Изоляция мест установки подвижных опор теплосети. Устройства на тепловой сети


Рис. 3 приложения 14. Опоры неподвижные щитовые для трубопроводов D н 108-1420 мм тип III с защитой от электрокоррозии: а) обыкновенные;


б) усиленные

Рис. 4 приложения 14. Неподвижная отдельно стоящая опора для труб

D у 80-200 мм. (подвальная).

Рис. 5. Опоры подвижные:

а - скользящая подвижная опора; б – катковая; в – роликовая;

1 – лапа; 2 – опорная плита; 3 – основание; 4 – ребро; 5 – ребро боковое;

6 – подушка; 7 – монтажное положение опоры; 8 – каток; 9 – ролик;

10 – кронштейн; 11 – отверстия.

Рис. 6. Подвесная опора:

12 – кронштейн; 13 – подвесной болт; 14 – тяга.

Канальная прокладка.

в)
a)
б)

Рис. 2 приложения 14. Сборные каналы для тепловых сетей: а) тип КЛ; б) тип КЛп; в) тип КЛс.

Таблица 3 приложения 14. Основные типы сборных железобетонных каналов для тепловых сетей.

Условный диаметр трубопровода D y , мм Обозначение (марка) канала Размеры канала, мм
Внутренние номинальные Наружные
Ширина А Высота Н Ширина А Высота Н
25-50 70-80 КЛ(КЛп)60-30 КЛ(КЛп)60-45
100-150 КЛ(КЛп)90-45 КЛ(КЛп)60-60
175-200 250-300 КЛ(КЛп)90-60 КЛ(КЛп)120-60
350-400 КЛ(КЛп)150-60 КЛ(КЛп)210-60
450-500 КЛс90-90 КЛс120-90 КЛс150-90
600-700 КЛс120-120 КЛс150-120 КЛс210-120

Приложение 15. Насосы в системах теплоснабжения.



Рис. 1 приложения 15. Поле характеристик сетевых насосов.


Таблица 1 приложения 15. Основные технические характеристики сетевых насосов.

Тип насоса Подача, м 3 /с (м 3 /ч) Напор, м Допустимый кавитационный запас, м., не менее Давление на входе в насос, МПа(кгс/см 2) не более Частота вращения (синхронная), 1/с(1/мин) Мощность, кВт К. п. д., %, не менее Температура перекачиваемой воды, (°С), не более Масса насоса, кг
СЭ-160-50 СЭ-160-70 СЭ-160-100 СЭ-250-50 СЭ-320-110 СЭ-500-70-11 СЭ-500-70-16 СЭ-500-140 СЭ-800-55-11 СЭ-800-55-16 СЭ-800-100-11 СЭ-800-100-16 СЭ-800-160 СЭ-1250-45-11 СЭ-1250-45-25 СЭ-1250-70-11 СЭ-1250-70-16 СЭ-1250-100 СЭ-1250-140-11 СЭ-1250-140-16 СЭ-1600-50 СЭ-1600-80 СЭ-2000-100 СЭ-2000-140 СЭ-2500-60-11 СЭ-2500-60-25 СЭ-2500-180-16 СЭ-2500-180-10 СЭ-3200-70 СЭ-3200-100 СЭ-3200-160 СЭ-5000-70-6 СЭ-5000-70-10 СЭ-5000-100 СЭ-5000-160 0,044(160) 0,044(160) 0,044(160) 0,069(250) 0,089(320) 0,139(500) 0,139(500) 0,139(500) 0,221(800) 0,221(800) 0,221(800) 0,221(800) 0,221(800) 0,347(1250) 0,347(1250) 0,347(1250) 0,347(1250) 0,347(1250) 0,347(1250) 0,347(1250) 0,445(1600) 0,445(1600) 0,555(2000) 0,555(2000) 0,695(2500) 0,695(2500) 0,695(2500) 0,695(2500) 0,890(3200) 0,890(3200) 0,890(3200) 1,390(5000) 1,390(5000) 1,390(5000) 1,390(5000) 5,5 5,5 5,5 7,0 8,0 10,0 10,0 10,0 5,5 5,5 5,5 5,5 14,0 7,5 7,5 7,5 7,5 7,5 7,5 7,5 8,5 8,5 22,0 22,0 12,0 12,0 28,0 28,0 15,0 15,0 32,0 15,0 15,0 15,0 40,0 0,39 (4) 0,39 (4) 0,39 (4) 0,39 (4) 0,39 (4) 1,08(11) 1,57(16) 1,57(16) 1,08(11) 1,57(16) 1,08(11) 1,57(16) 1,57(16) 1,08(11) 2,45(25) 1,08(11) 1,57(16) 1,57(16) 1,08(11) 1,57(16) 2,45(25) 1,57(16) 1,57(16) 1,57(16) 1,08(11) 2,45(25) 1,57(16) 0,98(10) 0,98(10) 0,98(10) 0,98(10) 0,59(6) 0,98(10) 1,57(16) 0,98(10) 50(3000) 50(3000) 50(3000) 50(3000) 50(3000) 50(3000) 50(3000) 50(3000) 25(1500) 25(1500) 25(1500) 25(1500) 50(3000) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 50(3000) 50(3000) 25(1500) 25(1500) 50(3000) 50(3000) 25(1500) 25(1500) 50(3000) 25(1500) 25(1500) 25(1500) 50(3000) (120) (180) (180) (120) (180) (120) - - - - - - - - - - - - - - - - - -

Таблица 2 приложения 15. Центробежные насосы типа К

Марка насоса Производи-тельность, м 3 /ч Полный напор, м Частота вращения колеса, об/мин Рекомендуемая мощность электродвигателя, кВт Диаметр рабочего колеса, мм
1 К-6 6-11-14 20-17-14
1,5 К-6а 5-913 16-14-11 1,7
1,5 К-6б 4-9-13 12-11-9 1,0
2 К-6 10-20-30 34-31-24 4,5
2 К-6а 10-20-30 28-25-20 2,8
2 К-6б 10-20-25 22-18-16 2,8
2 К-9 11-20-22 21-18-17 2,8
2 К-9а 10-17-21 16-15-13 1,7
2 К-9б 10-15-20 13-12-10 1,7
3 К-6 30-45-70 62-57-44 14-20
3 К-6а 30-50-65 45-37-30 10-14
3 К-9 30-45-54 34-31-27 7,0
3 К-9а 25-85-45 24-22-19 4,5
4 К-6 65-95-135 98-91-72
4 К-6а 65-85-125 82-76-62
4 К-8 70-90-120 59-55-43
4 К-8а 70-90-109 48-43-37
4 К-12 65-90-120 37-34-28
4 К-12а 60-85-110 31-28-23 14,
4 К-18 60-80-100 25-22-19 7,0
4 К-18а 50-70-90 20-18-14 7,0
6 К-8 110-140-190 36-36-31
6 К-8а 110-140-180 30-28-25
6 К-8б 110-140-180 24-22-18
6 К-12 110-160-200 22-20-17
6 К-12а 95-150-180 17-15-12
8 К-12 220-280-340 32-29-25
8 К-12а 200-250-290 26-24-21
8 К-18 220-285-360 20-18-15
8 К-18а 200-260-320 17-15-12

Приложение 16. Запорная арматура в системах теплоснабжения.

Таблица 2 приложения 16.Стальные поворотные дисковые затворы с электроприводом D y 500-1400 мм на p y =2,5 МПа, t £200°C с концами под приварку.


Таблица 3 приложения 16. Задвижки

Обозначение задвижки Условный приход D y , мм Пределы применения (не более) Присоединение к трубопроводу Материал корпуса
По каталогу В тепловых сетях
p y , МПа t , °C p y , МПа t , °C
30ч6бр 50, 80, 100, 125, 150 1,0 1,0 Фланцевое Серый чугун
30ч930бр 600, 1200, 1400 0,25 0,25
31ч6бр 1,6 1,0
30с41нж (ЗКЛ2-16) 50, 80, 100, 150, 200, 250, 300, 350, 400, 500, 600 1,6 1,6 Сталь
30с64нж 2,5 2,5 Сталь
30с567нж (ИА11072-12) 2,5 2,5 Под приварку
300с964нж 2,5 2,5 Фланцевое и с концами под приварку Сталь
30с967нж (ИАЦ072-09) 500, 600 2,5 2,5 Под приварку

Рис. 2 приложения 16. Шаровые краны в системах теплоснабжения.



