Седна. Попытка осмысления

С открытием какого-либо нового космического объекта перед астрологами встают вопросы: как же интерпретировать этот объект, стоит ли вообще обращать на него внимание - ведь на сегодняшний день открыто неимоверное множество различных мелких космических тел.

Седна была открыта 14 ноября 2003 года в 6 часов 32 мин. 57 сек. Всемирного времени (все используемые данные по открытию Седны и ее эфемериды взяты с сайта АстроЛогик). Согласно различным источникам ее диаметр составляет от 1700 до 2000 км, а астероидами считаются тела размерами от 1 до 1000 км. Скорее всего, Седна является, с астрологической точки зрения, планетой, как и Хирон, хотя он в диаметре составляет всего 170 км.

Попытаемся дать интерпретацию Седне как астрологическому объекту, используя при этом методики Авестийской астрологической школы (АША), а также выяснить, что несет нам ее открытие.

Замечено, что планета открывается в то время, когда максимально ее проявление и та ситуация, те тенденции, существующие в мире, будут тождественны проявлению данной планеты. Так, например, Плутон был открыт в 1930 году между двумя мировыми войнами, когда происходили следующие мировые процессы: образование массовых партий, подъем профсоюзного движения, начало складывания общемировой политической системы от Лиги Наций до ООН и объединения человечества в единую семью, начало работ по созданию ядерного оружия. В астрологии Плутон интерпретируется как владыка самых сильных энергий, силы толпы и массовости. Уран был открыт в 1781 году, когда в Англии делались изобретения, перевернувшие мировое производство (прядильная машина, паровой двигатель, печатная машина), в 1789 году началась Великая французская революция, выдвинувшая лозунг "Свобода, равенство, братство". Уран в астрологии - показатель неожиданности, свободы, откровения.

Если рассматривать Седну по такой же аналогии, то следует также отметить основные тенденции в мировом развитии. Их, на взгляд автора, две.

Во-первых, это глобальное потепление и вызванное этим повышение уровня вод мирового океана, возможно, вызванное антропогенным давлением на землю. Во-вторых, в социальном развитии - это глобализация в самом широком смысле этого слова. Это не только объединение экономических систем, но и смешение культур, интеграция стран, свободное движение человека по миру.

У эскимосов Арктического побережья Канады Седна считается самым могущественным из духов и управляет погодой. В день открытия данного объекта астрономами 14 ноября 2003 года в восточных штатах США произошел ураган, в результате которого более миллиона человек остались без электроэнергии. Думается, что это не случайное совпадение, тем более что ураган случился в той стране, где открыли Седну, и на том континенте, где родился миф о ней. Все вышесказанное наводит на мысль, что основная астрологическая функция Седны связана с природными стихиями на уровне изменения климата нашей планеты. Интересно, что в это время в США происходили съемки фильма - катастрофы (оледенение земли) "Послезавтра".

Если рассмотреть цикличность (оборот вокруг Солнца, а он составляет, по разным источникам, от 10000 до 12000 лет), то предыдущее максимальное приближение к Земле было обусловлено потеплением климата и отступлением последнего ледника, а также подъемом уровня океана, который затопил, в частности, "перемычку" между Евразией и Америкой. Максимальное приближение и наибольшая скорость могут соответствовать наибольшей астрологической силе проявления планеты (Плутон наибольшую скорость имеет в Скорпионе).

Седна, рис. с сайта The Universe - LightStorm"s Site

В развитии цивилизации эта эпоха приходится на промежуточный этап между палеолитом и неолитом, то есть на мезолит . Этот период характеризуется новыми условиями жизни древнего человека: появились лук и стрелы, микролитические орудия (улучшилась технология обработки камня), впервые была приручена собака, возросла роль рыболовства, человек стал больше двигаться, перемещаться, поэтому стационарные жилища вытесняются легко разбираемыми и переносными. Адаптация к новым климатическим условиям была пройдена человечеством успешно.

И в настоящее время мир находится на подобном переломе. Человечество становится все более подвижным, мобильным, новые открытия и изобретения существенно меняют образ жизни людей. Например, изобретение лука и стрел на одном обороте Седны соответствует появлению авиации и космонавтики на следующем обороте. Следовательно, Седна за свой оборот увеличивает качество и силу того или иного явления не на порядок, как это делают планеты верхнего септенера по сравнению с обычным септенером, а возводит в степень.

Интересно то, что некоторые народы так и оставались до нашего времени на уровне мезолитического развития и среди них эскимосы, которые и создали миф о Седне. А на нынешнем возвращении Седны таких народов уже практически не осталось - всех так или иначе коснулась современная западная цивилизация.

Кроме того, данный цикл перекликается с периодом обозримой истории человечества, что еще раз подтверждает взаимосвязь Седны с развитием цивилизации.

Как уже отмечалось выше, Седна может давать возможность адаптации к новым условиям существования, возможность выживания в новых, ранее не известных условиях, а с другой стороны, сама и создает эти новые условия среды обитания, используя при этом различные силы природы, причем в глобальном их проявлении (потепление климата, таяние ледника).

Седна имеет сильно вытянутую эллиптическую орбиту и когда она находится ближе всего к Земле (около 1000 лет), то имеет максимальное "воздействие", а затем, когда она улетает в бездонное пространство космоса, возможно, что "воздействие" ослабевает.

По мнению автора, прохождение Седной знаков Зодиака стоит рассматривать только в контексте всемирного развития и общих процессов, характерных для всего Земного шара в целом. Рассмотрим прохождение планетой трех знаков Зодиака, в которых Седна ближе всего к Земле и имеет максимальную скорость.

Если наблюдать прохождение Седной знака Рыб (1630-1865), то можно заметить, что в это время произошло становление глобальной сети тайных масонских организаций, которыми были проведены их основные "мероприятия": создание США и Великая французская революция. Кстати, идея глобализации, то есть объединения всех народов в один народ и религий в одну религию под неусыпным оком "великого" архитектора вселенной принадлежит именно масонам.

При положении Седны в знаке Овна (1865-1967) людьми были созданы самые мощные армии и средства разрушения, причем не столько разрушения, сколько глобального уничтожения. Все технические открытия направлялись вначале только на создание оружия. Прошли самые кровопролитные войны в истории человечества.

В начале семидесятых годов XX века, когда Седна вошла в Телец, начался постепенный процесс разоружения: были подписаны договоры ОСВ-1, ОСВ-2 и ПРО.

В Тельце Седна с 1967 года, когда человечество стало объединять свои национальные экономические системы в одну - глобальную. Всем стало понятно, что воевать (имеются в виду мировые войны) невыгодно. Появились государства благосостояния, началась борьба с бедностью во всемирных масштабах. Экономические успехи Западной (Атлантической) цивилизации были настолько велики, что выстроилась всемирная система перекачки ресурсов из всего мира в эти страны (проблема золотого миллиарда).

Видимо, и в индивидуальном гороскопе Седна будет работать только в том случае, если человек будет каким-либо образом связан с глобальными проблемами Земли.

У Генерального секретаря ООН Кофи Анана, впервые выбранного на столь высокую должность не от какого-либо государства, а из недр самой глобальной организации, Седна находится в соединении с Солнцем и Сатурном в Овне.

