Средняя скорость течения реки. У какой реки максимальная скорость течения? От чего зависит эта скорость? Определение средней скорости для небольших рек по максимальной поверхностной скорости

Амазонка движется со скоростью 15 км/ч

Самой быстрой рекой в мире считается река Амазонка, и без того уже имеющая несколько титулов «самой-самой». Среди них, такие звания, как самая полноводная (7 180 000 км 2), самая глубоководная (глубина ее в некоторых местах достигает 135 метров), самая длинная (7 100 км) и самая широкая (местами дельта Амазонки имеет ширину в 200 км). В нижнем течении Амазонки средний расход воды равен примерно 200-220 тысячам кубических метров, что соответствует скорости течения реки 4,5-5 м/с или 15 км/ч! В сезон дождей этот показатель увеличивается до 300 тысяч м 3 .

Русло каждой реки состоит из верхнего, среднего и нижнего течений. При этом верхнее течение характеризуется большими уклонами, что способствует ее большей размывающей деятельности. Нижнее течение отличается наибольшей водной массой и меньшей скоростью.

Как измеряется скорость течения?

Для измерения скорости течения реки применяются единицы измерения – метры в секунду. При этом не стоит забывать, что скорость водного потока неодинакова в разных частях реки. Она постепенно увеличивается, беря начало от дна и стен русла и набирает наибольшую мощность в средней части потока. Средняя скорость течения рассчитывается на основании замеров, выполненных на нескольких участках русла. Причем на каждом участке реки осуществляется минимально по пять точечных замеров.

Для проведения измерений скорости водного течения используется специальный измерительный прибор – гидрометрическая вертушка, которая опускается на определенную глубину строго перпендикулярно поверхности воды и уже через двадцать секунд можно снимать показания прибора. Имея данные о средней скорости реки и ее приблизительную площадь поперечного сечения, рассчитывается водный расход реки.

Обратное течение Амазонки

Кроме этого, река Амазонка является обладательницей обратного течения, которое возникает во время океанских приливов. Водные потоки с огромной скоростью – 25 км/час или 7 м/сек, загоняются обратно на материк. Волны при этом достигают 4-5 метров в высоту. Чем дальше на сушу проходит волна, тем меньше становится ее разрушительное действие. Останавливаются приливы на расстоянии до 1400 километров вверх по течению Амазонки. Такое природное явление получило название «поророка» – гремящая вода.


Скорости течения в реках неодинаковы в различных точках потока: они изменяются и по глубине, и по ширине живого сечения. Наименьшие скорости наблюдаются у дна, что связано с влиянием шероховатости русла. От дна к поверхности нарастание скорости сначала происходит быстро, а затем замедляется, и максимум в открытых потоках достигается у поверхности или на расстоянии 0,2H от поверхности. Кривые изменения скоростей по вертикали называются годографами илиэпюрами скоростей . На распределение скоростей по вертикали большое влияние оказывают неровности в рельефе дна, ледяной покров, ветер и водная растительность. При наличии на дне неровностей (возвышения, валуны) скорости в потоке перед препятствием резко уменьшаются ко дну. Уменьшаются скорости в придонном слое при развитии водной растительности, значительно повышающей шероховатость дна русла. Зимой подо льдом под влиянием добавочного трения о шероховатую поверхность льда скорости малы. Максимум скорости смещается к середине глубины и иногда ко дну. При ветре против течения скорости у поверхности уменьшаются, а положение максимума смещается на бОльшую глубину по сравнению с его положением в безветренную погоду.

У берегов скорость меньше, в центре потока больше. Линии, соединяющие точки на поверхности реки с наибольшими скоростями, называются стрежнем . Знание положения стрежня имеет большое значение при использовании рек для целей водного транспорта и лесосплава. Наглядное представление о распределении скоростей в живом сечении можно получить построением изотах – линий, соединяющих точки с одинаковыми скоростями.

