Энергия связи. Энергия связи ядер

Темы кодификатора ЕГЭ: энергия связи нуклонов в ядре, ядерные силы.

Атомное ядро, согласно нуклонной модели, состоит из нуклонов - протонов и нейтронов. Но какие силы удерживают нуклоны внутри ядра?

За счёт чего, например, держатся вместе два протона и два нейтрона внутри ядра атома гелия? Ведь протоны, отталкиваясь друг от друга электрическими силами, должны были бы разлететься в разные стороны! Может быть, это гравитационное притяжение нуклонов друг к другу не даёт ядру распасться?

Давайте проверим. Пусть два протона находятся на некотором расстоянии друг от друга. Найдём отношение силы их электрического отталкивания к силе их гравитационного притяжения:

Заряд протона Кл, масса протона кг, поэтому имеем:

Какое чудовищное превосходство электрической силы! Гравитационное притяжение протонов не то что не обеспечивает устойчивость ядра - оно вообще не заметно на фоне их взаимного электрического отталкивания.

Следовательно, существуют иные силы притяжения, которые скрепляют нуклоны внутри ядра и превосходят по величине силу электрического отталкивания протонов. Это - так называемые ядерные силы.

Ядерные силы.

До сих пор мы знали два типа взаимодействий в природе - гравитационные и электромагнитные. Ядерные силы служат проявлением нового, третьего по счёту типа взаимодействий - сильного взаимодействия. Мы не будем вдаваться в механизм возникновения ядерных сил, а лишь перечислим их наиболее важные свойства.

1. Ядерные силы действуют между любыми двумя нуклонами: протоном и протоном, протоном и нейтроном, нейтроном и нейтроном.
2. Ядерные силы притяжения протонов внутри ядра примерно в 100 раз превосходят силу электрического отталкивания протонов. Более мощных сил, чем ядерные, в природе не наблюдается.
3. Ядерные силы притяжения являются короткодействующими: радиус их действия составляет около м. Это и есть размер ядра - именно на таком расстоянии друг от друга нуклоны удерживаются ядерными силами. При увеличении расстояния ядерные силы очень быстро убывают; если расстояние между нуклонами станет равным м, ядерные силы почти полностью исчезнут.

На расстояниях, меньших м, ядерные силы становятся силами отталкивания.

Сильное взаимодействие относится к числу фундаментальных - его нельзя объяснить на основе каких-то других типов взаимодействий. Способность к сильным взаимодействиям оказалась свойственной не только протонам и нейтронам, но и некоторым другим элементарным частицам; все такие частицы получили название адронов . Электроны и фотоны к адронам не относятся - они в сильных взаимодействиях не участвуют.

Атомная единица массы.

Массы атомов и элементарных частиц чрезвычайно малы, и измерять их в килограммах неудобно. Поэтому в атомной и ядерной физике часто применяется куда более мелкая единица - так
называемая атомная единица массы (сокращённо а. е. м.).

По определению, атомная единица массы есть 1/12 массы атома углерода . Вот её значение с точностью до пяти знаков после запятой в стандартной записи:

А. е. м.кг г.

(Такая точность нам впоследствии понадобится для вычисления одной очень важной величины, постоянно применяющейся в расчётах энергии ядер и ядерных реакций.)

Оказывается, что 1 а. е. м., выраженная в граммах, численно равна величине, обратной к постоянной Авогадро моль:

Почему так получается? Вспомним, что число Авогадро есть число атомов в 12г углерода. Кроме того, масса атома углерода равна 12 а. е. м. Отсюда имеем:

поэтому а. е. м.=г, что и требовалось.

Как вы помните, любое тело массы m обладает энергией покоя E, которая выражается формулой Эйнштейна:

. (1)

Выясним, какая энергия заключена в одной атомной единице массы. Нам надо будет провести вычисления с достаточно высокой точностью, поэтому берём скорость света с пятью знаками после запятой:

Итак, для массы а. е. м. имеем соответствующую энергию покоя :

Дж. (2)

В случае малых частиц пользоваться джоулями неудобно - по той же причине, что и килограммами. Существует гораздо более мелкая единица измерения энергии - электронвольт (сокращённо эВ).

По определению, 1 эВ есть энергия, приобретаемая электроном при прохождении ускоряющей разности потенциалов 1 вольт:

ЭВ КлВ Дж. (3)

(вы помните, что в задачах достаточно использовать величину элементарного заряда в виде Кл, но здесь нам нужны более точные вычисления).

