Объединение пересечение. Основные операции над множествами

1 Пересечение множеств

Пересечением множеств А и В называют множество, в которое входят те и только те элементы, которые одновременно принадлежат множествам А и В. Обозначение: А ∩ В.

Так любой элемент х из множества А ∩ В обладает свойством

«х € А и х € В», то данное определение пересечения двух множеств можно записать в таком виде: А ∩ В = {х | х€А ^ х€В}.

Если множества А и В не имеют общих элементов, то эти множества не пересекаются. А ∩ В = Ǿ.

Если же множества имеет хотя бы один общий элемент, то говорят, что множества А и В пересекаются или что пересечение множеств Аи В не пусто.

Операция множеств обладает рядом свойств:

1. Пересечение множеств коммутативно: для любых множеств А и В имеем А∩В = В ∩ А

2. Пересечение множеств ассоциативно: для любых множеств А,В,С имеем

(А∩В)∩С=А∩(В∩С). Это позволяет записывать выражение А∩В∩С без скобок и находить пересечение любого числа множеств.

Сравнивая области заштрихованные дважды на рис, приходим к выводу, что множества (А∩В)∩С и А∩(В∩С) равны.

2. Объединение множеств.

Объединением двух множеств А и В называется множество, состоящее из элементов, которые принадлежат хотя бы одному из этих множеств. Обозначение:A U B.

Пример: А = {m, n, p, k, l} и В = {p, r, s, n} является множество A U B ={m, n, p, k, l, r, s}

На рисунке множество A U B изображено заштрихованной областью.

По определению в объединение множеств Аи В могут входить элементы из А, не принадлежащие множеству В, элементы из В, не принадлежащие А, и элементы, принадлежащие множествам А и В одновременно.

Так как любой элемент х из множества A U B обладает свойством «х€А или х€В», то определение объединения двух множеств можно записать так:

A U B = {х | х € А v x € B}.

Операция объединения множеств обладает такими свойствами:

1. Для любых множеств А и В имеем А U В = В U А (коммутативность).

2. Для любых множеств А,В,С имеем (А U В) U С=А U (В U С). (ассоциативность) Это свойство позволяет писать выражение (А U В) U С без скобок и говорить про объединение любого числа множеств.

В частности, для любого множества А имеем:

Связь между операциями пересечения и объединения множеств отражают свойства дистрибутивности.

4. Для любых множеств А, В, С справедливы равенства:

Свойства дистрибутивности иллюстрируются на диаграммах Эйлера –Венна. на рис приведены диаграммы соответствующие левой и правой части соотношения 4б). На первой диаграмме вертикальной штриховкой отмечено множество А, горизонтальной – множество В∩С. Вся заштрихованная область представляет собой множество AU(B∩C). На второй диаграмме вертикальной штриховкой отмечено множество AUB, горизонтальной – множество AUC. Область заштрихованная дважды, изображает множество (АUB)∩(AUC).

Рассматривая полученные области, приходим к выводу, что множества AU(B∩C) и (АUB)∩(AUC) равны.

В математике понятие множества является одним из основных, фундаментальным, однако единого определения множества не существует. Одним из наиболее устоявшихся определений множества является следующее: под множеством понимают любое собрание определённых и отличных друг от друга объектов, мыслимых как единое целое. Создатель теории множеств немецкий математик Георг Кантор (1845-1918) говорил так: "Множество есть многое, мыслимое нами как целое".

Множества как тип данных оказались очень удобными для программирования сложных жизненных ситуаций, так как с их помощью можно точно моделировать объекты реального мира и компактно отображать сложные логические взаимоотношения. Множества применяются в языке программирования Паскаль и один из примеров решения мы ниже разберём. Кроме того, на основе теории множества создана концепция реляционных баз данных, а на основе операций над множествами - реляционная алгебра и её операции - используемые в языках запросов к базам данных, в частности, SQL.

Пример 0 (Паскаль). Существует набор продуктов, продаваемых в нескольких магазинах города. Определить: какие продукты есть во всех магазинах города; полный набор продуктов в городе.

Решение. Определяем базовый тип данных Food (продукты), он может принимать значения, соответствующие названиями продуктов (например, hleb). Объявляем тип множества, он определяет все подмножества, составленные из комбинаций значений базового типа, то есть Food (продукты). И формируем подмножества: магазины "Солнышко", "Ветерок", "Огонёк", а также производные подмножества: MinFood (продукты, которые есть во всех магазинах), MaxFood (полный набор продуктов в городе). Далее прописываем операции для получения производных подмножеств. Подмножество MinFood получается в результате пересечения подмножеств Solnyshko, Veterok и Ogonyok и включает те и только те элементы этих подмножеств, которые включены в каждое их этих подмножеств (в Паскале операция пересечения множеств обозначается звёздочкой: A * B * C, математическое обозначение пересечения множеств дано далее). Подмножество MaxFood получается в результате объединения тех же подмножеств и включает элементы, которые включены во все подмножества (в Паскале операция объединения множеств обозначается знаком "плюс": A + B + C, математическое обозначение объединения множеств дано далее).