Таблица 4 приложения 16. Технические данные шаровых кранов.

Условный диа метр Проходной условный диаметр Dh, мм d, мм t, мм L, мм H1 H2 A Масса в кг
17,2 1,8 0,8
21,3 2,0 0,8
26,9 2,3 0,9
33,7 2,6 1,1
42,4 2,6 1,4
48,3 2,6 2,1
60,3 2,9 2,7
76,1 76,1 2,9 4,7
88,9 88,9 3,2 6,1
114,3 114,3 3,6 9,5
139,7 3,6 17,3
168,3 4,0 26,9
219,1 4,5 - 43,5
355,6 273,0 5,0 - 115,0
323,3 5,6 - 195,0
355,6 5,6 - 235,0
406,4 6,3 - 390,0
508,0 166,5 - 610,0

Примечание: корпус крана – сталь Ст. 37. 0; шар – нержавеющая сталь; седло шара и сальник –тефлон +20 % углерода; уплотнительные кольца – тройной этилен-пропиленовый каучук и витон.
Приложение 17. Соотношение между некоторыми единицами физических величин, подлежащих замене, с единицами СИ.

Таблица 1 приложения 17.

Наименование величин Единица Соотноше- ние с единицами СИ
подлежащая замене СИ
Наимено- вание Обозначение Наименование Обозначение
количество теплоты килокалория ккал кило-джоуль КДж 4.19 кДж
удельное количество теплоты килокалория на килограмм ккал/кг килоджо- уль на килограмм КДж/кг 4.19кДж/кг
тепловой поток килокалория в час ккал/ч ватт Вт 1.163 Вт
(мощность) гигакало-рия в час Гкал/ч мегаватт МВт 1.163 МВт
поверхност- ная плотность теплового потока килокалория в час на квадрат- ный метр ккал/(ч м 2) ватт на квадрат- ный метр Вт/м 2 1.163 Вт/м 2
объемная плотность теплового потока килокалория в час на кубичес- кий метр ккал/(ч м 3) ватт на кубичес- кий метр Вт/м 3 1.163 Вт/м 3
теплоемкость килокалория на градус Цельсия ккал/°С килоджо- уль на градус Цельсия КДж/°С 4.19 кДж
удельная теплоемкость килокалория на килограмм градус Цельсия ккал/(кг°С) килоджо- уль на килограмм градус Цельсия КДж/(кг°С) 4.19кДж/(кг°С)
теплопровод- ность килокалория на метр час градус Цельсия ккал/(м ч°С) ватт на метр градус Цельсия Вт/(м °С) 1.163Вт/(м °С)

Таблица 2. Приложение 17. Соотношение между единицами измерений

Единицы измерений Па бар мм. рт. ст мм. вод. ст кгс/см 2 Lbf/in 2
Па 10 -6 7,5024∙10 -3 0,102 1,02∙10 -6 1,45∙10 -4
бар 10 5 7,524∙10 2 1,02∙10 4 1,02 14,5
мм рт ст 133,322 1,33322∙10 -3 13,6 1,36∙10 -3 1,934∙10 -2
мм вод ст 9,8067 9,8067∙10 -5 7,35∙10 -2 ∙10 -4 1,422∙10 -3
кгс/см 2 9,8067∙10 4 0,98067 7,35∙10 2 10 4 14,223
Lbf/in 2 6,8948∙10 3 6,8948∙10 -2 52,2 7,0307∙10 2 7,0307∙10 -2

Задание на выполнение курсовое проекта

Исходные данные для выполнения курсового проекта следует принимать по двум последним цифрам номера студенческого билета или зачётной книжки. Генплан района города выдаёт преподаватель.

Таблица 1 – Географический пункт – район проектирования системы теплоснабжения

Цифры номера Город Цифры номера Город
Благовещенск (Амурская обл.) Кострома
Барнаул(Алтай) Сыктывкар
Архангельск Ухта
Астрахань Биробиджан (Хабаров-й кр.)
Котлас (Архангельская обл.) Армавир (Краснодарский кр.)
Уфа Кемерово
Белгород Сочи
Онега (Архангельская обл.) Уренгой (Ямало-Ненецк.ок.)
Брянск Красноярск
Волгоград Самара
Муром (Владимирск. обл.) Тихвин (Ленинградская обл.)
Вологда Курск
Воронеж Липецк
Братск (Иркутская обл.) Кашира (Московская обл.)
Арзамас (Нижегородская обл.) Санкт-Петербург
Новгород Курган
Нижний Новгород Дмитров (Московская обл.)
Иваново Москва
Нальчик (Кабард.-Балк. Р.) Йошкар-Ола (Рес. Марий Эл)
Тотьма (Вологодская обл.) Саранск (Респ. Мордовия)
Иркутск Мурманск
Калиниград Тверь
Ржев (Тверская обл.) Элиста (Калмыкия)
Калуга Новосибирск
Орёл Оренбург
Омск
Петрозаводск (Карелия) Владивосток (Приморск. кр.)
Киров Пенза
Печора Пермь
Псков Томск
Ульяновск Ярославль
Рязань Саратов
Ростов-на-Дону Воркута
Салехард (Ханты- Манс. АО) Сургут (Ханты- Манс. АО)
Охотск (Хабаровский кр.) Ижевск (Удмуртия)
Чита Грозный
Миллерово (Ростовс-я обл.) Казань (Татарстан)
Тамбов Минск
Ставрополь Киев
Тула Могилёв (Белл.)
Смоленск Житомир (Укр.)
Магадан Одесса
Краснодар Львов
Калуга Харьков
Махачкала (Р. Дагестан) Тында (Амурская обл.)
Астрахань Великие Луки
Мончегорск (Мурманс-я об.) Тюмень (Ненецкий АО)
Петрунь (Коми) Челябинск
Улан-Удэ (Бурятия) Курильск (Сахалинская обл.)
Сургут (Ханты-Манс-й АО) Никольск (Вологодская обл.)

Таблица 2 – Сведения по системе теплоснабжения

Исходные данные Предпоследняя цифра номера
Система теплоснабжения
открытая закрытая
Вид регулирования системы Последняя цифра номера
Качественное по отопительной нагрузке Качественное по суммарной нагрузке
Расчётные температуры сетевой воды, 0 С 150/70 140/70 130/70 150/70 140/70 130/ 140/70 150/70 140/70 130/70
Схемы подключения подогревателей ГВС нет параллельная последовательная смешанная

Таблица 3 – Сведения по району теплоснабжения

Исходные данные Предпоследняя цифра номера
Расположение ТЭЦ зап.
Расстояние от ТЭЦ до жилого района, км 0,9 0,8 0,7 0,9 1,0 1,1 0,8 0,7 0,6 1,1
Плотность населения, чел/га
Отметки горизонталей рельефа Последняя цифра номера
а
б
в
г
д
е

Таблица 4 – Задание на выполнение узлов тепловой сети

Литература

1. Теплоснабжение / А.А.Ионин, Б.М.Хлыбов, В.Н.Братенков и др.; Учебник для вузов.-М.: Стройиздат,1982.- 336с.

2. Теплоснабжение / В.Е.Козин, Т.А.Левина, А.П.Марков и др.; Учебное пособие для студентов вузов. - М.: Высш. школа,1980- 408с.

3. Наладка водяных систем централизованного теплоснабжения / Апарцев М. М. Справочное пособие.-М.: Энергоатомиздат, 1983.-204с.

4. Водяные тепловые сети. Справочное пособие по проектированию./Под ред. Н.К.Громова, Е.П.Шубина.-М.: Энергоатомиздат, 1988.-376с.