И вот теперь, наконец, мы готовы вычислить обещанную выше очень важную величину - энергетический эквивалент атомной единицы массы, выраженный в МэВ. Из (2) и (3) получаем:

ЭВ . (4)

Итак, запоминаем: энергия покоя одной а. е. м. равна 931,5 МэВ . Этот факт вам неоднократно встретится при решении задач.

В дальнейшем нам понадобятся массы и энергии покоя протона, нейтрона и электрона. Приведём их с точностью, достаточной для решения задач.

А. е. м., МэВ;
а. е. м., МэВ;
а. е. м., МэВ.

Дефект массы и энергия связи.

Мы привыкли, что масса тела равна сумме масс частей, из которых оно состоит. В ядерной физике от этой простой мысли приходится отвыкать.

Давайте начнём с примера и возьмём хорошо знакомую нам -частицу ядро . В таблице (например, в задачнике Рымкевича) имеется значение массы нейтрального атома гелия: она равна 4,00260 а. е. м. Для нахождения массы M ядра гелия нужно из массы нейтрального атома вычесть массу двух электронов, находящихся в атоме:

В то же время, суммарная масса двух протонов и двух нейтронов, из которых состоит ядро гелия, равна:

Мы видим, что сумма масс нуклонов, составляющих ядро, превышает массу ядра на

Величина называется дефектом массы. В силу формулы Эйнштейна (1) дефекту массы отвечает изменение энергии:

Величина обозначается также и называется энергией связи ядра . Таким образом, энергия связи -частицы составляет приблизительно 28 МэВ.

Каков же физический смысл энергии связи (и, стало быть, дефекта масс)?

Чтобы расщепить ядро на составляющие его протоны и нейтроны, нужно совершить работу против действия ядерных сил. Эта работа не меньше определённой величины ; минимальная работа по разрушению ядра совершается в случае, когда высвободившиеся протоны и нейтроны покоятся.

Ну а если над системой совершается работа, то энергия системы возрастает на величину совершённой работы. Поэтому суммарная энергия покоя нуклонов, составляющих ядро и взятых по отдельности, оказывается больше энергии покоя ядра на величину .

Следовательно, и суммарная масса нуклонов, из которых состоит ядро, будет больше массы самого ядра. Вот почему возникает дефект массы.

В нашем примере с -частицей суммарная энергия покоя двух протонов и двух нейтронов больше энергии покоя ядра гелия на 28 МэВ. Это значит, что для расщепления ядра на составляющие его нуклоны нужно совершить работу, равную как минимум 28 МэВ. Эту величину мы и назвали энергией связи ядра.

Итак, энергия связи ядра - это минимальная работа, которую необходимо совершить для расщепления ядра на составляющие его нуклоны.

Энергия связи ядра есть разность энергий покоя нуклонов ядра, взятых по отдельности, и энергии покоя самого ядра. Если ядро массы состоит из протонов и нейтронов, то для энергии связи имеем:

Величина , как мы уже знаем, называется дефектом массы.

Удельная энергия связи.

Важной характеристикой прочности ядра является его удельная энергия связи , равная отношению энергии связи к числу нуклонов:

Удельная энергия связи есть энергия связи, приходящаяся на один нуклон, и имеет смысл средней работы, которую необходимо совершить для удаления нуклона из ядра.

На рис. 1 представлена зависимость удельной энергии связи естественных (то есть встречающихся в природе 1 ) изотопов химических элементов от массового числа A.

Рис. 1. Удельная энергия связи естественных изотопов

Элементы с массовыми числами 210–231, 233, 236, 237 в естественных условиях не встречаются. Этим объясняются пробелы в конце графика.

У лёгких элементов удельная энергия связи возрастает с ростом , достигая максимального значения 8,8 МэВ/нуклон в окрестности железа (то есть в диапазоне изменения примерно от 50 до 65). Затем она плавно убывает до величины 7,6 МэВ/нуклон у урана .

Такой характер зависимости удельной энергии связи от числа нуклонов объясняется совместным действием двух разнонаправленных факторов.