Код PASCAL

Program Shops; type Food=(hleb, moloko, myaso, syr, sol, sahar, maslo, ryba); Shop = set of Food; var Solnyshko, Veterok, Ogonyok, MinFood, MaxFood: Shop; Begin Solnyshko:=; Veterok:=; Ogonyok:=; ... MinFood:=Solnyshko * Veterok * Ogonyok; MaxFood:=Solnyshko + Veterok + Ogonyok; End.

Какие бывают множества

Объекты, составляющие множества - объекты нашей интуиции или интеллекта - могут быть самой различной природы. В примере в первом параграфе мы разобрали множества, включающие набор продуктов. Множества могут состоять, например, и из всех букв русского алфавита. В математике изучаются множества чисел, например, состоящие из всех:

Натуральных чисел 0, 1, 2, 3, 4, ...

Простых чисел

Чётных целых чисел

и т.п. (основные числовые множества рассмотрены в этого материала).

Объекты, составляющие множество, называются его элементами. Можно сказать, что множество - это "мешок с элементами". Очень важно: в множестве не бывает одинаковых элементов.

Множества бывают конечными и бесконечными. Конечное множество - это множество, для которого существует натуральное число, являющееся числом его элементов. Например, множество первых пяти неотрицательных целых нечётных чисел является конечным множеством. Множество, не являющееся конечным, называется бесконечным. Например, множество всех натуральных чисел является бесконечным множеством.

Если M - множество, а a - его элемент, то пишут: a M , что означает "a принадлежит множеству M ".

Из первого (нулевого) примера на Паскале с продуктами, которые есть в тех или иных магазинах:

hleb VETEROK ,

что означает: элемент "hleb" принадлежит множеству продуктов, которые есть в магазине "VETEROK".

Существуют два основных способа задания множеств: перечисление и описание.

Множество можно задать, перечислив все его элементы, например:

VETEROK = {hleb , syr , maslo } ,

A = {7 , 14 , 28 } .

Перечислением можно задать только конечное множество. Хотя можно сделать это и описанием. Но бесконечные множества можно задать только описанием.

Для описания множеств используется следующий способ. Пусть p (x ) - некоторое высказывание, которое описывает свойства переменной x , областью значений которых является множество M . Тогда через M = {x | p (x )} обозначаентся множество, состоящее из всех тех и только тех элементов, для которых высказывание p (x ) истинно. Это выражение читается так: "Множество M , состоящее из всех таких x , что p (x ) ".

Например, запись

M = {x | x ² - 3x + 2 = 0}

Пример 6. Согласно опросу 100 покупателей рынка, купивших цитрусовые, апельсины купили 29 покупателей, лимоны - 30 покупателей, мандарины - 9, только мандарины - 1, апельсины и лимоны - 10, лимоны и мандарины - 4, все три вида фруктов - 3 покупателя. Сколько покупателей не купили ни одного вида перечисленных здесь цитрусовых? Сколько покупателей купили только лимоны?

Операция декартова произведения множеств

Для определения ещё одной важной операции над множествами - декартова произведения множеств введём понятие упорядоченного набора длины n .

Длиной набора называется число n его компонент. Набор, составленный из элементов , взятых именно в этом порядке, обозначается . При этом i я () компонента набора есть .

Сейчас последует строгое определение, которое, возможно, не сразу понятно, но после этого определения будет картинка, по которой станет понятно, как получить декартово произведение множеств.

Декартовым (прямым) произведением множеств называется множество, обозначаемое и состоящее из всех тех и только тех наборов длины n , i -я компонента которых принадлежит .

Например, если , , ,

Основные понятия теории множеств.
Пересечение и объединение множеств

Цели: ознакомить учащихся с основными понятиями теории множеств, операциями над множествами (пересечение и объединение множеств); формировать умения задавать множества и проводить над ними основные операции.

Ход урока

I. Организационный момент.

II. Проверочная работа.

В а р и а н т 1

b = 5,82 ± 0,01.

2. Представьте каждое из чисел 2 и 14 в виде десятичной дроби. Округлите полученные дроби до сотых и найдите абсолютную и относительную погрешности приближения.

В а р и а н т 2

1. Запишите в виде двойного неравенства u = 6,75 ± 0,01.

2. Представьте каждое из чисел 6 и 18 в виде десятичной дроби. Округлите полученные дроби до десятых и найдите абсолютную и относительную погрешности приближения.

III. Объяснение нового материала.

Наиболее ответственным шагом при ознакомлении учащихся с теоретико-множественными понятиями является введение неопределяемых понятий множества, его элемента и принадлежности.

I б л о к.

1. О с н о в н ы е п о н я т и я.

Одно из основных понятий современной математики – множество . Это понятие обычно принимается за первичное и поэтому не определяется через другие.

Когда в математике говорят о множестве (чисел, точек, функций и т. д.), то объединяют эти объекты в одно целое – множество, состоящее из этих объектов (чисел, точек, функций и т. д.). Основатель теории множеств, немецкий математик Георг Кантор (1845–1918), выразил эту мысль следующим образом: «Множество есть многое, мыслимое как единое, целое».

Множество – это совокупность объектов, объединённых между собой по какому-либо признаку.