Не только натальное положение, но и транзит Седны можно заметить у известных людей. Так, у некоего Владимира Вольфовича Солнце находится в 5 градусе Тельца. Седна там петляла с 1975 по 1977 год. Вероятно, В. В. стал серьезно увлекаться мировой политикой именно тогда. Но это не значит, что на каждого человека, родившегося в начале Тельца, Седна обязательно повлияла. Скорее всего, она осталась незаметной для многих. Критерием проявления планеты в личной карте предположительно может быть как Хварна и харизма года рождения (методика АША), так и значительная выделенность планет верхнего септенера.

Седна, вероятно, будет проявляться и у тех людей, которые могут вывести цивилизацию на нечто новое, позволяющее совершить огромный скачок в развитии, а также у людей, занимающихся экологическими проблемами в глобальных масштабах.

Очень интересна такая функция Седны, описанная в мифах, как, возмездие людям за грехи. Если люди грешат, то их грехи, как грязь, запутываются в волосах Седны, тогда она гневается - держит моржей и тюленей далеко от берега, и в эскимосских селениях наступает голод. Значит, в это приближение к Земле Седна может выступать и с карающей ролью (фильм-катастрофа "Послезавтра"). Если для эскимосов морские животные - это основа питания и жизни, то у нас такой основой является земля, производящая нам пищу. Следовательно, Седна может лишить человечество части плодородных земель? Астрономы открыли Седну при движении ее по созвездию Кита. Кит в авестийской астрологии воспринимается как нечто поглощающее и проглатывающее материю. Видимо, и у Седны будет часть таких функций. По крайней мере, еще 72 года Седна будет приближаться, и у человечества есть еще шанс задуматься.

Взглянув на карту , построенную на момент открытия Седны, сразу же бросается в глаза противостояние на узлах Солнца с заходящим Узлом (символизирующим прошлое, накопленное, уже созданное) и Седны с восходящим Узлом (показывающим направление развития), к тому же Солнце в Скорпионе в 4 доме (традиции, истоки, прошлое), а Седна в Тельце в 10 доме (цель, стремление, отрыв). Сразу вспоминается миф, в котором Седна враждебна мужчинам. Культуролог бы сказал, что миф сложился в эпоху матриархата и был бы прав. Но астролог увидит в этой враждебности неприятие мужских качеств, выраженных Солнцем, Марсом и Юпитером. Получается, что Седна, в настоящее время предупреждает нас об ограничении техногенного натиска и активного антропогенного давления на природу. Мужские активные тенденции в мировом развитии будут постепенно отходить на второй план, отдавая лидерство противоположному началу, связанному с основами женской сущности: накоплению, сохранению, взращиванию. Творческое преображение мира уступает место стабильности? Накопленный груз по заходящему Узлу - героическое прошлое с ярко окрашенным мужским началом, который, с одной стороны, тянет вниз, а с другой - должен быть базой для дальнейшего развития. И пустая чаша по восходящему Узлу, куда должно направиться в своем движении человечество, - объединение всех людей с природой и стихиями. Однако в 10 доме находится Черная Луна, предупреждающая о том, что на этом пути подстерегают большие испытания и искушения. Этим движением могут воспользоваться злые силы, масоны, например. Поэтому основой всех этих процессов должно стать очищение и отказ от претензий на лидерство, на желание возглавить данный процесс.

В соединениях находятся и диспозиторы (они же и альмутены, и сигнификаторы Солнца и Седны), что усиливает фатальность и неизбежность всей вышеописаной ситуации.

Открытие Седны можно воспринимать как показатель выхода на новый этап в развитии человечества, как предупреждение и предостережение о возможном изменении климата и условий жизни на нашей планете, о необходимости приспосабливаться к этим условиям, если земляне не осознают и не перестроят свою деятельность, идущую в разрез с законами природы.

Поскольку цикличность движения планеты очень большая, то и все процессы, связанные с Седной, будут длительные, и события с ее подачи будут развиваться на глазах нескольких десятков поколений.

Сергей Згазинский.

В Солнечной системе существуют так называемые транснептуновые объекты - космические тела, отдаленные от Солнца дальше , последней планеты системы. Считалось что самые крупные из них держатся ближе к границе планетной зоны. Своим открытием Седна разрушила это убеждение - она имеет 1000 километров в поперечнике, но при этом улетает от Солнца в 20 раз дальше .

На сегодняшний день Седна считается самой удаленной среди значимых объектов нашей системы. Её афелий, предельное расстояние от Солнца, достигает отметки 936 астрономических единиц - то есть Седна в 936 раз дальше нашей планеты. В переводе на цифры это 144 миллиардов километров. Для того чтобы построить цепочку напрямую к Седне, понадобится 107142 таких звезд, как Солнце! Но даже в перигелии, ближайшей к Солнцу точке, новооткрытый объект не подходит ближе 80 . Как же астрономы смогли узнать о Седне больше, чем о самом факте ее существования?

Благодарить приходится орбитальные телескопы, такие как «Хаббл», и наземные - вроде 80-сантиметрового телескопа «Тенагра-II». Кроме того, Седна, как объект-рекордсмен, привлекла внимание не только астрономов, но и широкой общественности. Выросший о того поток финансирования позволил наблюдать Седну с помощью семи лучших наземных и трех орбитальных телескопов.

Орбита Седны, в центре кружочками отмечены орбиты внешних планет Солнечной системы.

До сих пор неизвестно, как Седна выглядит. Но астрономы уже знают цвет, состав и даже детальные орбитальные характеристики планеты - а именно:

  • Размеры Седны достаточно большие - ее диаметр колеблется около 1000 километров, делая ее тем самым шестой по величине среди транснептуновых объектов. Для сравнения, первые места занимают Плутон и Эрида с поперечниками в 2368 и 2340 километров соответственно.
  • Состав Седны был вычислен при помощи ряда спектрографических исследований, проведенных тремя орбитальными телескопами. Он схож с составами других транснептуновых планет, комет и спутников газовых гигантов - были обнаружены признаки водяного льда, а также льдов замерзших органических веществ. Итоговую плотность Седны астрофизики оценивают как 2 г/см 3 - сравнимо с плотностью обычной кухонной соли.
  • Важный факт - органика в составе поверхности Седны не является признаком существования на планете жизни в прошлом или настоящем. Но присутствие органических веществ является необходимым фактором для ее возникновения.
  • Форма и специфика поверхности Седны неизвестны. Однако ученые выяснили, что поверхность планета красная - такая же, как у . Также предполагается, что у планеты будет правильная, шарообразная форма - ее размеров и предполагаемого веса достаточно для сферизации. Такой форме еще способствует удаленность планеты от какого-то либо крупного объекта, способного мешать ей своей гравитацией.
  • Но интересуются Седной ученые в первую очередь за ее орбитальные характеристики. Главной из них является отдаленность перигелия от Солнца - 76,3 астрономической единицы, и эксцентричность афелия почти в 1000 а.е., который доходит до внутренних границ облака . На прохождение громадной дистанции своей орбиты, Седна тратит 4,5 миллиона дней, что немногим больше 12 тысяч лет. Таким образом, весь путь человека от обезьяны до сегодняшнего времени прошел за 166 седнианских лет.