5. Справочник по наладке и эксплуатации водяных тепловых сетей /В.И.Манюк, Я.И.Каплинский, Э.Б.Хиж и др. 3-е изд.,перераб.и доп.-М.: Стройиздат,1988.-432с.

6. Справочник по теплоснабжению и вентиляции. Книга1: Отопление и теплоснабжение.-4-е изд., испр. и доп./Р.В.Щёкин, С.Н.Кореневский, Г.Е.Бем и др.- Киев: Будиiвельник, 1976-416с.

7. Справочник проектировщика. Проектирование тепловых сетей. Николаев А. А. – Курган.: Интеграл, 2007. – 360 с.

8. Проектирование тепловых пунктов. СП 41-101-95. Минстрой России, 1997.-78с.

9. Тепловые сети. СНиП 41-02-2003. Госстрой России. Москва, 2004.

10. Сети тепловые (Тепломеханическая часть). Рабочие чертежи: ГОСТ 21.605-82 * .-Вед. 01.078.83.-М., 1992.-9с.

11. Тепловая изоляция оборудования и трубопроводов. СНиП 41-03-2003. Госстрой России. Москва, 2003.

12. Проектирование тепловой изоляции оборудования и трубопроводов. СП 41-103-2000.Госстрой России. Москва, 2001.

13. Строительная климатология. СНиП 23-01-99.Госстрой России.-М:2000.-66с.

14. Внутренний водопровод и канализация. СНиП 2.04.01-85*.Госстрой России. М.:1999-60с.

15. Типовая серия 4.904-66 Прокладка трубопроводов водяных тепловых сетей в непроходных каналах. Выпуск 1- Расположение трубопроводов D 25-350 мм в непроходных каналах, углах поворотов и компенсаторных нишах.

16. Типовая серия 3.006.1-8 Сборные железобетонные каналы и тоннели из лотковых элементов. Выпуск 0 - Материалы для проектирования.

17. То же. Выпуск 5 -Узлы трасс. Рабочие чертежи.

18. Типовая серия 4.903-10 Изделия и детали трубопроводов для тепловых сетей. Выпуск 4 - Опоры трубопроводов неподвижные.

19. То же. Выпуск 5 - Опоры трубопроводов подвижные.


Таблица 1- КЛИМАТИЧЕСКИЕ ПАРАМЕТРЫ ХОЛОДНОГО ПЕРИОДА ГОДА

Температура воздуха наиболее холодных суток, °С, обеспеченностью Температура воздуха наиболее холодной пятидневки, °С, обеспеченностью Температура воздуха, °С, обеспеченностью 0,94 Абсолютная минимальная температура воздуха, °С Средняя суточная амплитуда температуры воздуха наиболее холодного месяца, °С Продолжительность, сут, и средняя температура воздуха, °С, периода со средней суточной температурой воздуха Средняя месячная относительная влажность воздуха наиболее холодного месяца, % Средняя месячная относительная влажность воздуха в 15 ч. наиболее холодного месяца, %. Количество осадков за ноябрь-март, мм Преобладающее направление ветра за декабрь-февраль Максимальная из средних скоростей ветра по румбам за январь, м/с Средняя скорость ветра, м/с, за период со средней суточной темпера турой воздуха £ 8 °С
£ 0°С £ 8°С £ 10°С
0,98 0,92 0,98 0,92 продолжительность средняя температура продолжительность средняя температура продолжительность средняя температура
Ржев -37 -33 -31 -28 -15 -47 6,6 -6,1 -2,7 -1,8 Ю - 3,6

Таблица 2- КЛИМАТИЧЕСКИЕ ПАРАМЕТРЫ ТЕПЛОГО ПЕРИОДА ГОДА

Республика, край, область, пункт Барометрическое давление, гПа Температура воздуха, °С, обеспеченностью 0,95 Температура воздуха, °С, обеспеченностью 0,98 Средняя максимальная температура воздуха наиболее теплого месяца, °С Абсолютная максимальная температура воздуха, °С Средняя суточная амплитуда температуры воздуха наиболее теплого месяца, °С Средняя месячная относительная влажность воздуха наиболее теплого месяца, % Средняя месячная относительная влажность воздуха в 15 ч наиболее теплого месяца, % Количество осадков за апрель-октябрь, мм Суточный максимум осадков, мм Преобладающее направление ветра за июнь-август Минимальная из средних скоростей ветра по румбам за июль, м/с
Ржев 20,1 24,4 22,5 10,5 З -

Рис. 3 приложения 16. Опоры неподвижные щитовые для трубопроводов D н 108-1420 мм тип III с защитой от электрокоррозии: а) обыкновенные;


б) усиленные

Рис. 4 приложения 16. Неподвижная отдельно стоящая опора для труб

D у 80-200 мм. (подвальная).

Подвижные опоры трубопроводов тепловых сетей.

Рис. 5. Опоры подвижные:

а - скользящая подвижная опора; б – катковая; в – роликовая;

1 – лапа; 2 – опорная плита; 3 – основание; 4 – ребро; 5 – ребро боковое;

6 – подушка; 7 – монтажное положение опоры; 8 – каток; 9 – ролик;

10 – кронштейн; 11 – отверстия.

Рис. 6. Подвесная опора:

12 – кронштейн; 13 – подвесной болт; 14 – тяга.

Приложение 17. Коэффициенты трения в подвижных опорах

Приложение 18. Прокладка трубопроводов тепловых сетей.


а)
б)
Рис. 2 приложения 18. Бесканальная прокладка тепловых сетей: а) в сухих грунтах; б) в мокрых грунтах с попутным дренажем.

Таблица 1 приложения 18. Конструктивные размеры бесканальной прокладки теплосетей в армопенобетонной изоляции в сухих грунтах (без дренажа).

D y , мм D н, (с покровным слоем)
D п D o A Б В l k Г h h 1 , не менее д а б Л, не менее ж
- - - - - -

Таблица 2 приложения 18. Конструктивные размеры бесканальной прокладки теплосетей в армопенобетонной изоляции в мокрых грунтах (с дренажем)

D y , мм D н, (с покровным слоем) Размеры по альбому серии 903-0-1
D п D o A Б В l k Г h h 1 , не менее д а б Л, не менее ж

Канальная прокладка.

в)
a)
б)

Рис. 2 приложения 18. Сборные каналы для тепловых сетей: а) тип КЛ; б) тип КЛп; в) тип КЛс.

Таблица 3 приложения 18. Основные типы сборных железобетонных каналов для тепловых сетей.

Условный диаметр трубопровода D y , мм Обозначение (марка) канала Размеры канала, мм
Внутренние номинальные Наружные
Ширина А Высота Н Ширина А Высота Н
25-50 70-80 КЛ(КЛп)60-30 КЛ(КЛп)60-45
100-150 КЛ(КЛп)90-45 КЛ(КЛп)60-60
175-200 250-300 КЛ(КЛп)90-60 КЛ(КЛп)120-60
350-400 КЛ(КЛп)150-60 КЛ(КЛп)210-60
450-500 КЛс90-90 КЛс120-90 КЛс150-90
600-700 КЛс120-120 КЛс150-120 КЛс210-120

Приложение 19. Насосы в системах теплоснабжения.

Рис. 1 приложения 19. Поле характеристик сетевых насосов.


Таблица 1 приложения 19. Основные технические характеристики сетевых насосов.