Для вычисления средней скорости потока при отсутствии непосредственных измерений широко применяется формула Шези. Выделим в потоке объем воды, ограниченный двумя сечениями ω. Величина объема V = ωΔx, где Δx – расстояние между сечениями. Объем находится под влиянием равнодействующей силы гидродинамического давления P, действия силы тяжести F’ и силы сопротивления (трения) T. Сила гидродинамического давления P=0, так как силы давления P 1 и P 2 при равенстве сечений и постоянном уклоне уравновешиваются. Т.о., V ср = C , где H – средняя глубина, I – уклон. – Уравнение Шези. Формула Манинга: . Формула Н. Н. Павловского: , где n – коэффициент шероховаточти, находится по специальным таблицам М. Ф. Срибного.

Движения воды в реках. Виды движения.

Вода в реках движется под действием силы тяжести F’. Эту силу можно разложить на две составляющие: параллельную дну F’ x и нормальную ко дну F’ y . Сила F’ y уравновешивается силой реакции со стороны дна. Сила F’ x , зависящая от уклона, вызывает движение воды в потоке. Эта сила, действуя постоянно, должна бы вызывать ускорение движения. Этого не происходит, так как она уравновешивается силой сопротивления, возникающей в потоке в результате внутреннего трения между частицами воды и трения движущейся массы воды о дно и берега. Изменение уклона, шероховатости дна, сужения и расширения русла вызывают изменения соотношения движущей силы и силы сопротивления, что приводит к изменению скоростей течения по длине реки и в живом сечении.

Виды движения в потоках :

1) равномерное ,

2) неравномерное ,

3) неустановившееся .

При равномерном движении скорости течения, живое сечение, расход волны постоянны по длине потока и не меняются во времени. Такого рода движение можно наблюдать в каналах с призматическим сечением. При неравномерном уклон, скорости, живое сечение не изменяются в данном сечении во времени, но изменяются по длине потока. Этот вид движения наблюдается в реках в период межени при устойчивых расходах воды в них, а также в условиях подпора, образованного плотиной. Неустановившееся движение – это такое, при котором все гидравлические элементы потока (уклоны, скорости, площадь живого сечения) на рассматриваемом участке изменяются и во времени, и по длине. Неустановившееся движение характерно для рек во время прохождения половодий и паводков.

При равномерном движении уклон поверхности потока I равен уклону дна i и водная поерхность параллельна выровненной поверхности дна. Неравномерное движение может быть замедленным и ускоренным. При замедляющемся течении вниз по реке кривая свободной водной поверхности принимает форму кривой подпора. Поверхностный уклон становится меньше уклона дна (I), и глубина возрастает в направлении течения. При ускоряющемся течении кривая свободной поверхности потока называется кривой спада; глубина убывает вдоль потока, скорость и уклон возрастают (I>i ).

Рейнольдса число, один из подобия критериев для течений вязких жидкостей и газов, характеризующий соотношение между инерционными силами и силами вязкости: Re =rvl /m, где r - плотность, m - динамический коэффициент вязкости жидкости или газа, v - характерная скорость потока, l - характерный линейный размер. Так, при течении в круглых цилиндрических трубах обычно принимают l = d , где d - диаметр трубы, а v = v cp , где v cp - средняя скорость течения; при обтекании тел / - длина или поперечный размер тела, а v = v ¥ , где v ¥ - скорость невозмущённого потока, набегающего на тело. Назван по имени О. Рейнольдса.

От Р. ч. зависит также режим течения жидкости, характеризуемый критическим Р. ч. Re . При R <Re kр возможно лишь ламинарное течение жидкости, а при Re > Re kр течение может стать турбулентным. Значение Re kр зависит от вида течения. Например, для течения вязкой жидкости в круглой цилиндрической трубке Re kр = 2300.

Распределение скоростей течения в речном потоке.

Одной из особенностей движения частиц воды в реках являются нерегулярные случайные изменения скоростей. Непрерывные изменения направления и величины скоростей в каждой точке турбулентного потока называются пульсацией. Чем больше скорость, тем больше турбулентная пульсация. Тогда в каждой точке потока и в каждый момент времени мгновенная скорость течения – это вектор. Его можно разложить на составляющие в прямоугольной системе координат (υ x , υ y , υ z,), они тоже будут пульсирующими. Большинством гидрометрических приборов измеряется продольная составляющая скорости (υ x), осредненная за некоторый интервал времени (на практике 1-1,5 минуты).