Почему Седна так привлекает астрономов? Тайна отдаленности ее орбиты может рассказать многое про историю образования Солнечной системы, построенную сейчас преимущественно на теориях. Кроме того, сама Седна - настоящая археологическая памятка, поскольку благодаря своей изолированности от других объектов сохранила свойства, присущие первоначальному материалу нашей системы. Недаром НАСА ее внесло в список запланированных исследований. Правда, для того чтобы достигнуть расстояния, равного ближайшей возможной дистанции к Седне, зонду « » понадобилось ­бы больше 30 лет.

История исследования Седны

Открытие планеты

Обнаружила отдаленную Седну 14 ноября 2003 года сборная команда астрономов - Чедвик Трухильо, Дэвид Рабиновиц и Майкл Браун. Он возглавлял проект и большинство дальнейших исследований Седны. Брауна можно назвать одним из самых выдающихся астрономов современности - он открыл 16 транснептуновых объектов, среди которых и Квавар, крупное небесное тело размером в треть Луны. Еще он открыл астероид Ромулус I - часть тройного астероида (87) Сильвия.

Также Майкл Браун известен простотой и доступностью своих научных трудов и пренебрежением академическими формальностями - например, он назвал Эриду и ее спутник Дисномию Ксеной и Габриэллой в честь одноименных персонажей телесериала «Ксена: принцесса-воин». Седна же получила свое название от эскимосской богини морей, живущей на дне Северного ледовитого океана. Астронома вдохновило то, что Седна улетает на рекордное состояние от Солнца и на ней много льдов и очень холодно - в среднем около -260 °С. Это всего лишь на 13 градусов теплее абсолютного ноля.

Открыли Седну на базе Паломарской обсерватории, во время масштабной программы поиска удаленных объектов Солнечной системы. На момент обнаружения планета была отдалена на дистанцию около 100 астрономических единиц - засечь столь маленькое тело позволил телескоп Шмидта длиною в 1,2 метра и с камерой разрешением в 172 мегапикселя. Одна фотография такой камеры не поместилась бы на 4-гигабайтную флешку.

Дальнейшие исследования

После обнаружения новой планеты на нее обратились взоры телескопов всего мира - но первую скрипку продолжала играть команда Брауна. Продолжив исследования, они вычислили предварительную орбиту Седны - с помощью этого удалось отследить планету на фотографиях вплоть до 1990 года и высчитать ее орбиту точнее. С определением размеров пришлось куда сложнее - окончательный результат был получен лишь в 2012 году с орбитального телескопа Гершеля. ­

Немалую роль в изучении Седны сыграли мощности обсерватории Тенагра, размещенной в штате Аризона. Несмотря на то что обсерватория принадлежит к числу лучших лабораторий США, ее построил любитель - Майкл Шварц, профессиональный археолог. Астрономия была мечтой его детства - и, реализовав себя в другой сфере деятельности, он воплотил ее с лихвой.

Но «отношения» астрономов и Седны только начинаются. В 2075 году планета максимально приблизится к Солнцу - в этот период ее можно будет куда детальнее изучить с помощью телескопов. В честь редкой гостьи, прилетающей раз в 12 тысяч лет, ученые могут запустить к ней зонд с комплексной исследовательской программой - вроде «Вояджеров» или « ».

Особенности Седны

Планета или нет?

Во всей статье Седна называется планетой, хотя это не совсем так. В 2006 году на XXVI Ассамблее Международного астрономического союза было постановлено, что планетой космическое тело может считаться лишь тогда, когда удовлетворяет следующие критерии:

  • Тело обращается вокруг Солнца и не является спутником другого тела.
  • Тело обладает достаточной массой, дабы иметь шарообразную форму.
  • На орбите объекта не находится тел, которые не являются ее спутниками.

Последствием Ассамблеи стало изменения статуса Плутона - поскольку он не соответствует третьему критерию, он был в карликовые планеты, к которым на сегодняшний день причисляют еще четыре планеты - , Эриду, и .

  • Интересный факт - первооткрыватель Эриды и Седны Майкл Браун приложил руку к реформации определения планеты Международным астрономическим союзом. На эту тему из-под его пера вышла научно-популярная книга «Как я убил Плутон, и почему это было неизбежно». Она стала бестселлером благодаря всеобъемлющему и простому изложению особенностей Солнечной системы и современной астрономии.

Так куда же причислить Седну? Пока неизвестна ее форма, астрономы не могут пойти дальше определения «карликовой планеты». Но история происхождение Седны может все изменить - и кроме нее, внести в список планет еще не один космический объект.

Происхождение Седны - ключ к разгадке тайн Солнечной системы

И все-таки откуда взялась Седна? И если она действительно может быть планетой - так почему форма ее орбиты больше похожа на траекторию кометы, но никак не планетного объекта? Ответ нам дает история того, как Солнечная система приняла свой нынешний вид.

Многие астероиды Главного пояса могли бы стать сферами и даже слиться в одну планету, если бы не массивный Юпитер. Его воздействие помешало планетообразованию между ним и Марсом. Более того, он «украл» и рассеял часть вещества, из-за чего суммарная масса всех астероидов Главного пояса не превышает 30% массы Земли.

Подобным образом ведут себя и другие газовые гиганты вроде Нептуна и Урана. Именно их воздействием можно было бы объяснить эксцентричность - то есть значительную растянутость - орбиты Седны. Но так как перигелий планеты не вписывается в планетарную зону, ограниченную 50 астрономическими единицами, известные объекты не могли бы так повлиять.

Более того, все указывает на прежнюю «классичность» траектории движения Седны - она могла даже проходить по эклиптике, плоскости орбиты Земли и других «настоящих» планет. Этим не может похвастаться Плутон, орбита которого пересекает орбиты соседей. Как же Седна оказалась в нынешнем положении? Есть три главных теории:

  • Первая теория предполагает наличие за пределами орбиты Нептуна крупной планеты, которая могла бы рассеять траекторию Седны так, как рассеял Нептун траектории множества объектов и комет. Но астрономы уже изучили 80% зоны эклиптики, и до сих пор не обнаружили подходящее космическое тело.
  • Вторая теория базируется на схожести орбиты Седны с вытянутыми траекториями комет. В начале формирования Солнечной системы кометы были заброшены планетами-гигантами далеко за пояс Койпера к гипотетической границе - облаку Оорта. Там они испытывают влияние уже внешних, не-солнечных гравитационных сил и улетают еще дальше. Но для этого надо удалиться минимум на 100 тысяч астрономических единиц - а Седна, по самым смелым расчетам, достигает дистанции «лишь» в 1000 а.е.

Теория влияния на Седну из-за пределов нашей системы действительно имеет место быть. Но только в том случае, если где-то в начале истории Солнечной системы мимо нее пролетела другая звезда, массой равна нашему светилу. Да еще и очень близко - в пределах 500 а.е. Но тогда за орбитой Нептуна было бы очень много объектов, похожих на Седну. Так как периоды обращения таких тел велики - у самой Седны он составляет больше 11 тысяч лет - то их еще только предстоит обнаружить.

  • Но есть и третья теория, идущая куда дальше первых двух - она предполагает рождение Солнца в крупном скоплении звезд. Ей есть несколько подтверждений. Быстрое сближение с массивным телом, предлагаемое предыдущей версией, не могло бы построить столь сложную орбиту, как Седны. Кроме того, это вписывается в одну из концепций формирования облака Оорта.