Слово «множество» в обычном смысле всегда связывается с большим числом предметов. Например, мы говорим, что в лесу множество деревьев, но если перед домом два дерева, в обычной речи не говорят, что перед домом «множество деревьев».

Математическое же понятие множества не связывается обязательно с большим числом предметов. В математике удобно рассматривать и «множества», содержащие 3; 2 или 1 предмет и даже «множество», не содержащее ни одного предмета (пустое множество). Например, мы говорим о множестве решений уравнения до того, как узнаем, сколько оно имеет решений.

Произвольные множества обозначают большими латинскими буквами А , В , С , ... Пустое множество , то есть множество, которое не имеет элементов, обозначается символом .

О предметах, составляющих множество, говорят, что они принадлежат этому множеству, или являются его элементами. Элементы множества обозначают малыми латинскими буквами а , b , с , ... или одной какой-нибудь буквой с индексом, например а 1 , а 2 , ... , а п .

Предложение «предмет а принадлежит множеству А », или «предмет а – элемент множества А », обозначают символом а А .

2. С п о с о б ы з а д а н и я м н о ж е с т в:

1) Множество может быть задано непосредственным перечислением всех его элементов (в произвольном порядке). В таком случае названия всех элементов множества записываются в строчку, отделяются между собой запятыми и заключаются в фигурные скобки.

Н а п р и м е р: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} – множество цифр десятичной системы счисления.

Необходимо различать объекты, обозначаемые символами а и {а }. Символом а означается предмет, символом {а} – множество, состоящее из одного элемента а (единичное множество) . Перечислением всех элементов можно задать лишь конечное множество. Такие множества, как, например, множество всех натуральных (N ) или всех целых чисел (Z ), нельзя задать таким способом, так как мы не можем перечислить все N и все Z – таких чисел бесконечное множество .

2) Имеется другой (универсальный) способ задания множества в том смысле, что этим способом может быть задано не только конечное, но и бесконечное множество. Множество может быть задано указанием характеристического свойства, то есть такого свойства, которым обладают все элементы этого множества и не обладает ни один предмет, не являющийся его элементом.

Н а п р и м е р: {x | x – делятся на 10};

A = {a | a – число, которое меньше, чем 100}.

3. У п р а ж н е н и я:

а) Назовите известные вам множества людей (например, команда).

б) Запишите множества, элементами которых являются:

1) планеты Солнечной системы;

2) столицы государств;

3) все двузначные числа;

4) числа, делящиеся на 7.

в) Пусть А – множество чисел, на которые делится 100 без остатка. Верна ли запись:

1) 5 А ; 2) 12 А ; 3) 7 А ; 4) 4 А?

г) Пусть даны множества А = {а а – число, кратное двум} и В =
= {b b – число, кратное шести}.

В ы п и ш и т е:

1) два элемента, принадлежащих множеству А , но не принадлежащих множеству В ;

2) два элемента, принадлежащих и множеству А, и множеству В ;

3) два элемента не принадлежащих ни множеству А , ни множеству В .

II б л о к.

1. Р а в е н с т в о м н о ж е с т в.

Очень важной особенностью множества является то, что в нём нет одинаковых элементов, вернее, что все они отличны друг от друга. Это значит, можно записать сколько угодно одинаковых элементов, но выступать они будут как один. То есть множество не может содержать одни и те же элементы в нескольких вариантах. Предположим, что мы записали множество {7, 9, 7, 11, 7}. В этом множестве элемент 7 повторяется несколько раз, но мы его будем рассматривать как один. Поэтому наше множество будет {7, 9, 11}.

Рассмотрим два множества: {а , b , с } и {b , а , с }. Эти множества состоят из одних и тех же элементов, хотя они записаны в разном порядке. Такие множества называются равными. Итак, два множества равны , если содержат одни и те же элементы.

2. П е р е с е ч е н и е м н о ж е с т в.

Рассмотрим два множества: А = {1, 2, 3, 4, 5, 6} и В = {5, 6, 7, 8, 9}. Составим новое множество С , в которое запишем общие элементы А и В . Общими у них являются элементы 5 и 6, значит, С = {5, 6}. Множество С является пересечением множеств А и В , обозначается так:

О п р е д е л е н и е: Пересечением двух множеств называют множество, состоящее из всех общих элементов этих множеств.

3. О б ъ е д и н е н и е м н о ж е с т в.

Возьмём те же два множества: А = {1, 2, 3, 4, 5, 6} и В = {5, 6, 7, 8, 9}. Составим теперь множество D таким образом, чтобы в него вошли все элементы, которые принадлежат хотя бы одному из множеств А и В .

Здесь следует ознакомить учащихся с приёмом задания объединения множеств: сперва мы выписываем все элементы множества А , а затем те элементы множества В , которые не принадлежат множеству А . Получим: D = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Множество D является объединением множеств А и В , обозначается так:

О п р е д е л е н и е: Объединением двух множеств называют множество, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств.

4. У п р а ж н е н и я:

а) Верна ли запись:

1) {8, 12, 16, 20} = {12, 20, 16, 18};

2) {m , n , p , q } = {p , m , q , n };

3) {3, 4, 3, 5} = {3, 4, 5}?