Первый фактор - поверхностные эффекты . Если нуклонов в ядре мало, то значительная их часть находится на поверхности ядра. Эти поверхностные нуклоны окружены меньшим числом соседей, чем внутренние нуклоны, и, соответственно, взаимодействуют с меньшим числом соседних нуклонов. При увеличении доля внутренних нуклонов растёт, а доля поверхностных нуклонов - падает; поэтому работа, которую нужно совершить для удаления одного нуклона из ядра, в среднем должна увеличиваться с ростом .

Однако с возрастанием числа нуклонов начинает проявляться второй фактор - кулоновское отталкивание протонов . Ведь чем больше протонов в ядре, тем большие электрические силы отталкивания стремятся разорвать ядро; иными словами, тем сильнее каждый протон отталкивается от остальных протонов. Поэтому работа, необходимая для удаления нуклона из ядра, в среднем должна уменьшаться с ростом .

Пока нуклонов мало, первый фактор доминирует над вторым, и потому удельная энергия связи возрастает.

В окрестности железа действия обоих факторов сравниваются друг с другом, в результате чего удельная энергия связи выходит на максимум. Это область наиболее устойчивых, прочных ядер.

Затем второй фактор начинает перевешивать, и под действием всё возрастающих сил кулоновского отталкивания, распирающих ядро, удельная энергия связи убывает.

Насыщение ядерных сил.

Тот факт, что второй фактор доминирует у тяжёлых ядер, говорит об одной интересной особенности ядерных сил: они обладают свойством насыщения. Это означает, что каждый нуклон в большом ядре связан ядерными силами не со всеми остальными нуклонами, а лишь с небольшим числом своих соседей, и число это не зависит от размеров ядра.

Действительно, если бы такого насыщения не было, удельная энергия связи продолжала бы возрастать с увеличением - ведь тогда каждый нуклон скреплялся бы ядерными силами со всё большим числом нуклонов ядра, так что первый фактор неизменно доминировал бы над вторым. У кулоновских сил отталкивания не было бы никаких шансов переломить ситуацию в свою пользу!

Почему ядро атома устойчиво? Что удерживает внутри него нейтроны, не имеющие заряда, и положительно заряженные протоны?

Это явление невозможно объяснить с точки зрения электромагнитного воздействия между заряженными частицами. Нейтроны не несут заряд, поэтому электромагнитные силы на них не действуют. Ну, а протоны, положительно заряженные частицы, должны были бы отталкиваться друг от друга. Но этого не происходит. Частицы не разлетаются, и ядро не распадается. Какие же силы заставляют нуклоны держаться вместе?

Ядерные силы

Силы, удерживающие внутри ядра протоны и нейтроны, называют ядерными силами . Очевидно, что они должны значительно превосходить электростатические силы отталкивания и силы гравитационного притяжения частиц. Ядерные силы - самые мощные из всех сил, существующих в природе. Опытным путём установлено, что по величине они в 100 раз превышают силы электростатического отталкивания. Но действуют они только на малом расстоянии, внутри ядра. И если это расстояние хоть на очень малую величину больше диаметра ядра, действие ядерных сил прекращается, и атом начинает распадаться под воздействием сил электростатического отталкивания. Поэтому эти силы короткодействующие .

Ядерные силы – это силы притяжения. Они не зависят от того, имеет частица заряд или нет, поскольку внутри ядра они удерживают и заряженные протоны, и не несущие заряд нейтроны. Величина этих сил одинакова для пары протонов, пары нейтронов или пары нейтрон-протон. Взаимодействие ядерных сил называют сильным взаимодействием .

Энергия связи ядра. Дефект масс

Благодаря ядерным силам, нуклоны в ядре связаны очень прочно. Для того, чтобы разорвать эту связь, нужно совершить работу, то есть, затратить определённую энергию. Минимальную энергию, необходимую для разделения ядра на отдельные частицы, называют энергией связи ядра атома . При соединении отдельных нуклонов в ядро атома выделяется энергия, по величине равная энергии связи. Эта энергия имеет огромную величину. К примеру, если сжечь 2 вагона каменного угля, то выделится энергия, которую можно получить при синтезе всего лишь 4 г химического элемента гелия.

Как определить величину энергии связи?

Для нас очевидно, что суммарная масса апельсина равна сумме масс всех его долек. Если каждая долька весит 15 г, а долек в апельсине 10, то вес апельсина 150 г. По аналогии казалось бы, масса ядра должна быть равна сумме масс нуклонов, из которых оно состоит. На самом же деле всё оказывается не так. Эксперименты показывают, что масса ядра меньше суммы масс частиц, в него входящих. Как такое возможно? Куда исчезает часть массы?