Для окончательного вывода нужны дальнейшие наблюдения. Во время исследования, обнаружившего Седну, команда первооткрывателей нашла 40 новых транснептуновых объектов. Во всем мире тогда их насчитывалось около 800 - и только одна Седна обладала уникальными свойствами. На сегодняшний день уже введен класс седноидов - крупных космических тел, чьи орбитальные характеристики напоминают Седну. Кроме самой родоначальницы, в классе уже присутствует 2012 VP 113 Байден, неофициально названый в честь американского вице-президента.

  • Интересный факт - неформальность в процедуре именования, похоже, станет фирменной чертой седноидов. Сама Седна получила свое название еще до того, как ей успели присвоить идентификационный номер. Некоторые астрономы грозились неуемному ученому Майклу Брауну не принять опубликованное им раньше времени название - но на заседании Международного астрономического союза его приняли единогласно.

Цвет и состав планеты

Как уже было сказано выше, Седна - одно из самых красных космических тел Солнечной системы. Красителем поверхности планеты выступает толин - смесь распавшихся под воздействием ультрафиолетового излучения органических веществ. По результатам спектрального анализа, органика в виде метанового льда и производных составляет 83% поверхности Седны, с примесями углерода и азота.

Однако структура Седны предполагает также наличие большого количества воды - до 70 процентов от массы планеты. Она может встречаться не только в виде глубинных льдов, как на спутниках газовых гигантов и Плутоне, но и жидкой - процессы радиоактивного распада могут поддерживать целый океан воды под твердой корой Седны.

  • Интересный факт - азот на поверхности Седны может испаряться в моменты прохождения перигелия, образуя слабую атмосферу плотностью в одну десятитысячную атмосферы Земли. Она могла бы быть куда плотнее, если Седна бы подлетала ближе к Солнцу. Тогда метан на поверхности испарялся бы и выпадал в виде снега - так происходит на , спутнике Нептуна.

Занимающийся сейчас поиском родственников планеты Майкл Браун считает, что общая масса седноидов может превысить массу Земли в 5 раз. А это значит, что открытия только начинаются.

> Седна

Седна – карликовая планета Солнечной системы и транснептуновый объект: описание с фото, обнаружение, имя, орбита, состав, связь с облаком Оорта, исследование.

Открытие далеких карликовых планет привело к тому, что мы лишись Плутона в качестве планеты. Но ученые не унывают, потому что это дает новое поле для исследований. В 2003 году заметили Седну , считающуюся самым отдаленным объектом, проживающим в Облаке Оорта.

Открытие и имя карликовой планеты Седна

Эта находка также принадлежит команде Майкла Брауна, заметившей карликовую планету Седна в 2003 году. Изначально именовали 2003 VB12. Все началось еще в 2001 году, когда обзор в Паломарской обсерватории показал, что на удаленности в 100 а.е. от Солнца располагается объект. Слежка в телескоп Кек в 2003-м продемонстрировала движение по удаленному и эксцентричному орбитальному пути.

Позже выяснилось, что небесное тело попадало в обзор и других исследователей. Свое название Седна получила в честь инуитского божества морей. Когда-то Седна была смертной, но утопилась в Северном Ледовитом океане, где и стала проживать с морскими существами.

Команда объявила официальное имя до момента документации, что нарушало процедуру протокола. Но в МАС возражать не стали.

Классификация карликовой планеты Седна

О статусе Седны все еще ведутся споры. Ее обнаружение вызвало раздор в моменте определения планеты. Согласно МАС, планета обязана очистить свою территорию от лишних объектов, чего Седна не сделала. Но для статуса карликовой планеты она также должна пребывать в гидростатическом балансе (стать сфероидом или эллипсоидом). При альбедо в 0.32 и диаметре – 915-1800 км ей хватает массы и яркости для формирования сфероида. Поэтому Седну считают карликовой планетой.

Размер, масса и орбита карликовой планеты Седна

Физические характеристики карликовой планеты Седна

Открытие
Первооткрыватель М. Браун,
Ч. Трухильо,
Д. Рабинович
Дата открытия 14 ноября 2003
Орбитальные характеристики
Перигелий 76,315235 а. е.
Афелий 1006,543776 а. е.
Большая полуось (a ) 541,429506 а. е.
Эксцентриситет орбиты (e ) 0,8590486
Сидерический периодобращения примерно 4 404 480 д(12 059,06 a)
Орбитальная скорость (v ) 1,04 км/с
Средняя аномалия (M o ) 358,190921°
Наклонение (i ) 11,927945°
Долгота восходящего узла (Ω ) 144,377238°
Аргумент перицентра (ω ) 310,920993°
Физические характеристики
Размеры 995 ± 80 км
Масса (m ) 8,3·10 20 -7,0·10 21 кг
(0,05-0,42 от массы Эриды)
Средняя плотность (ρ ) 2,0? г/см³
Ускорение свободного паденияна экваторе (g ) 0,33-0,50 м/с²
Вторая космическая скорость (v 2) 0,62-0,95 км/с
Период вращения (T ) 0,42 д (10 ч)
Альбедо 0,32 ± 0,06
Спектральный класс (красный) B−V = 1,24; V−R = 0,78
Видимая звёздная величина 21,1
20,4 (в перигелии)
Абсолютная звёздная величина 1,56

В 2004 году верхний предел для диаметра составлял 1800 км, а в 2007-м – 1600 км. Обзор в телескоп Гершеля в 2012 году установил границы в 915-1075 км. У Седны нет найденных спутников, поэтому рассчитать ее массу не получится. Но занимает 5-е место среди ТНО и карликовых планет. Обходит звезду по высокоэллиптическому орбитальному маршруту и отдаляется на 76 а.е. и 936 а.е.

Полагают, что на один орбитальный проход уходит 10000-12000 лет.

Состав карликовой планеты Седна

На момент открытия Седна казалась ярким объектом. По окрасу карликовая планета практически красная как Марс, к чему могло привести наличие толинов или углеводородов. Поверхность однородна по цвету и спектру.

Кора не усеяна кратерными формированиями, поэтому нет большого количества ярких ледяных следов. Температура опускается к -240.2°С. Модели показывают верхний предел в 60% для метанового льда и 70% для водяного. Но модель М. Баруччи указывает на состав: титоны (24%), аморфный углерод (7%), азот (10%), метанол (26%) и метан (33%).

Азот намекает на то, что в прошлом карлик мог располагать атмосферой. При подходе к Солнцу температура поднимается к -237.6°С, чего достаточно для сублимации азотного льда. Это может также привести к наличию океана.

Происхождение карликовой планеты Седна

Команда полагала, что небесное тело принадлежит к Облаку Оорта, где проживают кометы. Это основывалось на удаленности Седны. Ее записали как внутреннее тело Облака Оорта. В таком сценарии Солнце сформировалось на территории открытого скопления с другими звездами. Со временем они разошлись, а Седна перешла на современную орбиту. Эту идею подтверждают компьютерные симуляции.

Если бы Седна появилась на своей теперешней позиции, то это намекало бы на дальнейшее расширение протопланетного диска. Тогда ее орбита была бы более круговой. Потому пришлось бы притянуть ее мощной гравитацией от другого объекта.

Или же орбита могла сформироваться от контакта с крупным двоичным соседом, отдаленным на 1000 а.е. от Солнца. Среди вариантов даже рассматривали Немезиду. Но прямых доказательств нет.