б) Запишите множества, равные:

1) {2, 3, 2, 4, 2, 5}; 2) {f , f , f , m , m , m }.

в) Даны множества А = {3, 4, 5}, В = {5, 6, 7, 8}, С = {2, 4, 8} и K = {1, 3, 5, 7}. Найдите:

1) А K ; 5) А K ;

2) А С ; 6) А С ;

3) А В ; 7) А В ;

4) А K В ; 8) А K В .

IV. Формирование умений и навыков.

На этом уроке отрабатываются умения задавать множества, правильно оформляя запись, а также находить пересечение и объединение множеств, пользуясь введенными определениями.

Р е ш е н и е

х = {2, 3, 5, 7, 11, 13, 17, 19};

у = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.

х у = {11, 13, 17, 19};

х у = {2, 3, 5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.В .

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– Какие способы задания множеств существуют?

– Какие два множества являются равными?

– Как называется множество, в котором нет ни одного элемента?

– Что называется пересечением двух множеств?

– Что называется объединением двух множеств?

Домашнее задание.

1. № 800, № 801 (б), № 802 (б).

2. Укажите наибольший и наименьший элементы пересечения множества двузначных чисел, кратных 9, и множества нечётных двузначных чисел.

Основными операциями, осуществляемыми над множествами, являются сложение (объединение), умножение (пересечение) и вычитание . Эти операции, как мы увидим дальше, не тождественны одноименным операциям, производимым над числами.

Определение : Объединением (или суммой) двух множеств A и B называется множество, содержащее все такие и только такие элементы, которые являются элементами хотя бы одного из этих множеств. Объединение множеств A и B обозначают как A  B.

Это определение означает, что сложение множеств A и B есть объединение всех их элементов в одно множество A  B. Если одни и те же элементы содержатся в обоих множествах, то в объединение эти элементы входят только по одному разу.

Аналогично определяется объединение трёх и более множеств.

Определение : Пересечением (или умножением) двух множеств A и B называется множество, состоящее из тех и только тех элементов, которые принадлежат множеству A и множеству В одновременно. Пересечение множеств A и B обозначают как A  B.

Аналогично определяется пересечение трёх и более множеств.

Определение : Разностью множеств A и B называется множество, состоящее из тех и только тех элементов множества A и которые не принадлежат множеству В. Разность множеств A и B обозначают как A \ B. Операция, при помощи которой находится разность множеств, называется вычитанием.

Если В  А, то разность A \ B называется дополнением множества B до множества A. Если множество B является подмножеством универсального множества U, то дополнение B до U обозначается , то есть= U \ B.

Упражнения :

    Рассмотрим три множества N ={0,2,4,5,6,7}, M ={1,3,5,7,9} и P ={1,3,9,11}. Найти

    1. A = N M

      B = N M

      C = N P

    Ответьте, какими из операций над заданными множествами следует воспользоваться для получения множеств, описанных ниже.

    1. Дано: А – множество всех студентов факультета, В – множество студентов, имеющих академические задолженности. Определить С – множество успевающих студентов факультета.

      Дано: А – множество всех отличников факультета, В – множество студентов, не имеющих академических задолженностей, С – множество успевающих студентов, имеющих хотя бы одну тройку. Определить D – множество студентов факультета, успевающих без троек.

      Дано: U – множество всех студентов учебной группы, А - множество студентов этой группы, получивших зачет по физкультуре, В – множество студентов той же группы, успешно сдавших зачет по истории Отечества. Определить С – множество студентов той же учебной группы, преуспевших в обеих дисциплинах, D – множество студентов той же группы, «заваливших» хотя бы один из зачетов.

  1. Свойства объединения и пересечения множеств

Из определений объединения и пересечения множеств вытекают свойства этих операций, представленные в виде равенств, справедливых для любых множеств A , B и С .

    A B = B A - коммутативность объединения;

    A B = B A - коммутативность пересечения;

    A (B С ) = (A B ) С - ассоциативность объединения;

    A (B С ) = (A B ) С - ассоциативность пересечения;

    A (B С ) = (A B ) (A С) - дистрибутивность пересечения относительно объединения;

    A (B С ) = (A B ) (A С) - дистрибутивность объединения относительно пересечения;

Законы поглощения:

    A A = A

    A A = A

    A Ø = A

    A Ø = Ø

    A U = U

    A U = A

Следует заметить, что разность не обладает свойствами коммутативности и ассоциативности, то есть A \ B B \ A и A \ (B \ С ) (A \ B ) \ С . В этом легко убедиться, построив диаграммы Эйлера - Венна.

Множества. Операции над множествами.
Отображение множеств. Мощность множества

Приветствую вас на первом уроке по высшей алгебре, который появился… в канун пятилетия сайта, после того, как я уже создал более 150 статей по математике, и мои материалы начали оформляться в завершённый курс. Впрочем, буду надеяться, что не опоздал – ведь многие студенты начинают вникать в лекции только к государственным экзаменам =)

Вузовский курс вышмата традиционно зиждется на трёх китах:

– математическом анализе (пределы , производные и т.д.)