Скорости меняются по глубине и ширине живого сечения реки. На каждой отдельно взятой вертикали наименьшая скорость отмечается у дна, что зависит от шероховатости русла. К поверхности скорость растет до величины средней по вертикали на глубине 0,6h, а максимум отмечается на поверхности или на расстоянии 0,2h от поверхности, в открытом русле. График изменения скорости по глубине называется годографом (эпюрой скоростей).

Распределение скорости по глубине зависит от рельефа дна, наличия ледяного покрова, ветра и водной растительности. Наличие валунов, больших камней и водной растительности у дна приводит к резкому уменьшению скорости в придонном слое. Ледяной покров и шуга также уменьшают скорость, но в слое воды подо льдом. Средняя скорость на вертикали определяется делением площади эпюры на глубину вертикали.

По ширине потока скорость повторяет в основном изменение глубины – от берегов скорость увеличивается к средине. Линия, соединяющая точки с наибольшими скоростями по длине реки, называется стрежень (линия наибольших глубин).

Распределение скоростей в плане можно отразить изотахами – линиями, соединяющими точки с равными скоростями в живом сечении.

Линия, соединяющая вдоль реки точки отдельных живых сечений с максимальными скоростями, называется динамической осью потока.



    Скорость течения зависит от ширины русла и перепада высот. Измеряется она гидрометрической вертушкой. Делается 5 замеров на определнной глубине на разных участках. Скорость течения в Амазонке, которая считается самой быстрой рекой составляет 4,5-5 м/сек. или около 15 км/час.

    Река из Южной Америки - Амазонка считается рекой с максимальной скоростью течения.

    По результатам исследований эта река самая длинная в мире. Ко всему прочему, е переплыть можно только на пароме, мосты через эту реку не построены из-за е приличной ширины.

    Средняя скорость порядка 15 км/ч. Но во время приливов с океана Амазонка движется ещ быстрее.

    Насчет максимальной скорости конкретной реки я информацию найти не смогла, поэтому не скажу. Скорость же течения зависит от: 1 рельефа и подстилающей поверхности. Равнинные реки или реки в равнинных частях гораздо медленнее, поскольку нет уклона и вода не набирает определенной скорости. По равнинам вода течет медленнее и из-за сдерживающих факторов подстилающей поверхности, земли, более рыхлой нежели горные породы. 2. От скорости ветра. Ветер является определенным подгоном для воды, формируя волну. 3. Динамика движения реки зависит и от количества наносов, т.е. того природного или антропогенного материала который переносит вода. Большое количество наносов тормозит движение воды. Есть еще факторы, но эти самые заметные.

    Самой быстрой рекой считают Амазонку. Измеряют скорость течения в метрах в секунду. Но, конечно же, скорость реки меняется на всем ее протяжении: у истока она меньше, чем в устье, а максимальна в среднем течении реки, где скорость увеличивается еще и за счет мощности водного потока. Скорость течения зависит от мощности водного потока и от уклона местности, по которой течет река. Средняя скорость рассчитывается по нескольким замерам, как правило, в пяти разных точках русла. У Амазонки это 4,5-5 м/с или 10-15 км/час. Амазонка еще и самая длинная, полноводная и глубокая река в мире.

    Насколько помню из школьной географии,что самая быстрая река в мире-это Амазонка.скорость зависит от уклонов где протекает река.Существует верхнее,среднее и нижнее течение.В верхнем течении и скорость самая высокая.

    Вообще, у любой реки скорость течения не является постоянной величиной на всм протяжении реки - она изменяются и по глубине, и по ширине. Для определения средней скорости реки делают, как минимум, 5 замеров в разных местах - в истоке, середине и устье реки .

    Необходимые предметы:

    1) гидрометрическая вертушка

    2) вспомогательное оборудование - гидрометрическая штанга, трос, вертлюг, гидрометрические грузы и лебдки.

    3) секундомер.

    Что влияет на скорость реки

    1) Уклон русла, а также его ширина - скорость находится в прямой зависимости от уклона русла.

    2) Рельеф местности - горные реки имеют более быстрое течение.

    3) Неровности на дне реки - скорости в потоке перед препятствием в этом случае резко уменьшаются ко дну.

    4) Ветер - если направление ветра против течения, то скорость реки снижается.

    5) Наличие водной растительности.

    Самая быстрая река

    Ей является южноамериканская река Амазонка - она имеет среднюю скорость 4,5-5 метров в секунду или 15 километров в час .