Справа вверху: 48-дюймовый телескоп системы Шмидта Паломарской обсерватории, на котором в течении трех лет последовательно были открыты: Квавар (июнь 2002, классический объект пояса Койпера диаметром около 1250 км), Седна (ноябрь 2003, "нечто" диаметром не больше, но и не сильно меньше 1700 км) и планета 2004 DW (февраль 2004, резонанс из семейства плутино с возможным диаметром в диапазоне 840-1800 км).

Нами открыта малая планета 2003 VB12 (популярное имя Седна) - самый далекий объект Солнечной системы из найденных к настоящему времени. Старые снимки 2001, 2002, 2003 годов, на которых ее удалось найти, позволили нам уточнить орбиту Седны. Она оказалась очень вытянутой, и при этом полностью лежащей за пределами пояса Койпера: ее большая полуось равна 480±40 а.е. и перигелийное расстояние 76±4 а.е.

Такая орбита неожиданна для нашего сегодняшнего понимания Солнечной системы. Она может быть либо (1) результатом рассеяния на еще неоткрытой далекой трансплутоновой планете, либо (2) результатом возмущения со стороны прошедшей предельно близко звезды, либо, наконец, (3) результатом образования Солнечной системы в тесном звездном скоплении.

Во всех этих сценариях скорее всего должна существовать еще одна значительная популяция транснептуновых объектов помимо тех, которые нам известны в поясе Койпера (классические объекты пояса Койпера, резонансы и рассеянные объекты пояса Койпера). Причем в двух наиболее вероятных сценариях Седна получает наилучшее объяснение как объект внутренней части облака Оорта.

Рис. 1. Эскимосская богиня моря Седна, в честь которой получила свое имя (пока неофициальное) далекая трансплутоновая планета 2003 VB12. Согласно эскимосским мифам, Седна обитает в темных глубинах холодного Северного ледовитого океана. Астрономы сочли, что хорошим небесным аналогом этих районов как раз и являются далекие окраины Солнечной системы за пределами пояса Койпера.

Рис. 2. Первооткрыватель планеты Майкл Браун испросил у эскимосской богини моря Седны небольшое лакомство в честь своего открытия. Судя по всему, она не оставлила его без награды.

Введение

Планетарная зона Солнечной системы (так называется зона почти круговых орбит с низким наклонением к эклиптике) по всей видимости заканчивается на расстоянии около 50 а.е. от Солнца. Эта цифра как раз отмечает внешний край классического пояса Койпера. Как известно, множество тел из планетарной зоны с сильно эксцентричными орбитами - кометы и рассеянные объекты пояса Койпера - успешно пересекают эту границу, однако их перигелии при этом всегда остаются в пределах планетарной зоны.

Далеко за ее пределами находится царство комет. Астрономы полагают, что множество этих ледяных тел населяет гипотетическое облако Оорта, расстояние до которого может составлять около 10 тысяч а.е. Львиная доля комет этого гипотетического облака вероятно пребывает там неопределенно долго, и лишь возмущение со стороны проходящих близко звезд или галактические приливные эффекты иногда нарушают орбиты некоторых из них, заставляя вторгаться во внутренние области Солнечной системы. Здесь их и открывают астрономы под видом новых долгопериодических комет.

Таким образом получается, что любой известный ныне или ожидаемый в будущем объект Солнечной системы должен обладать как минимум одним из двух свойств: либо его перигелий лежит внутри планетарной зоны, либо его афелий находится в облаке Оорта (возможно и то, и другое сразу).

С ноября 2001 года мы с коллегами начали систематический обзор неба в поисках далеких медленно движущихся объектов на 48-дюймовом телескопе системы Шмидта Паломарской обсерватории при помощи новой широкоугольной ПЗС-камеры QUEST. Этот обзор рассчитан приблизительно на 5 лет и должен покрыть большую часть неба, доступную для телескопов Паломарской обсерватории. После завершения он станет крупнейшим обзором неба, нацеленным на поиск далеких движущихся объектов, проведенным со времен аналогичного обзора, выполненного еще первооткрывателем Плутона Клайдом Томбо (1961). Главная цель нашего обзора: поиск тех редких крупных объектов пояса Койпера, которые были пропущены в локальных, но более чувствительных обзорах, принесших нам основную массу открытых за последние двенадцать лет слабых объектов пояса Койпера.

Рис. 3. Купол 48-дюймового телескопа системы Шмидта (гора Паломар, 1700 м над уровнем моря). Поле зрения этого уникального инструмента - 36 квадратных градусов, что позволяет с высокой эффективностью проводить самые разнообразные обзоры неба.

Рис. 4. Новая 172-мегапиксельная камера QUEST, установленная в фокусе 48-дюймового паломарского Шмидта, стала действительно машиной великих открытий. Под двумя прямоугольными шторками скрывается целое поле ПЗС-матриц (122 штуки), общей площадью 25 х 20 см. Именно на них бросили свой тусклый свет Квавар, Седна и планета 2004 DW, выдав свое существование. Тем не менее даже такой гигантский приемник света, как камера QUEST, не покрывает полностью чистое (невиньетированное) поле зрения телескопа поперечником 5.4°. Камера Шмидта - великая вещь!

Именно в рамках этого обзора 14 ноября 2003 года мы впервые увидели Седну, которая на трех последовательных снимках, сделанных с интервалом в полтора часа, переместилась всего на 4.6 угловых секунды. На таком коротком интервале времени смещение транснептунового объекта, находящегося почти в оппозиции к Солнцу, определяется почти полностью параллаксом, вызванным движением Земли по своей орбите. В этом случае мы можем приблизительно оценить расстояние до объекта по формуле R = 150/delta, где R - гелиоцентрическое расстояние до объекта в астрономических единицах, а delta - его угловая скорость в секундах дуги за час. Отсюда незамедлительно следует, что найденный нами объект удален от Солнца приблизительно на 100 а.е.! Это значительно дальше внешней границы планетарной зоны (50 а.е.), а также любого из известных нам объектов Солнечной системы. Он получил временное обозначение как малая планета с номером 2003 VB12.

Рис. 5. Анимация из трех снимков, сделанных 14 ноября 2003 года в 6:32, 8:03 и 9:38 по Всемирному времени, на которых была впервые замечена Седна.

Последующие наблюдения за объектом на 0.36-метровом телескопе Tenagra IV (Аризона), 1.3-метровом телескопе SMARTS обсерватории Серро Тололо и 10-метровом телескопе имени Кека, выполненные между 20 ноября 2003 года и 31 декабря 2003 года, позволили нам вычислить предварительную орбиту новой планеты. Для этого мы использовали метод Бернштейна и Кушалани (2000; далее BK2000), который разработан специально для далеких объектов Солнечной системы, а также метод наименьших квадратов, который свободен от всяких априорных допущений относительно вычисляемой орбиты. Оба метода независимо дали далекую эксцентричную орбиту с объектом, приближающимся сейчас к перигелию. Тем не менее полученные в них большие полуоси и эксцентриситеты сильно различались, и это различие вызвано естественными ограничениями методов при определении орбит крайне медленно движущихся объектов при малых наблюдаемых смещениях на небе. Для таких небесных тел требуется как минимум многолетний интервал наблюдений, чтобы получить более-менее точную орбиту, которого у нас не было.