– и, наконец, сезон 2015/16 учебного года открывается уроками Алгебра для чайников , Элементы математической логики , на которых мы разберём основы раздела, а также познакомимся с базовыми математическими понятиями и распространёнными обозначениями. Надо сказать, что в других статьях я не злоупотребляю «закорючками» , однако то лишь стиль, и, конечно же, их нужно узнавать в любом состоянии =). Вновь прибывшим читателям сообщаю, что мои уроки ориентированы на практику, и нижеследующий материал будет представлен именно в этом ключе. За более полной и академичной информацией, пожалуйста, обращайтесь к учебной литературе. Поехали:

Множество. Примеры множеств

Множество – это фундаментальное понятие не только математики, но и всего окружающего мира. Возьмите прямо сейчас в руку любой предмет. Вот вам и множество, состоящее из одного элемента.

В широком смысле, множество – это совокупность объектов (элементов), которые понимаются как единое целое (по тем или иным признакам, критериям или обстоятельствам). Причём, это не только материальные объекты, но и буквы, цифры, теоремы, мысли, эмоции и т.д.

Обычно множества обозначаются большими латинскими буквами (как вариант, с подстрочными индексами: и т.п.) , а его элементы записываются в фигурных скобках, например:

– множество букв русского алфавита;
– множество натуральных чисел;

ну что же, пришла пора немного познакомиться:
– множество студентов в 1-м ряду

… я рад видеть ваши серьёзные и сосредоточенные лица =)

Множества и являются конечными (состоящими из конечного числа элементов), а множество – это пример бесконечного множества. Кроме того, в теории и на практике рассматривается так называемое пустое множество :

– множество, в котором нет ни одного элемента.

Пример вам хорошо известен – множество на экзамене частенько бывает пусто =)

Принадлежность элемента множеству записывается значком , например:

– буква «бэ» принадлежит множеству букв русского алфавита;
– буква «бета» не принадлежит множеству букв русского алфавита;
– число 5 принадлежит множеству натуральных чисел;
– а вот число 5,5 – уже нет;
– Вольдемар не сидит в первом ряду (и тем более, не принадлежит множеству или =)).

В абстрактной и не очень алгебре элементы множества обозначают маленькими латинскими буквами и, соответственно, факт принадлежности оформляется в следующем стиле:

– элемент принадлежит множеству .

Вышеприведённые множества записаны прямым перечислением элементов, но это не единственный способ. Многие множества удобно определять с помощью некоторого признака (ов) , который присущ всем его элементам . Например:

– множество всех натуральных чисел, меньших ста.

Запомните : длинная вертикальная палка выражает словесный оборот «которые», «таких, что». Довольно часто вместо неё используется двоеточие: – давайте прочитаем запись более формально: «множество элементов , принадлежащих множеству натуральных чисел, таких, что » . Молодцы!

Данное множество можно записать и прямым перечислением:

Ещё примеры:
– и если и студентов в 1-м ряду достаточно много, то такая запись намного удобнее, нежели их прямое перечисление.

– множество чисел, принадлежащих отрезку . Обратите внимание, что здесь подразумевается множество действительных чисел (о них позже) , которые перечислить через запятую уже невозможно.

Следует отметить, что элементы множества не обязаны быть «однородными» или логически взаимосвязанными. Возьмите большой пакет и начните наобум складывать в него различные предметы. В этом нет никакой закономерности, но, тем не менее, речь идёт о множестве предметов. Образно говоря, множество – это и есть обособленный «пакет», в котором «волею судьбы» оказалась некоторая совокупность объектов.

Подмножества

Практически всё понятно из самого названия: множество является подмножеством множества , если каждый элемент множества принадлежит множеству . Иными словами, множество содержится во множестве :

Значок называют значком включения .

Вернёмся к примеру, в котором – это множество букв русского алфавита. Обозначим через – множество его гласных букв. Тогда:

Также можно выделить подмножество согласных букв и вообще – произвольное подмножество, состоящее из любого количества случайно (или неслучайно) взятых кириллических букв. В частности, любая буква кириллицы является подмножеством множества .

Отношения между подмножествами удобно изображать с помощью условной геометрической схемы, которая называется кругами Эйлера .

Пусть – множество студентов в 1-м ряду, – множество студентов группы, – множество студентов университета. Тогда отношение включений можно изобразить следующим образом:

Множество студентов другого ВУЗа следует изобразить кругом, который не пересекает внешний круг; множество студентов страны – кругом, который содержит в себе оба этих круга, и т.д.

Типичный пример включений мы наблюдаем при рассмотрении числовых множеств. Повторим школьный материал, который важно держать на заметке и при изучении высшей математики:

Числовые множества

Как известно, исторически первыми появились натуральные числа, предназначенные для подсчёта материальных объектов (людей, кур, овец, монет и т.д.). Это множество уже встретилось в статье, единственное, мы сейчас чуть-чуть модифицируем его обозначение. Дело в том, что числовые множества принято обозначать жирными, стилизованными или утолщёнными буквами. Мне удобнее использовать жирный шрифт:

Иногда к множеству натуральных чисел относят ноль.