Тип насоса Подача, м 3 /с (м 3 /ч) Напор, м Допустимый кавитационный запас, м., не менее Давление на входе в насос, МПа(кгс/см 2) не более Частота вращения (синхронная), 1/с(1/мин) Мощность, кВт К. п. д., %, не менее Температура перекачиваемой воды, (°С), не более Масса насоса, кг
СЭ-160-50 СЭ-160-70 СЭ-160-100 СЭ-250-50 СЭ-320-110 СЭ-500-70-11 СЭ-500-70-16 СЭ-500-140 СЭ-800-55-11 СЭ-800-55-16 СЭ-800-100-11 СЭ-800-100-16 СЭ-800-160 СЭ-1250-45-11 СЭ-1250-45-25 СЭ-1250-70-11 СЭ-1250-70-16 СЭ-1250-100 СЭ-1250-140-11 СЭ-1250-140-16 СЭ-1600-50 СЭ-1600-80 СЭ-2000-100 СЭ-2000-140 СЭ-2500-60-11 СЭ-2500-60-25 СЭ-2500-180-16 СЭ-2500-180-10 СЭ-3200-70 СЭ-3200-100 СЭ-3200-160 СЭ-5000-70-6 СЭ-5000-70-10 СЭ-5000-100 СЭ-5000-160 0,044(160) 0,044(160) 0,044(160) 0,069(250) 0,089(320) 0,139(500) 0,139(500) 0,139(500) 0,221(800) 0,221(800) 0,221(800) 0,221(800) 0,221(800) 0,347(1250) 0,347(1250) 0,347(1250) 0,347(1250) 0,347(1250) 0,347(1250) 0,347(1250) 0,445(1600) 0,445(1600) 0,555(2000) 0,555(2000) 0,695(2500) 0,695(2500) 0,695(2500) 0,695(2500) 0,890(3200) 0,890(3200) 0,890(3200) 1,390(5000) 1,390(5000) 1,390(5000) 1,390(5000) 5,5 5,5 5,5 7,0 8,0 10,0 10,0 10,0 5,5 5,5 5,5 5,5 14,0 7,5 7,5 7,5 7,5 7,5 7,5 7,5 8,5 8,5 22,0 22,0 12,0 12,0 28,0 28,0 15,0 15,0 32,0 15,0 15,0 15,0 40,0 0,39 (4) 0,39 (4) 0,39 (4) 0,39 (4) 0,39 (4) 1,08(11) 1,57(16) 1,57(16) 1,08(11) 1,57(16) 1,08(11) 1,57(16) 1,57(16) 1,08(11) 2,45(25) 1,08(11) 1,57(16) 1,57(16) 1,08(11) 1,57(16) 2,45(25) 1,57(16) 1,57(16) 1,57(16) 1,08(11) 2,45(25) 1,57(16) 0,98(10) 0,98(10) 0,98(10) 0,98(10) 0,59(6) 0,98(10) 1,57(16) 0,98(10) 50(3000) 50(3000) 50(3000) 50(3000) 50(3000) 50(3000) 50(3000) 50(3000) 25(1500) 25(1500) 25(1500) 25(1500) 50(3000) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 25(1500) 50(3000) 50(3000) 25(1500) 25(1500) 50(3000) 50(3000) 25(1500) 25(1500) 50(3000) 25(1500) 25(1500) 25(1500) 50(3000) (120) (180) (180) (120) (180) (120) - - - - - - - - - - - - - - - - - -

Таблица 2 приложения 19. Центробежные насосы типа К.

Марка насоса Производи-тельность, м 3 /ч Полный напор, м Частота вращения колеса, об/мин Рекомендуемая мощность электродвигателя, кВт Диаметр рабочего колеса, мм
1 К-6 6-11-14 20-17-14
1,5 К-6а 5-913 16-14-11 1,7
1,5 К-6б 4-9-13 12-11-9 1,0
2 К-6 10-20-30 34-31-24 4,5
2 К-6а 10-20-30 28-25-20 2,8
2 К-6б 10-20-25 22-18-16 2,8
2 К-9 11-20-22 21-18-17 2,8
2 К-9а 10-17-21 16-15-13 1,7
2 К-9б 10-15-20 13-12-10 1,7
3 К-6 30-45-70 62-57-44 14-20
3 К-6а 30-50-65 45-37-30 10-14
3 К-9 30-45-54 34-31-27 7,0
3 К-9а 25-85-45 24-22-19 4,5
4 К-6 65-95-135 98-91-72
4 К-6а 65-85-125 82-76-62
4 К-8 70-90-120 59-55-43
4 К-8а 70-90-109 48-43-37
4 К-12 65-90-120 37-34-28
4 К-12а 60-85-110 31-28-23 14,
4 К-18 60-80-100 25-22-19 7,0
4 К-18а 50-70-90 20-18-14 7,0
6 К-8 110-140-190 36-36-31
6 К-8а 110-140-180 30-28-25
6 К-8б 110-140-180 24-22-18
6 К-12 110-160-200 22-20-17
6 К-12а 95-150-180 17-15-12
8 К-12 220-280-340 32-29-25
8 К-12а 200-250-290 26-24-21
8 К-18 220-285-360 20-18-15
8 К-18а 200-260-320 17-15-12

Приложение 20. Запорная арматура в системах теплоснабжения.

Таблица 2 приложения 21.Стальные поворотные дисковые затворы с электроприводом D y 500-1400 мм на p y =2,5 МПа, t £200°C с канцами под приварку.


Обозначение задвижки Условный проход D y , мм Пределы применения Материал корпуса
По каталогу В тепловых сетях
p y , МПа t , °C p y , МПа t , °C
30ч47бр 50, 80, 100, 125, 150, 200 1,0 1,0 Фланцевое Серый чугун
31ч6нж (И13061) 50, 80, 100, 125, 150 1,0 1,0
31ч6бр 1,6 1,0
30с14нж1 1,0 1,0 Фланцевое Сталь
31ч6бр (ГЛ16003) 200, 250, 300 1,0 1,0 Серый чугун
350, 400 1,0 0,6
30ч915бр 500, 600, 800, 1200 1,0 0,6 0,25 Фланцевое Серый чугун
30ч930бр 1,0 0,25
30с64бр 2,5 2,5 Сталь
ИА12015 2,5 2,5 С концами под приварку
Л12014 (30с924нж) 1000, 1200, 1400 2,5 2,5
30с64нж (ПФ-11010-00) 2,5 2,5 Фланцевое и с концами под приварку Сталь
30с76нж 50, 80, 100, 125, 150, 200, 250/200 6,4 6,4 Фланцевое Сталь
30с97нж (ЗЛ11025Сп1) 150, 200, 250 2,5 2,5 Фланцевое и с концами под приварку Сталь
30с65нж (НА11053-00) 150, 200, 250 2,5 2,5
30с564нж (МА11022.04) 2,5 2,5
30с572нж 30с927нж 400/300, 500, 600, 800 2,5 2,5 Фланцевое и с концами под приварку Сталь
30с964нж 1000/800 2,5 2,5

Таблица 4 приложения 20. Допускаемые задвижки

Обозначение задвижки Условный приход D y , мм Пределы применения (не более) Присоединение к трубопроводу Материал корпуса
По каталогу В тепловых сетях
p y , МПа t , °C p y , МПа t , °C
30ч6бр 50, 80, 100, 125, 150 1,0 1,0 Фланцевое Серый чугун
30ч930бр 600, 1200, 1400 0,25 0,25
31ч6бр 1,6 1,0
ЗКЛ2-16 50, 80, 100, 150, 200, 250, 300, 350, 400, 500, 600 1,6 1,6 Сталь
30с64нж 2,5 2,5 Фланцевое и с концами под приварку Сталь
30с567нж (ИА11072-12) 2,5 2,5 Под приварку
300с964нж 2,5 2,5 Фланцевое и с концами под приварку Сталь
30с967нж (ИАЦ072-09) 500, 600 2,5 2,5 Под приварку

Рис. 2 приложения 20. Шаровые краны в системах теплоснабжения.



Таблица 5 приложения 20. Технические данные шаровых кранов.

Условный диа метр Проходной условный диаметр Dh, мм d, мм t, мм L, мм H1 H2 A Масса в кг
17,2 1,8 0,8
21,3 2,0 0,8
26,9 2,3 0,9
33,7 2,6 1,1
42,4 2,6 1,4
48,3 2,6 2,1
60,3 2,9 2,7
76,1 76,1 2,9 4,7
88,9 88,9 3,2 6,1
114,3 114,3 3,6 9,5
139,7 3,6 17,3
168,3 4,0 26,9
219,1 4,5 - 43,5
355,6 273,0 5,0 - 115,0
323,3 5,6 - 195,0
355,6 5,6 - 235,0
406,4 6,3 - 390,0
508,0 166,5 - 610,0

Примечание: корпус крана – сталь Ст. 37. 0; шар – нержавеющая сталь; седло шара и сальник –тефлон +20 % углерода; уплотнительные кольца – тройной этилен-пропиленовый каучук и витон.
Приложение 21. Соотношение между некоторыми единицами физических величин, подлежащими замене, с единицами СИ.