Рис. 6. Перед вами уникальная автоматизированная частная любительская обсерватория "Тенагра", расположенная в штате Аризона на высоте 1312 м над уровнем моря. Ее построил, а если говорить точнее - воплотил в реальность мечту своего детства, профессиональный археолог Майкл Шварц. Услугами этой обсерватории пользуются сегодня многие профессиональные астрономы! (Вот уж действительно помощь любителя профессионалам.)

Несмотря на то, что в тексте авторской статьи упомянут самый меньший 36-см телескоп обсерватории - Тенагра IV (на фото дальний белый купол), это скорее всего опечатка: Седна с блеском 21 m такому инструменту не под силу. На сайте обсерватори Тенагры сказано, что Седну снимал крупнейший 0.81-м телескоп этой обсерватории, который скрывается под одним из двух ближних куполов.

Рис. 7. 0.81-метровый телескоп Тенагра II системы Ричи-Кретьена, специально спроектированный для полностью автоматизированного управления. Обеспечивает исключительно точное позиционирование и гидирование выбранных объектов. 5-минутная экспозиция без фильтров запросто позволяет телескопу достичь звезд с блеском 22 m . Заметьте, что этот нешуточный телескоп Майклу Шварцу удалось спрятать в действительно небольшой купол.

Изображения Седны на старых снимках

К счастью открытая планета оказалась достаточно яркой, чтобы попытаться найти ее в архивных снимках последних лет. При этом, каждый раз находя ее на каком-нибудь старом снимке, мы получали возможность пересчитать орбиту более точно и прицельно искать ее на снимках еще более отдаленных эпох.

Для начала оказалось, что 30 августа и 29 сентября 2003 года новая планета должна была попасть в поле зрения все той же паломарской камеры QUEST во время обзорного сканирования неба, выполняемого другой командой астрономов. Ее положение в эти дни были предсказаны по нашим первоначальным орбитам в пределах совсем небольшого эллипса ошибок 1.2 х 0.8 угловых секунды (оба метода, расходясь в точных параметрах орбиты, тем не менее дали на этот срок почти совпадающие позиции). В нем действительно оказалось небесное тело соответствующего блеска, причем единственное. Уточненная теперь уже на четырехмесячном интервале орбита позволила нам предсказать положение Седны еще раньше и так было найдено еще четыре снимка новой планеты вплоть до сентября 2001 года.

Попытка вычислить орбиту на 2000 год и даже раньше дала в итоге несколько вероятных изображений Седны на соответствующих снимках, но при существенно более низком качестве данных. По этой причине мы решили их не рассматривать.

Вычисление точной орбиты

Наиболее вероятная орбита в методе BK2000 по всей совокупности данных на интервале 2001-2003 годов дала следующие параметры орбиты:

Текущее расстояние от Солнца до Седны 90.32±0.02 а.е.
- большую полуось a = 480±40 а.е.
- наклонение орбиты к эклиптике i = 11.927°

На этой орбите Седна достигнет перигелия 22 сентября 2075 года (±260 дней), оказавшись на минимальном расстоянии от Солнца 76 а.е. Метод наименьших квадратов дал в целом схожую орбиту с параметрами, не выходящими за рамки ошибок метода BK2000.

Рис. 8. Орбита Седны. В центре координат - Солнечная система, окруженная роем планет и известных объектов пояса Койпера.

Нынешнее гелиоцентрическое расстояние до Седны 90 а.е. хорошо согласуется с той простой оценкой, которую мы сделали уже в ночь открытия. Таким образом сейчас Седна оказалась самым далеким из известных нам телом Солнечной системы. При этом мы хорошо знаем, что многие кометы и объекты пояса Койпера, двигаясь по своим сильно эксцентричным орбитам, рано или поздно окажутся еще дальше от Солнца, и в этом нет ничего необычного. Таким образом само нахождение Седны на столь большом удалении совсем не является чем-то вызывающим для наших представлений о Солнечной системе.

Дело не в нем, а в аномально большом перигелийном расстоянии! Ведь самый далекий перигелий у открытых ранее транснептуновых объектов составляет 46.6 а.е. Им обладает малая планета 1999 CL119. Перигелий же Седны не вписывается ни в какие рамки. Для проверки его надежности мы бросились пересчитывать орбиту Седны, случайным образом добавляя 0.8-секундный шум в ее астрометрические координаты (это две среднеквадратичных ошибки!). Проделав эту процедуру 200 раз, мы убедились, что получающийся перигелий на выходит из интервала 73-80 а.е.

Происхождение Седны

Орбита новой планеты оказалась не похожа ни на какую из известных ранее. Она напоминала орбиты рассеянных объектов пояса Койпера с той лишь разницей, что ее перигелий оказался гораздо дальше - настолько далеко, что образование такой орбиты никак невозможно объяснить рассеянием на известных планетах Солнечной системы. Единственный механизм, который мог бы поместить Седну на такую орбиту, требовал либо возмущения со стороны еще не открытой далекой планеты, либо сил, подействовавших на Седну извне Солнечной системы.

1. Рассеяние на неоткрытой планете

Рассеянные объекты пояса Койпера оказались на своих сильно эксцентричных орбитах из-за гравитационного воздействия планет-гигантов Солнечной системы. В результате рассеяния они получают разные порции энергии и тем самым различные большие полуоси, но - и это важно - почти не изменяют своего перигелийного расстояния. Считается, что объекты, рассеиваемые Нептуном, могут получить перигелийное расстояние не более 36 а.е. Хотя более сложные взаимодействия, учитывающие возможную миграцию Нептуна в прошлом, иногда позволяют "поднять" перигелий рассеянного тела до 50 а.е. Таким образом до открытия Седны мы имели необходимый механизм для объяснения всех без исключения орбит известных тел пояса Койпера, включая такие объекты, как 1999 CL119.

Седна с перигелием около 76 а.е. очевидным образом нарушила стройность общей картины, ибо не могла быть рассеяна ни одной из известных планет-гигантов. Первая мысль, которая приходит в голову для восстановления нарушенной картины, - это мысль о существовании еще не открытой астрономами планеты на расстоянии около 70 а.е., которая рассеивает далекие объекты так же, как это делает Нептун в поясе Койпера. Текущее состояние нашего обзора таково, что мы покрыли не менее 80% неба в полосе шириной 5њ вокруг эклиптики - область наиболее вероятного нахождения такой планеты - и никакой планеты там не нашли (Браун и Трухильо, 2004). На основании этого мы склоняемся к мысли о том, что такой планеты там скорее всего нет, при том, что саму возможность все еще не исключаем.

Если она действительно существует - или была там когда-то в прошлом - ее признаки неизбежно проявятся в орбитальных параметрах тех новых малых планет, которые будут открываться в будущем в той отдаленной области. А именно: они должны иметь умеренные наклонения орбит и перигелийные расстояния, близкие к 76 а.е. (как у Седны).

Рис. 9. Внешние окраины Солнечной системы. На этой запутанной диаграмме изображены обриты известных к 2000 году транснептуновых объектов. Красным цветом - орбиты плутино, синим - орбиты классических объектов пояса Койпера, черным - орбиты рассеянных объектов пояса Койпера. Внимательное изучение последних показывает, что их перигелии всегда теснятся вблизи орбиты Нептуна. Причина понятна: рассеянное тело, двигаясь по замкнутой эллиптической орбите, всегда будет возвращаться в ту зону, откуда было рассеяно.