Вспомним закон эквивалентности массы и энергии, который называется также законом взаимосвязи массы и энергии и выражается формулой Эйнштейна:

E = mc 2 ;

где Е – энергия, m – масса, с – скорость света.

m = E/c 2 .

Согласно этому закону масса не исчезает, а превращается в энергию, выделяемую при соединении нуклонов в ядро.

Разность масс ядра и суммарной массы отдельных нуклонов, входящих в него, называют дефектом массы и обозначают Δ m .

Находящаяся в покое масса содержит огромный запас энергии. И при соединении нуклонов в ядро выделяется энергия ΔЕ = Δm · c 2 , а масса ядра уменьшается на величину Δ m . То есть, дефект масс – величина, эквивалентная энергии, которая выделяется при образовании ядра.

Δ m = ΔE/c 2 .

Дефект масс можно определить и по-другому:

Δ m = Z · m p + N · m n - M я

где Δ m – дефект масс,

M я – масса ядра,

m p – масса протона,

m n – масса нейтрона,

Z – число протонов в ядре,

N – число нейтронов в ядре.

M я < Z · m p + N · m n .

Оказывается, дефект масс имеют все химические элементы за исключением протия, атома водорода, в ядре которого всего один протон и ни одного нейтрона. И чем больше нуклонов в ядре элемента, тем больше дефект массы для него.

Зная массы частиц, которые взаимодействуют в ядерной реакции, а также частиц, которые образуются в результате, можно определить величину выделяемой и поглощаемой ядерной энергии.

Абсолютно любого химического вещества состоит из определенного набора протонов и нейтронов. Они удерживаются вместе благодаря тому, что внутри частицы присутствует энергия связи атомного ядра.

Характерной особенностью ядерных сил притяжения является их очень большая мощность на сравнительно маленьких расстояниях (примерно от 10 -13 см). С ростом расстояния между частицами ослабевают и силы притяжения внутри атома.

Рассуждение об энергии связи внутри ядра

Если представить, что имеется способ отделять по очереди от ядра атома протоны и нейтроны и располагать их на таком расстоянии, чтобы энергия связи атомного ядра переставала действовать, то это должно быть очень тяжелой работой. Для того чтобы извлечь из ядра атома его составляющие, нужно постараться преодолеть внутриатомные силы. Эти усилия пойдут на то, чтобы разделить атом на содержащиеся в нем нуклоны. Поэтому можно судить, что энергия атомного ядра меньше чем энергия тех частиц, из которых оно состоит.

Равна ли масса внутриатомных частиц массе атома?

Уже в 1919 году исследователи научились измерять массу атомного ядра. Чаще всего его «взвешивают» при помощи особых технических приборов, которые получили название масс-спектрометров. Принцип работы таких приборов состоит в том, что сравниваются характеристики движения частиц с различными массами. При этом такие частицы имеют одинаковые электрические заряды. Подсчеты показывают, что те частицы, которые обладают разными показателями массы, двигаются по различным траекториям.

Современные ученые выяснили с большой точностью массы всех ядер, а также входящих в их состав протонов и нейтронов. Если же сравнить массу определенного ядра с суммой масс содержащихся в нем частиц, то окажется, что в каждом случае масса ядра будет больше, чем масса отдельно взятых протонов и нейтронов. Эта разница составит приблизительно 1% для любого химического вещества. Поэтому можно сделать вывод, что энергия связи атомного ядра - это 1% энергии его покоя.

Свойства внутриядерных сил

Нейтроны, которые находятся внутри ядра, отталкиваются друг от друга кулоновскими силами. Но при этом атом не распадается на части. Этому способствует присутствие силы притяжения между частицами в атоме. Такие силы, которые имеют природу, отличную от электрической, называются ядерными. А взаимодействие нейтронов и протонов называется сильным взаимодействием.

Вкратце свойства ядерных сил сводятся к следующим:

  • это зарядовая независимость;
  • действие лишь на коротких расстояниях;
  • а также насыщаемость, под которой понимается удерживание друг около друга лишь определенного количества нуклонов.

По закону сохранения энергии, в тот момент, когда ядерные частицы соединяются, происходит выброс энергии в виде излучения.