Таблица 1 приложения 21.

Наименование величин Единица Соотноше- ние с единицами СИ
подлежащая замене СИ
Наимено- вание Обозначение Наименование Обозначение
количество теплоты килокалория ккал кило-джоуль КДж 4.19 кДж
удельное количество теплоты килокалория на килограмм ккал/кг килоджо- уль на килограмм КДж/кг 4.19кДж/кг
тепловой поток килокалория в час ккал/ч ватт Вт 1.163 Вт
(мощность) гигакало-рия в час Гкал/ч мегаватт МВт 1.163 МВт
поверхност- ная плотность теплового потока килокалория в час на квадрат- ный метр ккал/(ч м 2) ватт на квадрат- ный метр Вт/м 2 1.163 Вт/м 2
объемная плотность теплового потока килокалория в час на кубичес- кий метр ккал/(ч м 3) ватт на кубичес- кий метр Вт/м 3 1.163 Вт/м 3
теплоемкость килокалория на градус Цельсия ккал/°С килоджо- уль на градус Цельсия КДж/°С 4.19 кДж
удельная теплоемкость килокалория на килограмм градус Цельсия ккал/(кг°С) килоджо- уль на килограмм градус Цельсия КДж/(кг°С) 4.19кДж/(кг°С)
теплопровод- ность килокалория на метр час градус Цельсия ккал/(м ч°С) ватт на метр градус Цельсия Вт/(м °С) 1.163Вт/(м °С)

Таблица 2 Соотношения между единицами измерения системы МКГСС и международной системы единиц СИ.

Таблица 3. Соотношение между единицами измерений

Единицы измерений Па бар мм. рт. ст мм. вод. ст кгс/см 2 Lbf/in 2
Па 10 -6 7,5024∙10 -3 0,102 1,02∙10 -6 1,45∙10 -4
бар 10 5 7,524∙10 2 1,02∙10 4 1,02 14,5
мм рт ст 133,322 1,33322∙10 -3 13,6 1,36∙10 -3 1,934∙10 -2
мм вод ст 9,8067 9,8067∙10 -5 7,35∙10 -2 ∙10 -4 1,422∙10 -3
кгс/см 2 9,8067∙10 4 0,98067 7,35∙10 2 10 4 14,223
Lbf/in 2 6,8948∙10 3 6,8948∙10 -2 52,2 7,0307∙10 2 7,0307∙10 -2

Литература

1. СНиП 23-01-99 Строительная климатология/Госстрой России.- М.:

2. СНиП 41-02-2003. ТЕПЛОВЫЕ СЕТИ. ГОССТРОЙ РОССИИ.

Москва. 2003

3. СНиП 2.04.01.85*. Внутренний водопровод и канализация зданий/Госстрой России. –

М.: ГУП ЦПП, 1999.-60 с.

4. СНиП 41-03-2003. Тепловая изоляция оборудования и

трубопроводов.ГОССТРОЙ РОССИИ. МОСКВА 2003

5. СП 41-103-2000. ПРОЕКТИРОВАНИЕ ТЕПЛОВОЙ ИЗОЛЯЦИИ ОБОРУДОВАНИЯ И

ТРУБОПРОВОДОВ. ГОССТРОЙ РОССИИ. МОСКВА 2001

6. Проектирование тепловых пунктов. СП 41-101-95. Минстрой

России – М.: ГУП ЦПП, 1997 – 79 с.

7. ГОСТ 21.605-82. Сети тепловые. Рабочие чертежи. М.: 1982-10 с.

8. Водяные тепловые сети: Справочное пособие по проектированию

/И. В. Беляйкина, В. П. Витальев, Н. К. Громов и др.: Под ред.

Н. К. Громова, Е. П. Шубина. - М.: Энергоатомиздат, 1988.- 376 с.

9. Наладка и эксплуатация водяных тепловых сетей.:

Справочник / В. И. Манюк, Я. И. Каплинский, Э. Б. Хиж и др. - изд., 3-е

переработ. и доп.- М.: Стройиздат, 1988. - 432 с.

10. Справочник проектировщика под ред. А.А.Николаева. – Проектирование

тепловых сетей.-М.: 1965-360с.

11. Малышенко В.В., Михайлов А.К..Энергетические насосы. Справочное

пособие. М.: Энергоатомиздат, 1981.-200с.

12. Лямин А.А., Скворцов А.А.. Проектирование и расчет конструкций

тепловых сетей -Изд. 2-е.- М.: Стройиздат, 1965. - 295 с

13. Зингер Н.М. Гидравлические и тепловые режимы теплофикационных

систем. -Изд. 2-е.- М.: Энергоатомиздат, 1986.-320с.

14. Справочник строителя тепловых сетей. / Под ред. С.Е. Захаренко.- Изд.

2-е.- М.: Энергоатомиздат, 1984.-184с.

Распределительные теплосети состоят из таких элементов, как:

1) непроходные каналы;

2) подвижные и неподвижные опоры;

3) компенсаторы;

4) трубопроводы и запорная арматура (задвижки);

5) тепловые камеры.

Непроходные каналы. Стенки непроходных каналов состоят из сборных блоков. Сверху на сборные блоки накладываются железобетонные плиты перекрытия. Основание дна непроходного канала делают обычно в сторону ЦТП (центральных тепловых пунктов), либо в сторону подвалов жилых домов. Но бывает так, что при неблагоприятном рельефе местности какая то часть каналов монтируется с уклоном к тепловым камерам. Швы бетонных блоков и плит заделывают, изолируют для того, чтобы в канал не попадали грунтовые и верховые воды. Замерзшей землей засыпать канал нельзя.

Неподвижные и подвижные опоры. Опоры трубопроводов тепловой сети подразделяются на неподвижные (или как еще говорят, мертвые) и подвижные. В непроходных каналах применяют скользящие опоры. Эти опоры (рисунок 1) необходимы для передачи веса трубопроводов и обеспечения перемещения трубопроводов при их удлинении под воздействием высокой температуры теплоносителя.

Для этого скользящие опоры, или как их еще называют, «скользячки» приваривают к трубопроводам. А скользят они по специальным пластинам, которые вделаны в ж/б плиты.

Неподвижные или мертвые опоры (рисунок 2) необходимы для того, чтобы разделить трубопровод большой протяженности на отдельные участки. Участки эти не зависят напрямую друг от друга, и соответственно, при высоких температурах теплоносителя компенсаторы могут нормально, без видимых проблем, воспринять температурные удлинения.

К неподвижным опорам предъявляются повышенные требования по надежности, ведь нагрузки на них большие. В то же время нарушение прочности и целостности мертвой (неподвижной) опоры может привести к аварийной ситуации.

Компенсаторы в тепловых сетях служат для восприятия температурного удлинения трубопроводов при их нагреве (1,2 мм на каждый метр при повышении температуры на 100 °С).

Основная и главная задача компенсатора в теплосети – защитить трубопроводы и арматуру от «убийственных» напряжений. Как правило, для труб диаметр которых не более 200 мм применяют П-образные компенсаторы (рисунок 3).

Когда П-образные компенсаторы монтируют, их предварительно растягивают на половину температурного удлинения от той цифры, которая указана в проекте или расчете. Иначе компенсирующая способность компенсатора уменьшается в два раза. Растяжку следует производить одновременно с двух сторон в стыках, ближайших к мертвым (неподвижным) опорам.

Трубопроводы и задвижки. Для распределительных тепловых сетей применяют стальные трубы. На стыках трубопроводы соединяют при помощи электросварки. Из задвижек на тепловых сетях применяют стальные и чугунные задвижки.