Орбита Седны, не подчиняющаяся этому правилу, наводит на мысль, что где-то за Нептуном вращается еще одна планета - планета Х, которая и "рассеяла" Седну на сильно эксцентричную орбиту с высоким перигелием.

2. Близкий пролет звезды

Необычная орбита Седны во многом напоминает предполагаемые орбиты комет из облака Оорта. Считается, что последние образовались в обычной солнечной системе еще на заре ее существования. При тесных сближениях с планетами-гигантами в пределах планетарной зоны они были рассеяны на сильно эксцентричные орбиты. Если такая орбита выносит комету на достаточно большое расстояние от Солнца, случайные гравитационные возмущения со стороны близко проходящих звезд и галактические приливные силы могут изменить ее таким образом, что перигелий кометы "поднимется" далеко за пределы планетарной зоны и таким образом потеряет всякую связь с самой планетной системой.

Вычисления, учитывающие ожидаемую частоту звездных сближений в окрестности Солнца и величину галактических приливных сил, показывают, что комета должна иметь большую полуось как минимум ~10 4 а.е., прежде чем названные внешние силы начнут играть ощутимую роль (это результат был получен еще Оортом в 1950 году). Когда комета все же уходит на такие большие расстояния, ее орбита существенно термализуется: она получает произвольное наклонение (распределение наклонений орбит i становится изотропным) и средний эксцентриситет около 2/3. Не прекращающиеся возмущения могут вернуть перигелий обратно в планетарную зону, и тогда объект снова становится видимым - как комета со все еще огромной большой полуосью порядка 10 4 а.е.

Очевидная несовместимость стандартной картины образования облака Оорта и орбиты новооткрытой планеты заключается в ее "карликовой" большой полуоси, которой явно недостаточно для того, чтобы внешние силы могли эффективно воздействовать на орбиту Седны и сдвинуть ее перигелий.

Предположим, что когда-то Седна была рассеяна на сильно вытянутую орбиту одной из гигантских планет, например, Нептуном. Вычисления показывают, что тело с большой полуосью 480 а.е. и перигелием внутри планетарной зоны может под влиянием внешних сил изменить свое перигелийное расстояние за все время жизни всего лишь на 0.3%. Более сильное смещение перигелия у столь крепко привязанного к Солнцу тела (по сравнению с кометами облака Оорта) возможно только в результате гораздо более тесного звездного сближения, чем можно ожидать в нынешней галактической окрестности Солнечной системы.

Лишь малая часть геометрически возможных конфигураций звездных сближений в состоянии так изменить орбиту рассеянных объектов пояса Койпера, чтобы они стали больше напоминать орбиты тел из облака Оорта. Один из примеров - пролет звезды солнечной массы на скорости 30 км/с перпендикулярно плоскости эклиптики на расстоянии всего 500 а.е. от нашего светила. Такое сближение может превратить орбиту с перигелийным расстоянием ~30 а.е. и большой полуосью 480 а.е. в орбиту с перигелийным расстоянием 76 а.е., сохранив большую полуось неизменной (другими словами, перевести рассеянный объект пояса Койпера на орбиту Седны).

Необходимость в особой геометрии сближения не удивительна, но допустим что оно было именно таким.

Гораздо труднее объяснить тот факт, что в условиях нынешнего звездного окружения Солнечной системы можно ожидать лишь одно столь близкое прохождение другой звезды за все время существования нашей планетной системы.

Если бы численность популяции рассеянных объектов пояса Койпера на сильно эксцентричных орбитах (с большими полуосями как у Седны) была бы всегда высокой, факт уникальности такого сближения не вызывал бы вопросов - оно могло случиться в любой момент за прошедшие 4.5 млрд. лет и сделать свое дело. Однако в реальности число таких сильно вытянутых рассеянных орбит (перигелии которых можно "приподнять" до уровня Седны и получить чисто седновскую орбиту) должно было быть высоким только в раннюю эпоху истории Солнечной системы - когда она активно расчищалась от ледяных планетезималей и активно заселяла облако Оорта. В свете этого, вероятность сверхтесного сближения Солнца с другой звездой именно в этот короткий момент существования Солнечной системы выглядит очень низкой.

Тем не менее, если такое сближение и вправду имело место, его признаки тоже безошибочно проявятся в орбитальных параметрах всех объектов, которые будут открываться в этой области впоследствии. А именно, если все тела во внутренней части облака Оорта будут иметь параметры орбит, совместимые с геометрией уникального события близкого пролета звезды, будет очевидно, что мы имеем дело с запечатленными в них признаками этого события.

3. Образование Солнечной системы в звездном скоплении

Тесные звездные сближения могли происходить гораздо чаще в раннюю эпоху существования Солнечной системы, если Солнце родилось внутри звездного скопления. К тому же в этих условиях относительные скорости звезд при сближениях должны были быть существенно меньшими, что приводило бы к гораздо более мощным динамическим эффектам. Численное моделирование, выполненное Дж.Фернандесом и А.Брунини в 2000 году, показало, что множественные, медленные, умеренно близкие сближения вполне могут переводить рассеянные объекты пояса Койпера на орбиты, схожие с орбитой Седны.

Этот процесс идентичен предполагаемому процессу образования более удаленного облака Оорта, с той лишь разницей, что в более тесном звездном окружении кометам (или планетезималям) нет нужды иметь столь огромные большие полуоси орбит для того, чтобы начали работать внешние влияния. Расчеты Фернандеса и Брунини предсказывают, что формирование Солнечной системы в условиях тесного звездного окружения должно наполнить внутреннюю часть облака Оорта целой популяцией объектов с большими полуосями ~10 2 - ~10 3 а.е., перигелиями в широком интервале ~50 - ~10 3 а.е., большими эксцентриситетами (в среднем 0.8) и широким распределением наклонений (FWHM ~90°).

Мы считаем этот сценарий наиболее правдоподобным для объяснения орбиты новооткрытой планеты. Рождение Солнечной системы в звездном скоплении - вполне логичное предположение, косвенные свидетельства которого найдены и в других ее особенностях (Goswami & Vanhala, 2000). Если этот сценарий окажется истинным, орбиты объектов, открываемых впоследствии в этой области, будут безошибочно отражать раннюю эпоху жизни Солнечной системы в скоплении. Они будут иметь широкий разброс наклонений и перигелийных расстояний, но не будут укладываться в рамки геометрии одного уникального звездного сближения. Более того, численные расчеты Фернандеса и Брунини показывают, что точное распределение орбит во внутренней области облака Оорта будет отражать размеры родительского звездного скопления!

Рис. 10. Трудно поверить, что за внешней границей пояса Койпера есть миры, никогда не сближающиеся с Солнечной системой, с которых она видна как на ладони. Тем не менее, открытие Седны показывает, что это так. Более того, может оказаться, что их там превеликое множество и среди них есть весьма крупные экземпляры.

Итоги

Каждый из трех описанных сценариев появления в Солнечной системе Седны накладывает свои неповторимые требования на динамические характеристики далекой популяции транснептуновых объектов за пределами пояса Койпера. Покуда открыт только один такой объект, параметры его орбиты не позволяют нам предпочесть ни одну из гипотез. Но как только последуют новые открытия, неопределенность может раствориться на глазах.

