерий рода Synechococcus . Его механизм пока недостаточно изучен; предполагается участие в нём выделения слизи (проталкивание клетки) и находящихся в клеточной стенке фибриллярных нитей, вызывающих «бегущую волну» по поверхности клетки. Наконец, бактерии могут всплывать и погружаться в жидкости, меняя свою плотность, наполняя газами или опустошая аэросомы .

Бактерии активно передвигаются в направлении, определяемом теми или иными раздражителями. Это явление получило название таксис . Различают хемотаксис, аэротаксис, фототаксис и др.

Метаболизм

Конструктивный метаболизм

За исключением некоторых специфических моментов биохимические пути, по которым осуществляется синтез белков , жиров , углеводов и нуклеотидов , у бактерий схожи с таковыми у других организмов. Однако по числу возможных вариантов этих путей и, соответственно, по степени зависимости от поступления органических веществ извне они различаются.

Часть из них может синтезировать все необходимые им органические молекулы из неорганических соединений (автотрофы), другие же требуют готовых органических соединений, которые они способны лишь трансформировать (гетеротрофы).

Удовлетворять потребности в азоте бактерии могут как за счёт его органических соединений (подобно гетеротрофным эукариотам), так и за счёт молекулярного азота (как и некоторые археи). Большинство бактерий используют для синтеза аминокислот и других азотсодержащих органических веществ неорганические соединения азота: аммиак (поступающий в клетки в виде ионов аммония), нитриты и нитраты (которые предварительно восстанавливаются до ионов аммония). Фосфор они способны усваивать в виде фосфата , серу - в виде сульфата или реже сульфида .

Энергетический метаболизм

Способы же получения энергии у бактерий отличаются своеобразием. Существует три вида получения энергии (и все три известны у бактерий): брожение, дыхание и фотосинтез.

Бактерии, осуществляющие только бескислородный фотосинтез, не имеют фотосистемы II . Во-первых, это пурпурные и зелёные нитчатые бактерии, у которых функционирует только циклический путь переноса электронов, направленный на создание трансмембранного протонного градиента, за счёт которого синтезируется АТФ (фотофосфорилирование), а также восстанавливается НАД(Ф) + , использующийся для ассимиляции CO 2 . Во-вторых, это зелёные серные и гелиобактерии, имеющие и циклический, и нециклический транспорт электронов, что делает возможным прямое восстановление НАД(Ф) + . В качестве донора электрона, заполняющего «вакансию» в молекуле пигмента в бескислородном фотосинтезе используются восстановленные соединения серы (молекулярная, сероводород, сульфит) или молекулярный водород.

Существуют также бактерии с весьма специфическим энергетическим метаболизмом. Так, в октябре 2008 года в журнале Science появилось сообщение об обнаружении экосистемы, состоящей из представителей одного единственного ранее неизвестного вида бактерии - Desulforudis audaxviator , которые получают энергию для своей жизнедеятельности из химических реакций с участием водорода, образующегося в результате распада молекул воды под воздействием радиации залегающих вблизи нахождения колонии бактерий урановых руд . Некоторые колонии бактерий, обитающие на дне океана, используют для передачи энергии своим собратьям электрический ток .

Типы жизни

Объединить типы конструктивного и энергетического метаболизма можно в следующей таблице:

Способы существования живых организмов (матрица Львова)
Источник энергии Донор электрона Источник углерода Название способа существования Представители
ОВР Неорганические соединения Углекислый газ Хемолитоавтотрофия Нитрифицирующие, тионовые, ацидофильные железобактерии
Органические соединения Хемолитогетеротрофия Метанообразующие архебактерии, водородные бактерии
Органические вещества Углекислый газ Хемоорганоавтотрофия Факультативные метилотрофы , окисляющие муравьиную кислоту бактерии
Органические соединения Хемоорганогетеротрофия Большинство прокариот, из эукариот: животные , грибы , человек
Свет Неорганические соединения Углекислый газ Фотолитоавтотрофия Цианобактерии , пурпурные , зелёные бактерии , из эукариот: растения
Органические соединения Фотолитогетеротрофия Некоторые цианобактерии, пурпурные, зелёные бактерии
Органические вещества Углекислый газ Фотоорганоавтотрофия Некоторые пурпурные бактерии
Органические вещества Фотоорганогетеротрофия Галобактерии, некоторые цианобактерии , пурпурные, зелёные бактерии

Из таблицы видно, что разнообразие типов питания прокариот гораздо больше, чем у эукариот (последние способны лишь к хемоорганогетеротрофии и фотолитоавтотрофии).