Изоляция труб. Работать приходится в основном с магистральными распределительными тепловыми сетями, смонтированными еще в советское время. Конечно, кое-где трубопроводы теплосетей, а соответственно и изоляцию на них, меняют в ходе капитального ремонта. Трубопроводы таких сетей покрыты антикоррозионным составом, теплоизоляцией и защитным слоем (рисунок 4).

Рулонный материал, как правило, изол. Реже – бризол. Этот материал приклеен мастикой к трубопроводу. Теплоизоляция сделана из матов минеральной ваты. Защитный слой – асбестоцементная штукатурка из смеси асбеста и цемента в пропорции 1:2, которая распределена по проволочной сетке.

Подпиточный насос для восполнения водой систем отопления включается в зависимости от уровня воды в расширительном сосуде или при снижении давления теплоносителя в теплопроводе ниже нормированного. Как только вода достигнет критического (нижнего) уровня, поплавковое реле или реле уровня подает сигнал и автоматически включает в работу насос; при заполнении систем и достижении верхнего предела насос останавливается.

Заключение

Тепловая сеть представляет собой систему соединенных между собой участков теплопроводов, по которым тепло транспортируется от источников к потребителям. Основной элемент тепловой сети – трубопровод, который состоит из труб, соединенных сваркой. Изоляционная конструкция предназначена для защиты трубопровода от коррозии и потери тепла. Несущая конструкция является своеобразным фундаментом для трубопровода и принимает всю его тяжесть на себя.

Самый важный элемент трубопровода, если так можно сказать, это трубы, которые должны обладать рядом качественных показателей. Они должны быть герметичны, прочны – они обязаны выдерживать максимальные температуры и давление, возникающее в трубопроводе. У труб должен быть низкий коэффициент температурной деформации, малая шероховатость внутренней поверхности, также нужно хорошее термическое сопротивление стенок для сохранения тепла.

Исходя из моей работы, следует, что основная функция тепловых сетей – это доставка тепла потребителям. Этот процесс состоит из цепи взаимосвязанных процессов. Таким образом, сегодняшние тепловые сети – это высокотехнологичные системы, которыми управляет штат квалифицированных сотрудников. Десятки тысяч километров труб переплетаются сложным узором на просторах страны. Сложные климатические зоны заставляют НИИ и конструкторские бюро находить новые технологии изоляции трубопроводов, разрабатываются принципиально новые схемы котельных, математически описываются зависимости, нагрузки тепловых аппаратов.

На отдельно стоящих мачтах и опорах (рис. 4.1);

Рис. 4.1. Прокладка трубопроводов на отдельно стоящих мачтах

Рис.4.2-на эстакадах со сплошным пролетным строением в виде ферм или балок (рис. 4.2);

Рис. 4.2. Эстакада с пролетным строением для прокладки трубопроводов

Рис.4.3-на тягах, прикрепленных к верхушкам мачт (вантовая конструкция, рис. 4.3);

Рис. 4.3. Прокладка труб с подвеской на тягах (вантовая конструкция)

На кронштейнах.

Прокладки первого типа наиболее ра­циональны для трубопроводов диаметром 500 мм и более. Трубопроводы большего диаметра при этом могут быть использо­ваны в качестве несущих конструкций для укладки или подвески к ним нескольких тру­бопроводов малого диаметра, требующих более частой установки опор.

Прокладки по эстакаде со сплошным на­стилом для прохода целесообразно приме­нять только при большом количестве труб (не менее 5 - 6 шт.), а также при необходи­мости регулярного надзора за ними. По стоимости конструкции проходная эстакада наиболее дорогая и требует наибольшего расхода металла, так как фермы или ба­лочный настил обычно изготовляются из прокатной стали.

Прокладка третьего типа с подвесной (вантовой) конструкцией пролетного строе­ния является более экономичной, так как позволяет значительно увеличить расстояния между мачтами и тем самым уменьшить расход строительных материалов. Наиболее простые конструктивные формы подвесная прокладка получает при трубопроводах равных или близких диаметров.

При совместной укладке трубопроводов большого и малого диаметра применяется несколько видоизмененная вантовая кон­струкция с прогонами из швеллеров, подве­шенных на тягах. Прогоны позволяют уста­навливать опоры трубопроводов между мач­тами. Однако возможность прокладки тру­бопроводов на эстакадах и с подвеской на тягах в городских условиях ограничена и применима только в промышленных зонах. Наибольшее применение получила проклад­ка водяных трубопроводов на отдельно стоящих мачтах и опорах или на кронштей­нах. Мачты и опоры, как правило, выпол­няются из железобетона. Металлические мачты применяются в исключительных слу­чаях при малом объеме работ и реконструк­ции существующих тепловых сетей.

Мачты по своему назначению делятся на следующие типы:

  • для подвижных опор трубопроводов (так называемые промежуточные);
  • для неподвижных опор трубопроводов (анкерные), а также устанавливаемые в на­чале и в конце участка трассы;
  • устанавливаемые на поворотах трассы;
  • служащие для опирания компенсаторов трубопроводов.

В зависимости от количества, диаметра и назначения прокладываемых трубопрово­дов мачты выполняются трех различных конструктивных форм: одностоечными, двухстоечными и четырехстоечными простран­ственной конструкции.

При проектировании воздушных про­кладок следует стремиться к возможно большему увеличению расстояний между мачтами.

Однако для беспрепятственного стока воды при выключениях трубопроводов мак­симальный прогиб не должен превышать

f = 0,25∙i l ,

где f - прогиб трубопровода в середине пролета, мм; i - уклон оси трубопровода; l - расстояние между опорами, мм.

Сборные железобетонные конструкции мачт обычно собираются из следующих эле­ментов: стоек (колонн), ригелей и фундамен­тов. Размеры сборных деталей определяются количеством и диаметром укладываемых трубопроводов.

При прокладке от одного до трех трубо­проводов в зависимости от диаметра при­меняются одностоечные отдельно стоящие мачты с консолями, они пригодны и при вантовой подвеске труб на тягах; тогда предусматривается устройство верхушки для крепления тяг.

Мачты сплошного прямоугольного се­чения допустимы, если максимальные раз­меры поперечного сечения не превосходят 600 х 400 мм. При больших размерах для облегчения конструкции рекомендуется пре­дусматривать вырезы по нейтральной оси или применять в качестве стоек центрифуги­рованные железобетонные трубы заводского изготовления.

Для многотрубных прокладок мачты промежуточных опор чаще всего проекти­руются двухстоечной конструкции, одно­ярусные или двухъярусные.

Сборные двухстоечные мачты состоят из следующих элементов: двух стоек с одной или двумя консолями, одного или двух риге­лей и двух фундаментов стаканного типа.

Мачты, на которых трубопроводы за­крепляются неподвижно, испытывают на­грузку от горизонтально направленных уси­лий, передаваемых трубопроводами, которые проложены на высоте 5 - 6 м от поверхности грунта. Такие мачты для увеличения устой­чивости проектируются в виде четырехстоечной пространственной конструкции, которая состоит из четырех стоек и четырех или восьми ригелей (при двухъярусном располо­жении трубопроводов). Мачты устанавли­ваются на четырех отдельных фундаментах стаканного типа.

При надземной прокладке трубопрово­дов больших диаметров используется не­сущая способность труб, и поэтому не тре­буется устройства какого-либо пролетного строения между мачтами. Не следует приме­нять и подвеску трубопроводов большого диаметра на тягах, так как такая конструк­ция практически работать не будет.

Рис.4.4В качестве примера приведена про­кладка трубопроводов на железобетонных мачтах (рис. 4.4).

Рис. 4.4. Прокладка трубопроводов на железобетонных мачтах:

1 - колонна; 2 - ригель; 3 - связь; 4 - фундамент; 5 - соединительный стык; 6 - бетонная подготовка.