    Также Амазонке принадлежит ещ ряд рекордов:

Средние скорости течения изменяются по длине реки в силу непостоянства размеров поперечного сечения русла. В конкретном поперечном створе средняя скорость находится путем осреднения местных скоростей, измеренных в отдельных точках потока по глубине и ширине реки. В свою очередь, местные скорости в различных точках потока существенно различаются между собой. У поверхности они обычно больше, чем у дна, а у берегов, наоборот, меньше, чем в средней части реки.

На это распределение сильно влияет форма поперечного сечения русла и условия движения воды на участке.

Наличие растительности или другой дополнительной шероховатости у дна реки приводит к уменьшению придонных скоростей течения воды. Образование ледового покрова на свободной поверхности зимой создает дополнительное сопротивление движению воды. В результате этого поверхностные скорости течения уменьшаются, а максимум скоростей перемещается в толщу потока. Это приводит к тому, что средние скорости в поперечном сечении реки зимой также уменьшаются, по сравнению с летним периодом времени при прочих равных условиях.

Для анализа распределения местных скоростей течения по живому сечению на практике их измеряют в отдельных точках по глубине потока на целом ряде скоростных вертикалей , намечаемых по ширине реки. На рис. 4.4 показан профиль поперечного сечения русла реки с измеренными скоростями течения на вертикалях. В данном примере скорости течения измерялись в 5 точках по глубине потока. На профиле реки изображены изотахи – линии равных скоростей в поперечном сечении русла.

В верхней части построения показана эпюра распределения средних скоростей течения на вертикалях по ширине реки, а пунктиром – величина средней по живому сечению скорости течения.

По данным измерения скоростей течения воды в отдельных точках по глубине потока может быть построена эпюра их распределения по вертикали. Пример такого построения приводится на рис. 4.5. По вертикальной оси на этом графике в масштабе откладываются расстояния от свободной поверхности воды до точек измерения скоростей, а по горизонтальной – значения этих скоростей. Средняя скорость на вертикали находится обычно на расстоянии 0.4h , считая от дна реки.

В каждом конкретном случае распределение скоростей течения по вертикали и по ширине русла зависит от условий движения воды на участке. Обычно максимум поверхностных скоростей потока и наибольшие средние скорости течения на вертикалях наблюдаются в районе максимальных глубин в живом сечении русла. На перекатах эпюра средних скоростей течения выравнивается по ширине реки по сравнению с плесовыми лощинами. Наибольшая неравномерность распределения скоростей по ширине реки наблюдается на участках поворота русла. В этом случае максимальные скорости течения сосредотачиваются у вогнутого – прижимного берега реки. На рис. 4.6 приведены эпюры распределения средних на вертикалях скоростей течения на перекатном участке реки.

Рис. 4.6. Распределение средних скоростей течения

на перекатном участке реки

Анализ распределения скоростей течения по ширине реки показывает, что на стрежне потока, в наиболее глубокой части русла, фактические скорости течения воды всегда больше, чем средние по живому сечению.

Поэтому, при выполнении технико-экономических расчетов вводится понятие эксплуатационной скорости течения , величина которой может быть найдена из следующей зависимости:

, (4.8)

где: Vср – средняя скорость потока по живому сечению в рассматриваемом створе реки, м/c;

DV – разница между скоростью течения на оси судового хода и средней скоростью по живому сечению в данном створе реки, м/c.

Величина средней скорости течения может быть определена по формуле Шези или на основе натурных измерений. Скорости течения в реке измеряются специальными приборами – гидрометрическими вертушками (рис. 4.7) или с помощью пуска поплавков. Определить значение величины DV непосредственными измерениями на протяженном участке реки представляется весьма затруднительным.

Рис. 4.7. Гидрометрическая вертушка:

1 – лопасти; 2 – корпус; 3 – хвостовая часть;

4 – штанга; 5 – электрические клеммы

На практике эксплуатационную скорость для отдельного участка реки определяют в результате измерения скорости движения судна относительно берега при следовании по течению Vвн и против течения Vвв по формуле

. (4.9)

Для приближенных расчетов часто принимают

Зная эксплуатационную скорость течения, можно найти скорость хода судна относительно берега:

при движении вниз по течению

, (4.11)

при движении вверх против течения

, (4.12)

где: Vс – скорость хода судна в спокойной воде (при отсутствии течения), м/c.