Размножение и устройство генетического аппарата

Размножение бактерий

Некоторые бактерии не имеют полового процесса и размножаются лишь равновеликим бинарным поперечным делением или почкованием . Для одной группы одноклеточных цианобактерий описано множественное деление (ряд быстрых последовательных бинарных делений, приводящий к образованию от 4 до 1024 новых клеток). Для обеспечения необходимой для эволюции и приспособления к изменчивой окружающей среде пластичности генотипа у них существуют иные механизмы.

Генетический аппарат

Гены, необходимые для жизнедеятельности и определяющие видовую специфичность, расположены у бактерий чаще всего в единственной ковалентно замкнутой молекуле ДНК - хромосоме (иногда для обозначения бактериальных хромосом, чтобы подчеркнуть их отличия от эукариотических, используют термин генофор (англ. genophore )). Область, где локализована хромосома, называется нуклеоид и не окружена мембраной. В связи с этим новосинтезированная мРНК сразу доступна для связывания с рибосомами, а транскрипция и трансляция сопряжены.

Отдельная клетка может содержать лишь 80 % от суммы генов, имеющихся во всех штаммах её вида (т. н. «коллективный геном»).

Помимо хромосомы, в клетках бактерий часто находятся плазмиды - также замкнутые в кольцо ДНК, способные к независимой репликации . Они могут быть настолько велики, что становятся неотличимы от хромосомы, но содержат дополнительные гены, необходимые лишь в специфических условиях. Специальные механизмы распределения обеспечивают сохранение плазмиды в дочерних клетках так, что они теряются с частотой менее 10 −7 в пересчёте на клеточный цикл. Специфичность плазмид может быть весьма разнообразной: от присутствия лишь у одного вида-хозяина до плазмиды RP4, встречающейся почти у всех грамотрицательных бактерий. В плазмидах кодируются механизмы устойчивости к антибиотикам , разрушения специфических веществ и т. д., nif-гены, необходимые для азотфиксации, также находятся в плазмидах. Ген плазмиды может включаться в хромосому с частотой около 10 −4 - 10 −7 .

В ДНК бактерий, как и в ДНК других организмов, выделяются транспозоны - мобильные сегменты, способные перемещаться из одной части хромосомы к другой, или во внехромосомные ДНК. В отличие от плазмид, они неспособны к автономной репликации и содержат IS-сегменты - участки, которые кодируют свой перенос внутри клетки. IS-сегмент может выступать в роли отдельной транспозоны.

Горизонтальный перенос генов

У прокариот может происходить частичное объединение геномов. При конъюгации клетка-донор в ходе непосредственного контакта передаёт клетке-реципиенту часть своего генома (в некоторых случаях весь). Участки ДНК донора могут обмениваться на гомологичные участки ДНК реципиента. Вероятность такого обмена значима только для бактерий одного вида.

Аналогично бактериальная клетка может поглощать и свободно находящуюся в среде ДНК, включая её в свой геном в случае высокой степени гомологии с собственной ДНК. Данный процесс носит название трансформация . В природных условиях протекает обмен генетической информацией при помощи умеренных фагов (трансдукция). Кроме этого, возможен перенос нехромосомных генов при помощи плазмид определённого типа, кодирующих этот процесс, процесс обмена другими плазмидами и передачи транспозон.

При горизонтальном переносе новых генов не образуется (как то имеет место при мутациях), однако осуществляется создание разных генных сочетаний. Это важно по той причине, что естественный отбор действует на всю совокупность признаков организма.

Клеточная дифференциация

Клеточная дифференциация - изменение набора белков (обычно также проявляющееся в изменении морфологии) при неизменном генотипе.