Если к множеству присоединить те же числа с противоположным знаком и ноль, то получится множество целых чисел :

Рационализаторы и лентяи записывают его элементы со значками «плюс минус» :))

Совершенно понятно, что множество натуральных чисел является подмножеством множества целых чисел:
– поскольку каждый элемент множества принадлежит множеству . Таким образом, любое натуральное число можно смело назвать и целым числом.

Название множества тоже «говорящее»: целые числа – это значит, никаких дробей.

И, коль скоро, целые, то сразу же вспомним важные признаки их делимости на 2, 3, 4, 5 и 10, которые будут требоваться в практических вычислениях чуть ли не каждый день:

Целое число делится на 2 без остатка , если оно заканчивается на 0, 2, 4, 6 или 8 (т.е. любой чётной цифрой) . Например, числа:
400, -1502, -24, 66996, 818 – делятся на 2 без остатка.

И давайте тут же разберём «родственный» признак: целое число делится на 4 , если число, составленное из двух его последних цифр (в порядке их следования) делится на 4.

400 – делится на 4 (т.к. 00 (ноль) делится на 4) ;
-1502 – не делится на 4 (т.к. 02 (двойка) не делится на 4) ;
-24, понятно, делится на 4;
66996 – делится на 4 (т.к. 96 делится на 4) ;
818 – не делится на 4 (т.к. 18 не делится на 4) .

Самостоятельно проведите несложное обоснование данного факта.

С делимость на 3 чуть сложнее : целое число делится на 3 без остатка, если сумма входящих в него цифр делится на 3.

Проверим, делится ли на 3 число 27901. Для этого просуммируем его цифры:
2 + 7 + 9 + 0 + 1 = 19 – не делится на 3
Вывод: 27901 не делится на 3.

Просуммируем цифры числа -825432:
8 + 2 + 5 + 4 + 3 + 2 = 24 – делится на 3
Вывод: число -825432 делится на 3

Целое число делится на 5 , если оно заканчивается пятёркой либо нулём:
775, -2390 – делятся на 5

Целое число делится на 10 , если оно заканчивается на ноль:
798400 – делится на 10 (и, очевидно, на 100) . Ну и, наверное, все помнят – для того, чтобы разделить на 10, нужно просто убрать один ноль: 79840

Также существуют признаки делимости на 6, 8, 9, 11 и т.д., но практического толку от них практически никакого =)

Следует отметить, что перечисленные признаки (казалось бы, такие простые) строго доказываются в теории чисел . Этот раздел алгебры вообще достаточно интересен, однако его теоремы… прямо современная китайская казнь =) А Вольдемару за последней партой и того хватило…, но ничего страшного, скоро мы займёмся живительными физическими упражнениями =)

Следующим числовым множеством идёт множество рациональных чисел :
– то есть, любое рациональное число представимо в виде дроби с целым числителем и натуральным знаменателем .

Очевидно, что множество целых чисел является подмножеством множества рациональных чисел:

И в самом деле – ведь любое целое число можно представить в виде рациональной дроби , например: и т.д. Таким образом, целое число можно совершенно законно назвать и рациональным числом.

Характерным «опознавательным» признаком рационального числа является то обстоятельство, что при делении числителя на знаменатель получается либо
– целое число,

либо
конечная десятичная дробь,

либо
– бесконечная периодическая десятичная дробь (повтор может начаться не сразу) .

Полюбуйтесь делением и постарайтесь выполнять это действие как можно реже! В организационной статье Высшая математика для чайников и на других уроках я неоднократно повторял, повторяю, и буду повторять эту мантру:

В высшей математике все действия стремимся выполнять в обыкновенных (правильных и неправильных) дробях

Согласитесь, что иметь дело с дробью значительно удобнее, чем с десятичным числом 0,375 (не говоря уже о бесконечных дробях) .

Едем дальше. Помимо рациональных существует множество иррациональных чисел, каждое из которых представимо в виде бесконечной НЕпериодической десятичной дроби. Иными словами, в «бесконечных хвостах» иррациональных чисел нет никакой закономерности:
(«год рождения Льва Толстого» дважды)
и т.д.

О знаменитых константах «пи» и «е» информации предостаточно, поэтому на них я не останавливаюсь.

Объединение рациональных и иррациональных чисел образует множество действительных (вещественных) чисел :

– значок объединения множеств.

Геометрическая интерпретация множества вам хорошо знакома – это числовая прямая:


Каждому действительному числу соответствует определённая точка числовой прямой, и наоборот – каждой точке числовой прямой обязательно соответствует некоторое действительное число. По существу, сейчас я сформулировал свойство непрерывности действительных чисел, которое хоть и кажется очевидным, но строго доказывается в курсе математического анализа.

Числовую прямую также обозначают бесконечным интервалом , а запись или эквивалентная ей запись символизирует тот факт, что принадлежит множеству действительных чисел (или попросту «икс» – действительное число) .

С вложениями всё прозрачно: множество рациональных чисел – это подмножество множества действительных чисел:
, таким образом, любое рациональное число можно смело назвать и действительным числом.