Полученные значения скоростей движения судов используются на практике при планировании времени доставки грузов и составлении диспетчерских графиков.

ПОСМОТРЕТЬ ЕЩЕ:

При строительстве многих инженерных сооружений на реках необходимо знать количество воды, протекающей в том или ином месте в секунду, или, как говорят, расход воды. Это нужно для определения длины мостов, плотин, а также для орошения и водоснабжения.

Расход воды измеряется обычно кубическими метрами в секунду. Расход воды в половодье сильно отличается от расхода в межень, то есть при низких летних уровнях. В таблице 7 для примера приведены расходы по некоторым рекам.

Если мы разрежем мысленно реку поперёк течения, то получим так называемое «живое сечение» реки. Распределение скорости течения по живому сечению реки весьма неравномерно. На скорость течения влияет и глубина русла, и форма его, и препятствия, которые встречает на своём пути река, например опора моста, остров и т. д.

Обычно у берегов скорость меньше, а на середине, в более глубокой части реки, скорость значительно больше, чем в мелкой. В верхней части потока скорости бывают больше, а чем ближе ко дну, тем меньше. На ровном участке реки наибольшая скорость бывает обычно несколько ниже поверхности воды, но иногда наибольшая скорость наблюдается и на поверхности.

Если течение наталкивается на препятствие, например на опору моста, островок, то наибольшие скорости могут переместиться ближе ко дну реки. На старицах в половодье скорости вблизи дна падают до нуля.

На рисунке 14 показано распределение скоростей течения по живому сечению Волги около Саратова в половодье. Скорость на поверхности в левом рукаве 1,3 в секунду, а в правом 1,7 в секунду. Над островом, который в половодье покрыт водой, скорости падают до 0,5 в секунду. На дне реки скорости падают до 0,4 . Летом наибольшая скорость на этом участке в главном русле была не более 0,4 в секунду.

Вдоль реки скорости могут также сильно меняться в зависимости от очертаний живого сечения. Например, четырнадцатью километрами ниже Саратова, у Увека, где русло не имеет островов и стеснено дамбами, в половодье поверхностная скорость доходила до 3 в секунду, в то время, как у Саратова скорость была до 1,8 в секунду.

В глубоких местах на реке, которые называются плёсами, живое сечение больше. На мелких местах или перекатах живое сечение значительно меньше. Поскольку на коротком участке по длине реки расходы воды равны, а сечения на плёсе больше, чем на перекате, то и скорости течения будут разные: в глубоком месте вода идёт тихо, а на перекате - значительно быстрее.

Скорость течения зависит ещё от уклона потока, шероховатости дна и глубины. Чем больше уклон, чем ровнее ложе и чем правильнее его очертания, тем выше скорость течения. Примерные величины скорости на реках указаны в таблице 8.

В таблице указана «средняя скорость». Эта скорость определяется путём деления расхода воды на площадь живого сечения реки. Наибольшая поверхностная скорость обычно раза в полтора больше, а донная - в полтора раза меньше средней скорости.

Измерением скоростей и расходов воды рек занимается наука гидрометрия.

Скорость течения воды можно измерить очень простым путём.

Для этого нужно по берегу отмерить, хотя бы шагами, определённое расстояние, установить отметки и бросить в воду несколько выше верхней отметки поплавок или просто щепку. Время прохода поплавка от одной отметки до другой измеряется по часам с секундной стрелкой. Разделив расстояние между заметками на время, которое поплавок плыл от одной отметки до другой, мы получим поверхностную скорость потока в этом месте.

На изысканиях проход поплавков засекают специальным угломерным инструментом.

Наиболее точно можно измерить скорость с помощью гидрометрических вертушек (рис. 15). Эти вертушки на металлическом стержне (при глубинах до 4)или на тросе (при любой глубине) опускают со специально оборудованных судов в воду на разную глубину. Как только вертушка сделает определённое число оборотов, электрические провода в ней замыкаются, по вертушке идёт ток, и наверху получается короткий звонок. Промежуток времени между отдельными звонками соответствует определённой скорости течения. Опуская вертушку всё ниже и ниже, можно измерить скорости по всей глубине реки на данной вертикали.