Два трубопровода (прямой и обратный) диаметром 1200 мм уложены на катковых опорах по железобетонным мачтам, устано­вленным через каждые 20 м. Высота мачт от поверхности земли 5,5 - 6м. Сборные желе­зобетонные мачты состоят из двух фунда­ментов, связанных между собой монолит­ным стыком, двух колонн прямоугольного сечения 400 х 600 мм и ригеля. Колонны связаны между собой металлическими диаго­нальными связями из угловой стали. Соеди­нение связей с колоннами выполнено косын­ками, приваренными к закладным деталям, которые заделаны в колоннах. Ригель, слу­жащий опорой для трубопроводов, выполнен в виде прямоугольной балки сечением 600 х 370 мм и крепится к колоннам путем сварки закладных стальных листов.

Мачта рассчитана на вес пролета труб, горизонтальные осевые и боковые усилия, возникающие от трения трубопроводов на катковых опорах, а также на ветровую на­грузку.

Рис. 4.5. Неподвижная опора:

1 - колонна; 2 - ригель поперечный; 3 - ригель продольный; 4 - связь поперечная; 5 - связь про­дольная; 6 - фундамент

Рис.4.5Неподвижная опора (рис. 4.5), рассчи­танная на горизонтальное усилие от двух труб 300 кН, выполнена из сборных железо­бетонных деталей: четырех колонн, двух продольных ригелей, одного поперечного опорного ригеля и четырех фундаментов, со­единенных попарно.

В продольном и поперечном направле­ниях колонны связаны металлическими диа­гональными связями, выполненными из уголковой стали. На опорах трубопроводы закрепляются хомутами, охватывающими трубы, и косынками в нижней части труб, ко­торые упираются в металлическую раму из швеллеров. Эта рама прикрепляется к железобетонным ригелям приваркой к закладным деталям.

Прокладка трубопроводов на низких опорах нашла широкое применение при строительстве тепловых сетей на неспланированной территории районов новой за­стройки городов. Переход пересеченной или заболоченной местности, а также мелких рек целесообразнее осуществлять таким спосо­бом с использованием несущей способности труб.

Однако при проектировании тепловых сетей с прокладкой трубопроводов на низких опорах необходимо учитывать срок намечен­ного освоения территории, занятой трассой, под городскую застройку. Если через 10 - 15 лет потребуется заключение трубопрово­дов в подземные каналы или реконструкция тепловой сети, то применение воздушной прокладки является нецелесообразным. Для обоснования применения способа прокладки трубопроводов на низких опорах должны быть выполнены технико-экономические рас­четы.

При надземной прокладке трубопрово­дов больших диаметров (800-1400 мм) це­лесообразной является их прокладка на от­дельно стоящих мачтах и опорах с примене­нием специальных сборных железобетонных конструкций заводского изготовления, отве­чающих конкретным гидрогеологическим ус­ловиям трассы тепломагистрали.

Опыт проектирования показывает эко­номичность применения свайных оснований под фундаменты как анкерных, так и проме­жуточных мачт и низких опор.

Надземные тепломагистрали большого диаметра (1200-1400 мм) значительной про­тяженности (5 - 10 км) построены по индиви­дуальным проектам с применением высоких и низких опор на свайном основании.

Имеется опыт строительства тепломагистрали с диаметрами труб D у = 1000 мм от ТЭЦ с применением свай-стоек на заболоченных участках трассы, где на глубине 4-6 м залегают скальные грунты.

Расчет опор на свайном основании на совместное действие вертикальных и гори­зонтальных нагрузок выполняется в соответ­ствии со СНиП II-17-77 «Свайные фун­даменты».

При проектировании низких и высоких опор для прокладки трубопроводов могут быть использованы конструкции унифициро­ванных сборных железобетонных отдельно стоящих опор, разработанных под техноло­гические трубопроводы [ 3 ].

Проект низких опор по типу «качаю­щихся» фундаментов, состоящих из железо­бетонного вертикального щита, устанавли­ваемого на плоскую фундаментную плиту, разработан АтомТЭП. Эти опоры могут применяться в различных грунтовых усло­виях (за исключением сильно обводненных и просадочных грунтов).

Одним из наиболее распространенных видов воздушной прокладки трубопроводов является прокладка последних на кронштей­нах, укрепляемых в стенах зданий. Примене­ние этого способа может быть рекомендова­но при прокладке тепловых сетей на терри­тории промышленных предприятий.

При проектировании трубопроводов, располагаемых по наружной или внутренней поверхности стен, следует выбирать такое размещение труб, чтобы они не закрывали оконных проемов, не мешали размещению других трубопроводов, оборудования и пр. Наиболее важным является обеспечение на­дежного закрепления кронштейнов в стенах существующих зданий. Проектирование про­кладки трубопроводов по стенам существую­щих зданий должно включать обследование стен в натуре и изучение проектов, по ко­торым они построены. При значительных нагрузках, передаваемых трубопроводами на кронштейны, необходимо производить рас­чет общей устойчивости конструкций здания.

Трубопроводы укладываются на крон­штейны с приваренными корпусами скользя­щих опор. Применение катковых подвижных опор при наружной прокладке трубопрово­дов не рекомендуется из-за трудности их пе­риодической смазки и очистки в период эксплуатации (без чего они будут работать как скользящие).

В случае недостаточной надежности стен здания должны быть осуществлены кон­структивные мероприятия по рассредоточе­нию усилий, передаваемых кронштейнами, путем уменьшения пролетов, устройства подкосов, вертикальных стоек и др. Крон­штейны, устанавливаемые в местах устройства неподвижных опор трубопроводов, дол­жны выполняться по расчету на действую­щие на них усилия. Обычно они требуют дополнительного крепления путем устрой­ства подкосов в горизонтальной и верти­кальной плоскостях. На рис. 4.6 приведена типовая конструкция кронштейнов для про­кладки одного или двух трубопроводов диаметром от 50 до 300 мм.

Рис.4.6

Рис. 4.6. Прокладка трубопроводов на кронштейнах:

а - для одной трубы; б - для двух труб

Устройства на тепловой сети. Опоры.

Устройства на тепловой сети. При подземной прокладке для размещения и обслуживания теплопроводов, компенсаторов, задвижек, воздушников, выпускников, дренажей и приборов КИП устраивают подземные камеры. Они могут быть сборными железобетонными, монолитными и кирпичными. Высота камер должна быть не менее 2м. Число люков при площади камер до 6м 2 должно быть не менее 2, при лошади камер более 6м 2 не менее 4. В камере предусматривается водосборный приямок 400х400мм и глубиной 300мм.

Арматура. Различают следующие типы арматуры:

1. запорная;

2. регулирующая;

3. предохранительная;

4. дросселирующая;

5. конденсатоотводная;

6. контрольно-измерительная.

Запорная арматура (задвижки) устанавливается на всех трубопроводах, отходящих от источника тепла, в узлах ответвления, в штуцерах для спуска воздуха.

Задвижки устанавливаются в следующих случаях:

1. На всех трубопроводах выводов тепловых сетей от источника тепла.

2. Для проведения ремонтных работ на теплопроводах водяных систем устанавливаются секционирующие задвижки. Расстояния между задвижками принимаются в зависимости от диаметра труб и приведены в табл.1

Таблица 1

D у, мм 400-500
l, м до 1000 до 1500 до 3000

3. При надземной прокладке трубопроводов D у 900мм допускается установка секционирующих задвижек через 5000м. В местах установки задвижек размещаются перемычки между подающим и обратным трубопроводами диаметром равным 0.3 D у трубопровода, но не менее 50мм. На перемычке предусматривается установка двух задвижек и контрольного вентиля между ними D у =25мм.

4. На ответвлениях к отдельным зданиям длиной до 30м и D у 50мм допускается не устанавливать запорную арматуру, а предусматривать установку её для группы зданий.

Задвижки и затворы с D у 500мм принимаются только с электроприводами. Для облегчения открытия, закрытия задвижек на трубопроводах D у 350мм делают обводные линии - байпасы.

Опоры. Опоры применяются для восприятия усилий, возникающих в теплопроводах, и передачи их на несущие конструкции или грунт. Опоры подразделяются на подвижные и неподвижные.