Множество иррациональных чисел – это тоже подмножество действительных чисел:

При этом подмножества и не пересекаются – то есть ни одно иррациональное число невозможно представить в виде рациональной дроби.

Существуют ли какие-нибудь другие числовые системы? Существуют! Это, например, комплексные числа , с которыми я рекомендую ознакомиться буквально в ближайшие дни или даже часы.

Ну а пока мы переходим к изучению операций над множествами, дух которых уже материализовался в конце этого параграфа:

Действия над множествами. Диаграммы Венна

Диаграммы Венна (по аналогии с кругами Эйлера) – это схематическое изображение действий с множествами. Опять же предупреждаю, что я рассмотрю не все операции:

1) Пересечение И и обозначается значком

Пересечением множеств и называется множество , каждый элемент которого принадлежит и множеству , и множеству . Грубо говоря, пересечение – это общая часть множеств:

Так, например, для множеств :

Если у множеств нет одинаковых элементов, то их пересечение пусто. Такой пример нам только что встретился при рассмотрении числовых множеств:

Множества рациональных и иррациональных чисел можно схематически изобразить двумя непересекающимися кругами.

Операция пересечения применима и для бОльшего количества множеств, в частности в Википедии есть хороший пример пересечения множеств букв трёх алфавитов .

2) Объединение множеств характеризуется логической связкой ИЛИ и обозначается значком

Объединением множеств и называется множество , каждый элемент которого принадлежит множеству или множеству :

Запишем объединение множеств :
– грубо говоря, тут нужно перечислить все элементы множеств и , причём одинаковые элементы (в данном случае единица на пересечении множеств) следует указать один раз.

Но множества, разумеется, могут и не пересекаться, как это имеет место быть с рациональными и иррациональными числами:

В этом случае можно изобразить два непересекающихся заштрихованных круга.

Операция объединения применима и для бОльшего количества множеств, например, если , то:

При этом числа вовсе не обязательно располагать в порядке возрастания (это я сделал исключительно из эстетических соображений) . Не мудрствуя лукаво, результат можно записать и так:

3) Разностью и не принадлежит множеству :

Разность читаются следующим образом: «а без бэ». И рассуждать можно точно так же: рассмотрим множества . Чтобы записать разность , нужно из множества «выбросить» все элементы, которые есть во множестве :

Пример с числовыми множествами:
– здесь из множества целых чисел исключены все натуральные, да и сама запись так и читается: «множество целых чисел без множества натуральных».

Зеркально: разностью множеств и называют множество , каждый элемент которого принадлежит множеству и не принадлежит множеству :

Для тех же множеств
– из множества «выброшено» то, что есть во множестве .

А вот эта разность оказывается пуста: . И в самом деле – если из множества натуральных чисел исключить целые числа, то, собственно, ничего и не останется:)

Кроме того, иногда рассматривают симметрическую разность , которая объединяет оба «полумесяца»:
– иными словами, это «всё, кроме пересечения множеств».

4) Декартовым (прямым) произведением множеств и называется множество всех упорядоченных пар , в которых элемент , а элемент

Запишем декартово произведение множеств :
– перечисление пар удобно осуществлять по следующему алгоритму: «сначала к 1-му элементу множества последовательно присоединяем каждый элемент множества , затем ко 2-му элементу множества присоединяем каждый элемент множества , затем к 3-му элементу множества присоединяем каждый элемент множества »:

Зеркально: декартовым произведением множеств и называется множество всех упорядоченных пар , в которых . В нашем примере:
– здесь схема записи аналогична: сначала к «минус единице» последовательно присоединяем все элементы множества , затем к «дэ» – те же самые элементы:

Но это чисто для удобства – и в том, и в другом случае пары можно перечислить в каком угодно порядке – здесь важно записать все возможные пары.

А теперь гвоздь программы: декартово произведение – это есть не что иное, как множество точек нашей родной декартовой системы координат .

Задание для самостоятельного закрепления материала:

Выполнить операции , если:

Множество удобно расписать перечислением его элементов.

И пунктик с промежутками действительных чисел:

Напоминаю, что квадратная скобка означает включение числа в промежуток, а круглая – его невключение , то есть «минус единица» принадлежит множеству , а «тройка» не принадлежит множеству . Постарайтесь разобраться, что представляет собой декартово произведение данных множеств. Если возникнут затруднения, выполните чертёж;)

Краткое решение задачи в конце урока.

Отображение множеств

Отображение множества во множество – это правило , по которому каждому элементу множества ставится в соответствие элемент (или элементы) множества . В том случае если в соответствие ставится единственный элемент, то данное правило называется однозначно определённой функцией или просто функцией .

Функцию, как многие знают, чаще всего обозначают буквой – она ставит в соответствие каждому элементу единственное значение , принадлежащее множеству .

Ну а сейчас я снова побеспокою множество студентов 1-го ряда и предложу им 6 тем для рефератов (множество ):

Установленное (добровольно или принудительно =)) правило ставит в соответствие каждому студенту множества единственную тему реферата множества .

…а вы, наверное, и представить себе не могли, что сыграете роль аргумента функции =) =)

Элементы множества образуют область определения функции (обозначается через ), а элементы множества – область значений функции (обозначается через ).