Расход воды на реке подсчитывается так. На каждой из 10–20 вертикалей, расположенных поперёк течения на одинаковом расстоянии друг от друга, определяют среднюю скорость течения, которую затем умножают на площадь живого сечения реки между вертикалями. Полученные таким путём отдельные частные расходы между вертикалями складывают. Сумма даёт общий расход реки, выраженный в кубических метрах в секунду.

В заключение приведём некоторые сведения о переправе через реки вброд.

Переправу вброд можно делать, в зависимости от скорости, при разной глубине. Как правило, при скорости 1,5 можно идти вброд на глубине 1 , верхом на лошади - при глубине 1,2 , на автомашине - при глубине в 0,5 . При скорости 2 идти вброд можно на глубине 0,6 , переходить реку верхом - на глубине 1 , на автомашине - при глубине 0,3 Если вода неподвижна, наибольшая глубина для перехода вброд определяется только ростом человека и конструкцией машины.

Есть несколько способов измерения скорости реки. Можно это сделать при решении математических задач, когда есть какие-то данные, а можно это сделать, применив практические действия.

Скорость течения реки

Скорость течения зависит впрямую от уклона русла. Уклон русла это отношение разности высот двух участков, пунктов к длине участка. Чем больше уклон, тем скорость течения реки больше.

Чему равна скорость течения реки, можно узнать, пройдя на лодке по течению реки вверх, а затем вниз по течению. Скорость лодки по течению — V1, скорость лодки против течения — V2. Чтобы рассчитать скорость течения реки нужно (V1 — V2): 2.

Для измерения скорости течения воды используют специальный прибор лаг, вертушка, состоящая из лопасти, корпуса, хвостовой части, ротор.

Есть еще один простейший способ, как найти скорость течения реки.

Отмерить вверх по течению 10 метров, можно шагами. Своим ростом будет точнее. Затем сделать отметку на берегу камнем или веткой, бросить щепку в реку выше отметки. После того, как щепка поравняется с отметкой на берегу, нужно начать отсчитать секунды. Затем отмеренное расстояние в 10 метров разделить на количество секунд за это расстояние. Например, 10 метров щепка проплыла за 8,5 секунд. Скорость течения реки будет 1,18 метров в секунду.

Элементы водного режима и методы наблюдений за ними

(по Л. К. Давыдову)

Под влиянием ряда причин, о которых будет сказано ниже, изменяются расходы воды в реках, положение уровенной поверхности ее уклоны и скорости течения. Совокупное изменение расходов воды, уровней, уклонов и скоростей течения во времени называется водным режимом, а изменение величин расходов, уровней, уклонов и скоростей в отдельности — элементами водного режима.

Расходом воды (Q) называется то количество воды, которое протекает через данное живое сечение реки в единицу времени. Величина расхода выражается в м3/с. Уровень воды (H) — высота поверхности воды (в сантиметрах), отсчитываемая от некоторой постоянной плоскости сравнения.

Наблюдения за уровнями и методы их обработки

Наблюдения за колебанием уровня проводятся на водомерных постах (рис. 73) и заключаются в измерении высоты водной поверхности над некоторой постоянной плоскостью, принимаемой за начальную, или нулевую. За такую плоскость обычно принимают плоскость, проходящую через отметку несколько ниже наинизшего уровня воды. Абсолютную или относительную отметку этой плоскости называют нулем графика, в превышениях над которым и даются все уровни.


Рис. 73. Свайный водомерный пост (а) и отсчет уровня воды по переносной рейке (б).

Измерения производятся при помощи водомерной рейки с точностью до 1 см. Рейки бывают двух типов — постоянные и переносные. Постоянные рейки прикрепляются к устоям мостов или к свае, забитой в дно русла у берега. При пологих берегах и больших амплитудах колебаний уровней наблюдения за ними проводятся при помощи переносной рейки. Для этого в русло реки и на пойме забивается ряд расположенных в створе свай.