Энергия связи атомных ядер: формула

Для упомянутых вычислений используется общепринятая формула:

Е св =(Z·m p +(A-Z)·m n -M я )·c²

Здесь под Е св понимается энергия связи ядра; с - скорость света; Z -количество протонов; (A-Z ) - число нейтронов; m p обозначает массу протона; а m n - массу нейтрона. M я обозначает массу ядра атома.

Внутренняя энергия ядер различных веществ

Чтобы определить энергию связи ядра, используется одна и та же формула. Вычисляемая по формуле энергия связи, как ранее уже было указано, составляет не более 1% от общей энергии атома или энергии покоя. Однако при детальном рассмотрении оказывается, что это число довольно сильно колеблется при переходе от вещества к веществу. Если попробовать определить его точные значения, то они будут особенно различаться у так называемых легких ядер.

Например, энергия связи внутри водородного атома составляет ноль, потому что в нем находится лишь один протон.Энергия связи ядра гелия будет равна 0,74%. У ядер вещества под названием тритий это число будет равно 0,27%. У кислорода - 0,85%. В ядрах, где находится порядка шестидесяти нуклонов, энергия внутриатомной связи будет составлять около 0,92%. Для атомных ядер, обладающих большей массой, это число будет постепенно уменьшаться до 0,78%.

Чтобы определить энергию связи ядра гелия, трития, кислорода, или же любого другого вещества, используется та же формула.

Типы протонов и нейтронов

Основные причины подобных различий могут быть объяснены. Ученые выяснили, что все нуклоны, которые содержатся внутри ядра, делятся на две категории: поверхностные и внутренние. Внутренние нуклоны - это те, что оказываются окружены другими протонами и нейтронами со всех сторон. Поверхностные же окружены ими лишь изнутри.

Энергия связи атомного ядра - это сила, которая выражена больше у внутренних нуклонов. Нечто подобное, кстати, происходит и при поверхностном натяжении различных жидкостей.

Сколько нуклонов помещается в ядре

Выяснено, что количество внутренних нуклонов особенно мало у так называемых легких ядер. А у тех, что относятся к категории самых легких, практически все нуклоны расцениваются как поверхностные. Считается, что энергия связи атомного ядра - это величина, которая должна расти с количеством протонов и нейтронов. Но даже такой рост не может продолжаться до бесконечности. При определенном количестве нуклонов - а это от 50 до 60 - приходит в действие другая сила - их электрическое отталкивание. Оно происходит даже независимо от наличия энергии связи внутри ядра.

Энергия связи атомного ядра в различных веществах используется учеными для того, чтобы высвободить ядерную энергию.

Многих ученых всегда интересовал вопрос: откуда возникает энергия, когда более легкие ядра сливаются в тяжелые? На самом деле, данная ситуация аналогична атомному делению. В процессе слияния легких ядер, точно так же, как это происходит при расщеплении тяжелых, всегда образуются ядра более прочного типа. Чтобы «достать» из легких ядер все находящиеся в них нуклоны, требуется затратить меньше количество энергии, нежели то, что выделяется при их объединении. Обратное утверждение также является верным. На самом деле энергия синтеза, которая приходится на определенную единицу массы, может быть и больше удельной энергии деления.

Ученые, исследовавшие процессы деления ядра

Процесс был открыт учеными Ганом и Штрасманом в 1938 году. В стенах Берлинского химического университета исследователи открыли, что в процессе бомбардировки урана другими нейтронами, он превращается в более легкие элементы, стоящие в середине таблицы Менделеева.

Немалый вклад в развитие этой области знания внесла и Лиза Мейтнер, которой Ган в свое время предложил изучать радиоактивность вместе. Ган разрешил Мейтнер работать лишь на том условии, что она будет проводить свои исследования в подвале и никогда не станет подниматься на верхние этажи, что было фактом дискриминации. Однако это не помешало достичь ей значительных успехов в исследованиях атомного ядра.

Более детально (2.3) записывается следующим образом:

называется дефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них ядра.

Процесс полного расщепления ядра на составляющие его нуклоны является скорее гипотетическим. В действительности при делении ядер и других ядерных реакциях происходит распад ядра на два, реже более осколков. Знание энергии связи ядер позволяет рассчитать энергетический баланс не только для довольно редкого процесса полного расщепления, но и для любых процессов распада и взаимных превращений ядер. Например, энергия E p отделения протона, т.е. минимальная энергия, необходимая для выбивания протона из ядра Z X A равна разности энергий связи ядер Z X A и Z-1 X A-1:

Для выбивания из ядра α-частицы нужна энергия, равная:

Этот вариант формулы более удобен, так как в большинстве экспериментов измеряется масса атома, а не масса ядра. Поэтому в таблицах обычно приводятся значения масс нейтральных атомов.