Можно даже грубо прикинуть, как скоро это случиться. Прежде открытия Седны в рамках нашего обзора, мы натолкнулись на 40 новых объектов пояса Койпера. Допуская, что распределение по размерам в далекой популяции седноподобных объектов такое же как в поясе Койпера, следовало бы ожидать, что другие обзоры неба покажут такое же соотношение в доле открываемых объектов - 1:40 - если они, конечно, столь же чувствительны к медленно движущимся объектам. Число открытых транснептунов на 15 марта 2004 года составило 831 штуку. Выходит, к этому же сроку астрономы уже должны были иметь в своих каталогах около 20 седноподобных тел!

При все грубости этой оценки, недобор вопиющий. Следовательно, либо большинство обзоров неба, направленных на поиски малых планет за Нептуном, нечувствительны к медленно движущимся телам (1.5 угловых секунды в час для Седны), либо налицо явная перенаселенность внутренней части облака Оорта сравнительно яркими телами (область, притягательная для крупных планет?). В любом случае, нам кажется, что новые объекты в области Седны будут открыты очень скоро.

Пока этого не произошло, можно сказать, что на первый взгляд третий сценарий (рождение Солнечной системы в плотном звездном скоплении) выглядит наиболее правдоподобным. В этом сценарии облако Оорта должно быть заполнено от самых далеких предполагаемых окраин (около 10 5 а.е.) и вплоть до близких окрестностей пояса Койпера (то есть до Седны). Кроме того, в рамках этого сценария масса облака Оорта должна быть во много раз больше, чем считалось ранее, а ожидаемая популяция крупных объектов, типа Седны, будет немалой. Наш обзор может заметить Седну не более чем на 1% ее орбиты - около перигелия. Это значит, что на каждую открытую Седну есть еще около 100 ей подобных, которые сейчас находятся далеко и недоступны камере QUEST. Больше того, почти изотропное распределение наклонений орбит седноподобных планет приводит к тому, что на каждую открытую Седну должно быть еще около 5 таких же ярких, которые в данный момент находятся высоко над эклиптикой и просто еще не попали в 5-градусную полосу, которую мы успели отснять. Все вместе это означает, что открытие лишь одной Седны само по себе предсказывает существование целой популяции подобных тел численностью около 500 объектов. Если для объектов из внутренней части облака Оорта распределение по размерам все-таки подобно поясу Койпера, общая масса этой популяции составит около 5 земных. Невидимая популяция тел с еще большими перигелиями, чем у Седны, скорее всего, должна быть еще многочисленней.

Очевидно, последующие открытия транснептуновых тел с орбитами, лежащими целиком за пределами пояса Койпера, позволят не только выбрать один из описанных сценариев, но и пролить свет на раннюю истории образования Солнечной система вообще.

сокращенный перевод:
А.И.Дьяченко, обозреватель журнала "Звездочет"

Седна — один из компаньонов Плутона, предположительно являющийся карликовой планетой. До недавнего времени его размеры оценивались в две трети Плутона. Однако Андраш Пал и его коллеги из обсерватории Конколи (Венгрия), изучая этот объект при помощи космического телескопа "Гершель", обнаружили, что он еще меньше.

Объект был открыт 14 ноября 2003 года американскими исследователями Майклом Брауном (Калтех), Чадвиком Трухильо (Обсерватория Гемини) и Давидом Рабиновичем (Йельский университет) и был отнесен к транснептуновым, то есть небесным телам Солнечной системы, которые обращаются по орбите вокруг Солнца и у которых среднее расстояние до Солнца больше, чем у Нептуна.

Вновь открытое космическое тело обрело имя в честь эскимосской богини морских зверей Седны. У Седны самый длинный орбитальный период среди известных сегодня крупных объектов в Солнечной системе: он составляет примерно 11 487 лет. Ее перигелий расположен в три раза дальше от Солнца, чем орбита Нептуна, а большая часть ее орбиты лежит еще дальше (афелий равен примерно 960 астрономическим единицам, что в 37 раз превышает расстояние от Солнца до Нептуна).

Когда Седна только была обнаружена, то предполагалось, что у нее необычайно долгий период вращения (от 20 до 50 дней) и что ее вращение может замедляться гравитационным притяжением большого спутника. Но космический телескоп "Хаббл", который провел наблюдения в марте 2004 года, никаких спутников так и не нашел. Последующие же измерения телескопом MMT указывали на более короткий период вращения (около десяти часов).

Поначалу Седну считали самым удаленным из известных объектов Солнечной системы, за исключением долгопериодических комет. Но впоследствии астрономами было открыто еще более далекое тело — Эрида.

Сразу после открытия было выдвинуто предположение, что Седна является карликовой планетой. Однако подобный статус так и не был в итоге ей присвоен, хотя некоторые ученые и по сей день продолжают считать ее таковой.

Предварительные оценки показали, что Седна всего на треть меньше Плутона. До 2007 года верхняя граница ее диаметра оценивалась в 1800 километров, а после наблюдений посредством телескопа Спитцера это значение снизилось до 1600 километров.

Однако подробные наблюдения провести было сложно, так как на Седне, расположенной в 13 миллиардах километров от Солнца, очень холодно (температура ее поверхности составляет около 20 кельвинов), она излучает в дальней инфракрасной части спектра. Предварительный спектроскопический анализ показал, что по составу поверхности Седна аналогична некоторым другим транснептуновым объектам: туда входят смесь воды, метана и льдов азота с толинами (органическими полимерами, в состав которых входят метан и этан). При этом поверхность Седны имеет характерный красный цвет. Это одно из самых красных тел в Солнечной системе.

Впрочем, попытки разглядеть Седну с помощью инфракрасной орбитальной обсерватории "Спитцер" оказались не слишком удачными, и только "Гершель" позволил продвинуться в этом вопросе.

По версии, выдвинутой Центром малых планет, Седна размещается в диске, образовавшемся из пояса Койпера, "рассеявшемся" за счет гравитационного взаимодействия с внешними планетами, в первую очередь Нептуном. Впрочем, ряд ученых относит этот объект к внутренней части облака Оорта. Есть также предположения, что орбита Седны была изменена под воздействием гравитации светила из рассеянного звездного скопления, проходящего рядом с Солнечной системой, или что она была в свое время захвачена другой звездной системой… Наконец, существует гипотеза о том, что орбита Седны указывает на наличие некоей крупной планеты за орбитой Нептуна.

Один из первооткрывателей Седны и карликовых планет Эриды, Хаумеа и Макемаке, астроном Майкл Браун утверждает, что Седна является с научной точки зрения наиболее важным из найденных на сегодняшний день транснептуновых объектов и что, раскрыв тайну необычной формы ее орбиты, мы получим ценную информацию о происхождении и ранней эволюции Солнечной системы.

Наблюдения, проведенные группой Андраша Пала, показали, что Седна отражает треть достигающих ее солнечных лучей. Это гораздо больше, чем ожидалось ранее. Но несмотря на это объект остается очень тусклым. Следовательно, он должен обладать очень малыми размерами. По мнению господина Пала и его коллег, диаметр Седны не может составлять более 995 километров, это даже меньше, чем у Харона, самого крупного спутника Плутона… По последним оценкам экспертов, он равняется приблизительно 43 процентам от диаметра самого Плутона.