Отметки головок свай связываются нивелировкой с репером водомерного поста, установленным на берегу, абсолютная или относительная отметка которого известна. Переносной рейкой, устанавливаемой на головке сваи, измеряют уровень воды. Зная отметку головки каждой сваи, можно выразить все измеренные уровни в превышениях над нулевой поверхностью, или нулем графика. Наблюдения на водомерных постах обычно проводятся 2 раза в сутки — в 8 и 20 часов. В период, когда уровни быстро меняются, в течение суток проводятся дополнительные наблюдения через 1, 2, 3 или 6 часов. Для непрерывной регистрации уровней в течение суток применяются самописцы уровней, описание которых можно найти в учебнике гидрометрии (В. Д. Быков и А. В. Васильев). Там же можно ознакомиться с автоматическим режимным регистрирующим (уровень и температуру воды) гидрологическим постом. Переход к автоматизированной системе наблюдений ускоряет получение гидрологической информации и повышает эффективность ее использования.

По данным всех измерений вычисляются средние уровни за каждый день и составляются таблицы ежедневных средних уровней за год. В этих таблицах помещаются, кроме того, средние уровни за каждый месяц и за год и выбираются наивысшие и наинизшие уровни за каждый месяц и год.

Средние, наибольшие и наименьшие уровни называются характерными уровнями. Данные наблюдений за уровнями публикуются в СССР в специальных изданиях — гидрологических ежегодниках. В дореволюционный период эти данные публиковались в "Сведениях об уровнях воды на внутренних водных путях России по наблюдениям на водомерных постах".

По данным ежедневных наблюдений за уровнями строятся графики их колебаний, дающие наглядное представление об уровенном режиме за данный год.

Методы измерения скоростей течения рек

Скорости течения рек обычно измеряются либо поплавками, либо гидрометрическими вертушками. В отдельных случаях величина средней скорости для всего живого сечения вычисляется по формуле Шези. Простейшие и наиболее часто употребляемые поплавки изготовляются из дерева. Поплавки сбрасываются в воду на малых реках с берега, на больших — с лодки. По секундомеру определяется время t прохождения поплавка между двумя соседними створами, расстояние l между которыми известно. Поверхностная скорость течения приравнивается скорости движения поплавка

Более точно скорости течения измеряются при помощи гидрометрической вертушки. Она позволяет определять осредненную скорость течения в любой точке потока. Вертушки бывают различных типов. В СССР в настоящее время рекомендуются к употреблению модернизированные гидрометрические вертушки Жестовского и Бурцева ГР-21М, ГР-55, ГР-11.

При измерении скоростей вертушка на штанге или тросе опускается в воду на различные глубины так, чтобы ее лопасти были направлены против течения. Лопасти начинают вращаться, и тем быстрее, чем больше скорость течения. Через определенное число оборотов оси вертушки (обычно через 20) при помощи специального приспособления подается световой или звуковой сигнал. По промежутку времени между двумя сигналами определяется число оборотов в секунду.

Вертушки тарируются в специальных лабораториях или на заводах, где они изготовляются, т. е. устанавливается зависимость между числом оборотов лопасти вертушки в секунду (n об/с) и скоростью течения (v м/с). По этой зависимости, зная п, можно определить v. Измерения вертушкой производятся на нескольких вертикалях, в нескольких точках на каждой из них.

Методы определения расходов воды

Расход воды в данном живом сечении может быть определен по формуле

Где v — средняя скорость для всего живого сечения; w — площадь этого сечения. Последняя определяется в результате промеров глубин русла реки по поперечному створу.

По приведенной формуле расход вычисляется лишь в том случае, если скорость определена по формуле Шези. При измерении скоростей поплавками или вертушкой на отдельных вертикалях определение расхода производится иначе. Пусть в результате измерений известны средние скорости для каждой вертикали. Тогда схема вычисления расхода воды сводится к следующему. Расход воды можно представить в виде объема водяного тела — модели расхода (рис. 76 а), ограниченного плоскостью живого сечения, горизонтальной поверхностью воды и криволинейной поверхностью v = f(H,В), показывающей изменение скорости по глубине и ширине потока. Этот объем, а следовательно, и расход выражается формулой

Так как математически закон изменения v = f(H,В) неизвестен, расход вычисляется приближенно.


Рис. 76 Схема к вычислению расхода воды. а — модель расхода, б — частичный расход.