Неподвижные опоры . Неподвижные опоры предусматриваются для закрепления трубопроводов в специальных конструкциях и служат для распределения удлинения трубопроводов между компенсаторами и обеспечения равномерной работы компенсаторов. Между каждыми двумя компенсаторами устанавливается неподвижная опора. Неподвижные опоры разделяются на:

· упорные (при всех видах прокладки);

· щитовые (при бесканальной прокладке и в непроходных каналах);

· хомутовые (при надземной прокладке и в тоннелях).

Выбор типа неподвижных опор и их конструктивное оформление зависят от усилий, оказывающих воздействие на опору.

Различают неподвижные опоры концевые и промежуточные.

В грунте или непроходных каналах неподвижные опоры выполняют в виде железобетонных щитов (рис.25), заделанных в грунт или стенки каналов. Трубы жестко связываются со щитом при помощи приваренных к ним опорных стальных листов.


Рис. 25. Щитовая неподвижная опора.

В камерах подземных каналов и при надземной прокладке неподвижные опоры выполняются в виде металлических конструкций, сваренных или соединенных на болтах с трубами (рис. 26).

Эти конструкции заделываются в фундаменты, стены колонн и перекрытия каналов, камер и помещений, где прокладываются трубы.

Подвижные опоры . Подвижные опоры служат для передачи веса теплопроводов на несущие конструкции и обеспечения перемещений труб, происходящих вследствие изменения их длины при изменениях температуры теплоносителя.

Существуют опоры скользящие, роликовые, катковые и подвесные. Наиболее распространены скользящие опоры. Они применяются независимо от направления горизонтальных перемещений трубопроводов при всех способах прокладки и для всех диаметров труб (рис.27).

Катковые опоры применяются для труб d >200мм при прокладке на этакадах, иногда в проходных каналах, когда нужно снизить продольные усилия на несущие конструкции (рис.28.).

Роликовые опоры применяются в тех же случаях, что и катковые, но при наличии горизонтальных перемещений под углом к оси трассы.

При прокладке труб в помещениях и на открытом воздухе применяют подвесные опоры простые (жесткие) и пружинные.

Пружинные опоры предусматриваются для труб d >150мм в местах вертикальных перемещений труб.

Жесткие подвески используются при надземной прокладке с гибкими компенсаторами. Длина жестких подвесок должна быть не менее 10-ти кратного теплового перемещения подвески, наиболее удаленной от неподвижной опоры.

Компенсаторы. Компенсаторы служат для восприятия температурных удлинений и разгрузки труб от температурных напряжений.

Температурное удлинение стальных труб в результате теплового расширения металла определяется по формуле:

,

где - коэффициент местного расширения (1/ о С); для стали =12 10 -6 (1/ о С); - длина трубы, м; - температура трубы при монтаже (равна расчетной температуре наружного воздуха для отопления), о С; - рабочая температура стенки (равна максимальной рабочей температуре), о С.

При отсутствии компенсаторов могут возникнуть большие сжимающие напряжения от разогрева труб. Напряжения эти вычисляются по формуле:

,

где Е- модуль упругости, равный 2 10 -6 кг/см 2 .

Компенсаторы подразделяются на осевые и радиальные. Осевые компенсаторы устраивают на прямолинейных участках теплопровода. Радиальные устанавливают на сети любой конфигурации, т.к. они компенсируют как осевые, так и радиальные удлинения.

Осевые компенсаторы бывают сальниковые и линзовые. Наибольшее распространение получили сальниковые компенсаторы (рис.29). Сальниковый компенсатор работает по принципу телескопической трубы. Уплотнение между трубами достигается набивкой, пропитанной маслом для уменьшения трения. Сальниковые компенсаторы имеют малые габариты и малое гидравлическое сопротивление.

Линзовые компенсаторы в тепловых сетях почти не применяются, т.к. они дороги, ненадежны и вызывают большие усилия на мертвые (неподвижные) опоры. Их применяют при давлении в трубопроводах меньше 0,5 МПа (рис.30). При больших давлениях возможно выпучивание волн.

Радиальные компенсаторы (гнутые) - это трубы различных прогибов, выполняемые специально для восприятия удлинений труб в виде буквы П, лиры, омеги, витка пружины и других очертаний (рис.31).


Рис. 31. Типы очертаний гнутых компенсаторов

К преимуществам гнутых компенсаторов относятся: надежность работы, отсутствие необходимости в камерах для размещения компенсаторов под землей, малая нагрузка на мертвые опоры, полная разгруженность от внутреннего давления.

Недостатками гнутых компенсаторов являются повышенное против сальниковых гидравлическое сопротивление и громоздкость по габаритам.

Выпуски воздуха устанавливаются в высших точках трубопроводов с помощью штуцеров, диаметры которых принимают в зависимости от условного прохода трубопровода.

Грязевики устанавливаются на теплопроводах перед насосами и регуляторами.

Специальные сооружения устраиваются при пересечении тепловых сетей с железнодорожными путями в виде дюкеров, тоннелей, матовых переходов, эстакад, подземных переходов сетей в футлярах и тоннелях

Потери в сетях

Назначение оценок теплопотерь

l для нормирования;

l для обоснования тарифов;

l для разработки энергосберегающих мероприятий

l При взаиморасчетах (при несовпадении точек установки узлов учета и границ ответственности)

l При разработке нормативов технологических потерь при передаче тепловой энергии используются технически обоснованные значения нормативных энергетических характеристик

l СО 153-34.20.523-2003 Часть 3 "Методические указания по составлению энергетических характеристик для систем транспорта тепловой энергии по показателю "тепловые потери" (взамен РД 153-34.0-20.523-98)".

l СО 153-34.20.523-2003 Часть 4 "Методические указания по составлению энергетических характеристик для систем транспорта тепловой энергии по показателю "потери сетевой воды" (взамен РД 153-34.0-20.523-98)".

l Основой для сопоставления фактических и нормативных характеристик и разработки мероприятий энергосбережению (по сокращению резерва тепловой экономичности) являются результаты обязательных энергетических обследований организаций, выполняемых в соответствии с Федеральным законом № 261-ФЗ "Об энергосбережении…. "

l Методические указания по составлению энергетических характеристик для систем транспорта тепловой энергии (в трех частях). РД 153-34.0-20.523-98. Часть II. Методические указания по составлению энергетической характеристики водяных тепловых сетей по показателю «тепловые потери».

l Методические указания по составлению энергетических характеристик для систем транспорта тепловой энергии (в трех частях). РД 153-34.0-20.523-98. Часть III. Методические указания по составлению энергетической характеристики по показателю «потери сетевой воды» для систем транспорта тепловой энергии.

l Потери и затраты теплоносителей (горячая вода, пар, конденсат);

l 2. Потери тепловой энергии через теплоизоляционные конструкции, а также с потерями и затратами теплоносителей;

l 3. Удельный среднечасовой расход сетевой воды на единицу расчетной присоединенной тепловой нагрузки потребителей и единицу отпущенной потребителям тепловой энергии.

Разность температур сетевой воды в подающих и обратных трубопроводах (или температура сетевой воды в обратных трубопроводах при заданных температурах сетевой воды в подающих трубопроводах);

5. Расход электроэнергии на передачу тепловой энергии.

l Правила технической эксплуатации электрических станций и сетей Российской Федерации (2003 г.) п.1.4.3.

срок действия не может превышать пять лет

потери сетевой воды

Потери сетевой воды -зависимость технически обоснованных потерь теплоносителя на транспорт и распределение тепловой энергии от источника до потребителей (в пределах балансовой принадлежности эксплуатирующей организации) от характеристик и режима работы системы теплоснабжения

Энергетическая характеристика: потери сетевой воды

Зависимость технологических затрат тепловой энергии на ее транспорт и распределение от источника тепловой энергии до границы балансовой принадлежности тепловых сетей от температурного режима работы тепловых сетей и внешних климатических факторов при заданной схеме и конструктивных характеристиках тепловых сетей