Энергия связи любого ядра положительна; она должна составлять заметную часть его энергии покоя. Точные значения масс атомных ядер определяются с помощью специальных приборов, называемых масс-спектрометрами .

Энергия связи, отнесенная к массовому числу А называется удельной энергией связи нуклонов в ядре:

E уд = ΔE св / A = Δmc 2 / A.

Величина E уд показывает, какую энергию в среднем необходимо затратить, чтобы удалить из ядра один нуклон, не сообщая ему кинетической энергии. Величина E уд уд имеет своё значение для каждого ядра. Чем больше E уд , тем более устойчиво ядро. На рисунке 2.2 приведена зависимость E уд от массового числа A .

Видно, что E уд вырастает от 0 МэВ при А = 1 (протон) до 8.7 МэВ при A =50-60 (24 Cr - 30 Zn) и постепенно уменьшается до 7.5 МэВ для последнего встречающего в природе элемента (92 U). Для сравнения, энергия связи валентных электронов в атоме порядка 10 эВ , что в миллион раз меньше. Из рисунка 2.2 видно, что наибольшей удельной энергией связи обладают ядра с массовыми числами в диапазоне от 50 до 60. С уменьшением или возрастанием A удельная энергия связи уменьшается с разной интенсивностью, так как уменьшение удельной энергии происходит по разным механизмам.

Главные причины различия в энергии связи разных ядер заключается в следующем. Все нуклоны, из которых состоит ядро, можно условно разделить на две группы: поверхностные и внутренние.

Внутренние нуклоны окружены соседними нуклонами со всех сторон, поверхностные же имеют соседей только с внутренней стороны. Поэтому внутренние нуклоны взаимодействуют с остальными нуклонами сильнее, чем поверхностные. Но процент внутренних нуклонов особенно мал у легких ядер (у самых легких ядер все нуклоны можно считать поверхностными) и постепенно повышается по мере утяжеления. Поэтому и энергия связи растет вместе с ростом числа нуклонов в ядре. Однако этот рост не может продолжаться очень долго, так как начиная с некоторого достаточно большого число нуклонов (A = 50-60) количество протонов становится настолько большим (практически в любом ядре протоны составляют не менее 40% общего числа нуклонов), что делается заметным их взаимное электрическое отталкивание даже на фоне сильного ядерного притяжения. Это отталкивание и приводит к уменьшению энергии связи у тяжелых ядер.

Различие в энергии связи разных ядер может быть использовано для освобождения внутриядерной энергии . Энергетически выгодно:

  • деление тяжелых ядер на более легкие;
  • слияние легких ядер друг с другом в более тяжелые.

Как в первом, так и во втором случаях получаются более прочные (более устойчивые) ядра, чем исходные. При обоих процессах выделяется огромное количество энергии; эти процессы в настоящее время реализованы практически: реакции деления ядер и реакции термоядерного синтеза ядер (глава 4).

Проблема термоядерного синтеза решена наполовину: освоен взрывной синтез.

Среднее значение уд > равно 8 МэВ , причем для большинства ядер E уд ≈ уд > = 8 МэВ. Поэтому энергия связи атомных ядер в первом приближении может быть выражена через массовое число соотношением:

ΔE св ≈ ∙A ≈ 8 МэВ.

Это соотношение позволяет сделать два вывода относительно свойств ядерных сил, связывающих нуклоны в ядре.

Из пропорциональности ΔЕ св и A следует свойство насыщения ядерных сил, т.е. способность нуклона к взаимодействию не со всеми окружающими его нуклонами, а только с ограниченным их числом. Действительно, если бы каждый нуклон ядра взаимодействовал со всеми остальными (A - 1) нуклонами, то суммарная энергия связи была бы пропорциональна A ∙(A - 1) ≈ A 2 ,не A .

Энергия связи является мерой прочности ядра. Особенно велика энергия связи у 2 He 4 , 6 С 12 , 8 О 16 и других четно-четных ядер.

Ядра с полностью заполненными оболочками являются наиболее устойчивыми - магические ядра, у которых число протонов Z или нейтронов N равно одному из магических чисел: 2, 8, 20, 28, 50, 82, 26.