Образование покоящихся форм

Образование особо устойчивых форм с замедленным метаболизмом, служащих для сохранения в неблагоприятных условиях и распространения (реже для размножения) является наиболее распространённым видом дифференциации у бактерий. Наиболее устойчивыми из них являются эндоспоры , формируемые представителями Bacillus , Clostridium , Sporohalobacter , Anaerobacter (образует 7 эндоспор из одной клетки и может размножаться с их помощью ) и Heliobacterium . Образование этих структур начинается как обычное деление и на первых стадиях может быть превращено в него некоторыми антибиотиками. Эндоспоры многих бактерий способны выдерживать 10-минутное кипячение при 100 °C, высушивание в течение 1000 лет и, по некоторым данным, сохраняются в почвах и горных породах в жизнеспособном состоянии миллионы лет.

Менее устойчивыми являются экзоспоры , цисты (Azotobacter , скользящие бактерии и др.), акинеты (цианобактерии) и миксоспоры (миксобактерии).

Другие типы морфологически дифференцированных клеток

Актиномицеты и цианобактерии образуют дифференцированные клетки, служащие для размножения (споры, а также гормогонии и баеоциты соответственно). Необходимо также отметить структуры, подобные бактероидам клубеньковых бактерий и гетероцистам цианобактерий, служащие для защиты нитрогеназы от воздействия молекулярного кислорода.

Классификация

Наибольшую известность получила фенотипическая классификация бактерий, основанная на строении их клеточной стенки, включённая, в частности, в IX издание Определителя бактерий Берджи (1984-1987). Крупнейшими таксономическими группами в ней стали 4 отдела: Gracilicutes (грамотрицательные), Firmicutes (грамположительные), Tenericutes (микоплазмы) и Mendosicutes (археи).

В последнее время всё большее развитие получает филогенетическая классификация бактерий (и именно она используется в Википедии), основанная на данных молекулярной биологии. Одним из первых методов оценки родства по сходству генома был предложенный ещё в 1960-х годах метод сравнения содержания гуанина и цитозина в ДНК. Хотя одинаковые значения их содержания и не могут дать никакой информации об эволюционной близости организмов, их различия на 10 % означают, что бактерии не принадлежат к одному роду. Другим методом, произведшим в 1970-е настоящую революцию в микробиологии, стал анализ последовательности генов в 16s рРНК , который позволил выделить несколько филогенетических ветвей эубактерий и оценить связи между ними. Для классификации на уровне вида применяется метод ДНК-ДНК гибридизации . Анализ выборки хорошо изученных видов позволяет считать, что 70 % уровень гибридизации характеризует один вид, 10-60 % - один род, менее 10 % - разные роды.

Филогенетическая классификация отчасти повторяет фенотипическую, так, группа Gracilicutes присутствует и в той и в другой. В то же время систематика грамотрицательных бактерий была полностью пересмотрена, архебактерии и вовсе выделены в самостоятельный таксон высшего ранга , часть таксономических групп разбита на части и перегруппирована, в одни группы объединены организмы с совершенно разными экологическими функциями, что вызывает ряд неудобств и недовольство части научного сообщества. Объектом нареканий становится и то, что проводится фактически классификация молекул, а не организмов.

Происхождение, эволюция, место в развитии жизни на Земле

Бактерии наряду с археями были одними из первых живых организмов на Земле, появившись около 3,9-3,5 млрд лет назад. Эволюционные взаимоотношения между этими группами ещё до конца не изучены, есть как минимум три основные гипотезы : Н. Пэйс предполагает наличие у них общего предка протобактерии, Заварзин считает архей тупиковой ветвью эволюции эубактерий, освоившей экстремальные местообитания; наконец, по третьей гипотезе археи - первые живые организмы, от которых произошли бактерии.

Патогенные бактерии

Патогенными называются бактерии, паразитирующие на других организмах. Бактерии вызывают большое количество заболеваний человека, таких как чума (Yersinia pestis ), сибирская язва (Bacillus anthracis ), лепра (проказа, возбудитель: Mycobacterium leprae ), дифтерия (Corynebacterium diphtheriae ), сифилис (Treponema pallidum ), холера (Vibrio cholerae ), туберкулёз (Mycobacterium tuberculosis ), листериоз (Listeria monocytogenes ) и др. Открытие патогенных свойств у бактерий продолжается: в 1976 обнаружена болезнь легионеров , вызываемая Legionella pneumophila , в 1980-е -1990-е годы было показано, что Helicobacter pylori вызывает язвенную болезнь и даже рак желудка , а также хронический