Построенное отображение множеств имеет очень важную характеристику: оно является взаимно-однозначным или биективным (биекцией). В данном примере это означает, что каждому студенту поставлена в соответствие одна уникальная тема реферата, и обратно – за каждой темой реферата закреплён один и только один студент.

Однако не следует думать, что всякое отображение биективно. Если на 1-й ряд (к множеству ) добавить 7-го студента, то взаимно-однозначное соответствие пропадёт – либо один из студентов останется без темы (отображения не будет вообще) , либо какая-то тема достанется сразу двум студентам. Обратная ситуация: если к множеству добавить седьмую тему, то взаимнооднозначность отображения тоже будет утрачена – одна из тем останется невостребованной.

Уважаемые студенты на 1-м ряду, не расстраивайтесь – остальные 20 человек после пар пойдут прибирать территорию университета от осенней листвы. Завхоз выдаст двадцать голиков, после чего будет установлено взаимно-однозначное соответствие между основной частью группы и мётлами…, а Вольдемар ещё и в магазин сбегать успеет =)).области определения соответствует свой уникальный «игрек», и наоборот – по любому значению «игрек» мы сможем однозначно восстановить «икс». Таким образом, это биективная функция.

! На всякий случай ликвидирую возможное недопонимание: моя постоянная оговорка об области определения не случайна! Функция может быть определена далеко не при всех «икс», и, кроме того, может быть взаимно-однозначной и в этом случае. Типичный пример:

А вот у квадратичной функции не наблюдается ничего подобного, во-первых:
– то есть, различные значения «икс» отобразились в одно и то же значение «игрек»; и во-вторых: если кто-то вычислил значение функции и сообщил нам, что , то не понятно – этот «игрек» получен при или при ? Что и говорить, взаимной однозначностью здесь даже не пахнет.

Задание 2 : просмотреть графики основных элементарных функций и выписать на листок биективные функции. Список для сверки в конце этого урока.

Мощность множества

Интуиция подсказывает, что термин характеризует размер множества, а именно количество его элементов. И интуиция нас не обманывает!

Мощность пустого множества равна нулю.

Мощность множества равна шести.

Мощность множества букв русского алфавита равна тридцати трём.

И вообще – мощность любого конечного множества равно количеству элементов данного множества.

…возможно, не все до конца понимают, что такое конечное множество – если начать пересчитывать элементы этого множества, то рано или поздно счёт завершится. Что называется, и китайцы когда-нибудь закончатся.

Само собой, множества можно сравнивать по мощности и их равенство в этом смысле называется равномощностью . Равномощность определяется следующим образом:

Два множества являются равномощными, если между ними можно установить взаимно-однозначное соответствие .

Множество студентов равномощно множеству тем рефератов, множество букв русского алфавита равномощно любому множеству из 33 элементов и т.д. Заметьте, что именно любому множеству из 33 элементов – в данном случае имеет значение лишь их количество. Буквы русского алфавита можно сопоставить не только с множеством номеров
1, 2, 3, …, 32, 33, но и вообще со стадом в 33 коровы.

Гораздо более интересно обстоят дела с бесконечными множествами. Бесконечности тоже бывают разными! ...зелёными и красными Самые «маленькие» бесконечные множества – это счётные множества. Если совсем просто, элементы такого множества можно пронумеровать. Эталонный пример – это множество натуральных чисел . Да – оно бесконечно, однако у каждого его элемента в ПРИНЦИПЕ есть номер.

Примеров очень много. В частности, счётным является множество всех чётных натуральных чисел . Как это доказать? Нужно установить его взаимно-однозначное соответствие с множеством натуральных чисел или попросту пронумеровывать элементы:

Взаимно-однозначное соответствие установлено, следовательно, множества равномощны и множество счётно. Парадоксально, но с точки зрения мощности – чётных натуральных чисел столько же, сколько и натуральных!

Множество целых чисел тоже счётно. Его элементы можно занумеровать, например, так:

Более того, счётно и множество рациональных чисел . Поскольку числитель – это целое число (а их, как только что показано, можно пронумеровать) , а знаменатель – натуральное число, то рано или поздно мы «доберёмся» до любой рациональной дроби и присвоим ей номер.

А вот множество действительных чисел уже несчётно , т.е. его элементы пронумеровать невозможно. Данный факт хоть и очевиден, однако строго доказывается в теории множеств. Мощность множества действительных чисел также называют континуумом , и по сравнению со счётными множествами это «более бесконечное» множество.

Поскольку между множеством и числовой прямой существует взаимно-однозначное соответствие (см. выше) , то множество точек числовой прямой тоже несчётно . И более того, что на километровом, что на миллиметровом отрезке – точек столько же! Классический пример:


Поворачивая луч против часовой стрелки до его совмещения с лучом мы установим взаимно-однозначное соответствие между точками синих отрезков. Таким образом, на отрезке столько же точек, сколько и на отрезке и !

Данный парадокс, видимо, связан с загадкой бесконечности… но мы сейчас не будем забивать голову проблемами мироздания, ибо на очереди

Задание 2 Взаимно-однозначные функции на иллюстрациях урока