Ядра, у которых магическими являются и Z , и N , называются дважды магическими. Дважды магических ядер известно всего пять: 2 He 4 , 8 О 16 , 20 Ca 40 , ???, 82 Pb 208 .

В частности, особенная устойчивость ядра гелия проявляется в том, что это единственная частица, испускаемая тяжелыми ядрами при радиоактивном распаде (она называется α-частицей).

Из большой величины средней энергии связи уд > ≈ 8 МэВ следует чрезвычайно большая интенсивность ядерного взаимодействия. Так, например, средняя энергия связи нуклона в ядре 2 He 4 ( уд > ≈ 7 МэВ ) существенно больше кулоновского расталкивания двух протонов этого ядра. Это следовало ожидать: в противном случае протоны в ядре не могли бы быть связаны.

Изотопы водорода отличаются друг от друга по массе в два или три раза. Дейтерий нерадиоактивен, входит в качестве небольшой смеси в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода, ее физические свойства заметно отличаются от свойств обычной воды. При нормальном атмосферном давлении она кипит при 101,2 С и замерзает при –3,8 С. Тритий имеет атомную массу 3, он бета-активен, с периодом полураспада 12 лет.

Смесью трех изотопов является природный уран, который состоит из U-238 (99,28%), U-235 (0,714%), U-234 (0,006%), ядра этих изото-

Всего известно около 2000 естественных и искусственно полученных радиоактивных изотопов. Некоторые изотопы, встречающиеся в природе, и почти все изотопы, которые получены искусственным путем, не могут существовать сколь угодно долго. Такие неустойчивые изотопы принято называть радионуклидами .

Термин «изотопы» следует применять только в тех случаях, когда речь идет об атомах одного и того же химического элемента. Если подразумеваются атомы разных химических элементов, рекомендуется использовать термин «нуклиды».

Например, смесь радионуклидов Sr-90, I-131, Cs-137, но изотопы углерода С-12, С-14. Природный калий представлен тремя изотопами: K-39, K-40, K-41; соответственно, 93,08%, 0,0119% и 6,91%.

Атомные ядра с одинаковым массовым числом А и разнымZ называютсяизобарами , а атомные ядра с одинаковым числом нейтроновN (приN = A – Z ) называютизотонами .

Например: ядра 40 18 Ar,40 19 K,40 20 Ca –изобары (для нихА = 40);

ядра 136 54 Хе,138 56 Ва,139 57 La –изотоны (для нихN = 82).

Существование изотопов доказывает, что заряд ядра определяет не все свойства атома, а лишь его химические свойства и те физические свойства, которые зависят от электронной оболочки, например размеры. Масса же атома и его радиоактивные свойства не определяются порядковым номером в таблице Менделеева.

3.2. Энергия связи атомных ядер

Нуклоны в ядрах находятся в состояниях, существенно отличающихся от их свободных состояний. За исключением ядра обычного водорода, во всех ядрах имеется не менее двух нуклонов, между кото-

рыми существует ядерное сильное взаимодействие – притяжение, обеспечивающее устойчивость ядер, несмотря на отталкивание одноименно заряженных протонов, т. е. между нуклонами, составляющими ядро атома, действуют особого рода силы, называемые ядерными . Особенностью этих сил является то, что они действуют лишь на очень малых расстояниях только между соседними нуклонами.

Прочность ядер характеризуется энергией связи . По своей величине энергия связи равна той работе, которую необходимо затратить для разрушения ядра на составляющие его нуклоны без придания им кинетической энергии. Такое же количество энергии освобождается при образовании ядра из нуклонов. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

Энергия связи нуклонов в ядре в миллионы раз превышает энергию связи атомов в молекуле. Поэтому при химических превращениях веществ атомные ядра не изменяются.

При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Количество заключенной в веществе энергии непосредственно связано с его массой соотношением Эйнштейна

Точнейшие измерения масс ядер показывают, что масса покоя ядра всегдаменьшесуммымасспокояслагающихегопротоновинейтронов:

Уменьшение массы при образовании ядра из нуклонов означает, что при этом уменьшается энергия этой системы нуклонов на величиину энергии связи Е св :

m c2 Z m

m c2 .

При образовании ядра из частиц последние за счет действия ядерных сил на малых расстояниях устремляются с огромным ускорением друг к другу. Излучаемые при этом гамма-кванты как раз обладают энергиейЕ св и массойm .

Энергия связи, приходящаяся на один нуклон (т. е. полная энергия связи поделенная на число нуклонов в ядре), называется удельной энергией связи :

Е св.

Чем больше по абсолютной величине удельная энергия связи, тем сильнее взаимодействие между нуклонами и тем прочнее ядро. Наибольшая энергия связи, приходящаяся на один нуклон, порядка 8,75 МэВ, присуща элементам средней части таблицы Менделеева.

3.3. Радиоактивность. Закон радиоактивного распада

Явление самопроизвольного (спонтанного) изменения структуры ядра атома одного элемента и превращение его в более устойчивое ядро атома другого элемента называется радиоактивностью , а само неустойчивое ядро –радиоактивным .

Каждый такой отдельный акт самопроизвольного превращения ядер с испусканием элементарных частиц или их групп называется радиоактивным распадом . Если радиоактивный распад сопровождается испусканием альфа-частиц, то это альфа-распад; бета-частиц – бета-распад. Альфа- и бета-распады обычно сопровождаются гаммаизлучением.

Возникающие при самостоятельных превращениях ядер атомов потоки элементарных частиц или их групп являются ионизирующими излучениями . Различают три вида радиоактивных излучений: альфа-, бета- и гамма-излучение.

Из общего числа (около 2 тыс.) известных ныне радиоактивных нуклидов лишь около 300 являются природными, остальные получены искусственным путем в результате ядерных реакций.

Самопроизвольные превращения радиоактивных ядер приводят к непрерывному уменьшению числа ядер атомов исходного радионуклида и образованию дочерних продуктов.

Для определенного радиоактивного вещества вероятность распада каждого ядра одинакова в любой момент времени, т. к. ядра распадаются независимо друг от друга.

Закон радиоактивного распада для любых превращений ядер устанавливает, что за единицу времени распадается всегда одна и та же доля нераспавшихся ядер данного радионуклида. Эту долю называют постоянной распадаи обозначают. В общем виде этот закон выражается экспоненциальной зависимостью:

N N0 et ,

где N – число ядер, распавшихся за времяt ;N 0 – начальное число ядер

радионуклида; е = 2,718; – постоянная распада, и соответствующий ей период полураспада зависит только от устойчивости ядер.

Этот закон, выражающий уменьшение количества ядер атомов радиоактивного вещества во времени, называется законом радиоактивного распада (рис. 4).

Рис. 4. График радиоактивного распада:

N 0 – исходное количество радиоактивного вещества;Т 1/2 – период полураспада вещества

Радионуклид может превращаться в другой радионуклид, что приводит к образованию так называемых радиоактивных цепочек .

Для любого момента времени

N 1N 0

e 1 t ;

N0 (e 1 t e 2 t )

где N 1 иN 2 – число ядер материнского и дочернего радионуклидов;N 0 – число ядер материнского радионуклида в начальный момент времени;1 и2 – постоянные распада материнского и дочернего радионуклидов.

Для характеристики устойчивости ядер радиоактивного вещества относительно распада используется понятие «период полураспада». Период полураспада радиоактивных веществ – промежуток времени, в течение которого в результате радиоактивного распада количество ядер данного радиоактивного вещества уменьшается в два раза. Соответственно вдвое уменьшается интенсивность ионизирующего излучения, испускаемого этим радиоактивным веществом. Между постоянной

распада () и периодом полураспада (Т 1/2 ) существует соотношение

0,693 .

Величина, обратная постоянной распада, называется средним

временем жизни радиоактивного ядра:

Т 1/ 2

1,443 Т 1/ 2 .

Период полураспада для различных радионуклидов имеет протяженность от долей секунды до миллиардов лет. Соответственно, и радиоактивные вещества разделяют на короткоживущие (часы, дни) и долгоживущие (многие годы).

Например: 214 84 Po (Т 1/2 = 1,6 10–4 с); 238 92 U (Т 1/2 = 4,47 1010 лет).

Период полураспада – одна из основных характеристик радиоактивных веществ, которую учитывают при их практическом применении. Так, при гамма-терапии предпочтение отдают радиоактивным веществам с большим периодом полураспада.

Например: 137 55 Cs (Т 1/2 = 30 лет);27 60 Co (Т 1/2 = 5,25 года).

При введении радиоактивных веществ в организм с диагностической целью стремятся свести к минимуму дозу облучения органов и