Модель расхода можно разделить вертикальными плоскостями, перпендикулярными площади живого сечения, на элементарные объемы (рис. 76 б). Общий расход вычисляется как сумма частичных расходов AQ, каждый из которых проходит через часть площади живого сечения wi, заключенную между двумя скоростными вертикалями или между урезом и ближайшей к нему вертикалью.

Таким образом, общий расход Q равен

где К — переменный параметр, зависящий от характера берега и изменяющийся от 0,7 до 0,9. При наличии мертвого пространства K = 0,5.

Средняя скорость для всего живого сечения при известном расходе воды Q вычисляется по формуле vcр =Q/w .

Для измерения расходов воды применяются и другие методы, например на горных реках используется метод ионного паводка.

Подробные сведения по определению и вычислению расходов воды излагаются в курсе гидрометрии. Между расходами воды и уровнями существует определенная зависимость Q — f(H), известная в гидрологии как кривая расходов воды. Подобная эмпирическая кривая представлена на рис. 77 а.

Она проведена по измеренным расходам воды в реке в период, свободный ото льда. Точки, соответствующие зимним расходам воды, ложатся влево от летней кривой, так как расходы, измеренные при ледоставе Qзим (при одной высоте стояния уровня), меньше летних QЛ. Уменьшение расходов есть следствие увеличения шероховатости русла при ледовых образованиях и уменьшения площади живого сечения. Соотношение между Qзим и Qл, выражаемое переходным коэффициентом

Не остается постоянным и изменяется во времени с изменением интенсивности ледовых образований, толщины льда и шероховатости его нижней поверхности. Ход изменений Кзим=f(Т) от начала замерзания до вскрытия показан на рис. 77 б.

Кривая расходов позволяет определять ежедневные расходы воды реки по извест-ным уровням, наблюдаемым на водомерных постах. Для периода, свободного ото льда, пользование кривой Q = f(H) не вызывает затруднений. Ежедневные расходы при ледоставе или других ледовых образованиях можно определить с помощью той же кривой Q = f(H) и хронологического графика Kзим = f/(T), с которого снимаются значения Кзим на нужную дату:

QЗИМ = Kзим Qл

Существуют и другие способы определения зимних расходов, например по "зимней" кривой расходов, если ее удается построить.

Однозначность кривой расходов воды в ряде случаев нарушается и в период, свободный ото льда. Наиболее часто это наблюдается при неустойчивом русле (намыв, размыв), а также при возникновении переменного подпора, вызванного несовпадением хода уровней данной реки и ее притока, работой гидротехнических сооружений, зарастанием русла водной растительностью и другими явлениями. В каждом из этих случаев выбираются те или иные способы определения ежедневных расходов воды, излагаемые в курсе гидрометрии.

По данным ежедневных расходов воды можно вычислить средние расходы за декаду, месяц, год. Средние, наибольшие и наименьшие расходы за данный год или за ряд лет называются характерными расходами. По данным ежедневных расходов строится календарный (хронологический) график колебаний расходов воды, называемый гидрографом (рис.78).


Рис. 78. Гидрограф.

Механизм течения рек

(по Л. К. Давыдову)

Движение ламинарное и турбулентное

В природе существуют два режима движения жидкости, в том числе и воды: ламинарное и турбулентное. Ламинарное движение — параллельноструйное. При постоянном расходе воды скорости в каждой точке потока не изменяются во времени ни по величине, ни по направлению. В открытых потоках скорость от дна, где она равна нулю, плавно возрастает до наибольшей величины на поверхности. Движение зависит от вязкости жидкости, и сопротивление движению пропорционально скорости в первой степени. Перемешивание в потоке носит характер молекулярной диффузии. Ламинарный режим характерен для подземных потоков, протекающих в мелкозернистых грунтах.

В речных потоках движение турбулентное. Характерной особенностью турбулентного режима является пульсация скорости, т. е. изменение ее во времени в каждой точке по величине и направлению. Эти колебания скорости в каждой точке совершаются около устойчивых средних значений, которыми обычно и оперируют гидрологи. Наибольшие скорости наблюдаются на поверхности потока. В направлении ко дну они уменьшаются относительно медленно и в непосредственной близости от дна имеют еще достаточно большие значения. Таким образом, в речном потоке скорость у дна практически не равна нулю. В теоретических исследованиях турбулентного потока отмечается наличие у дна очень тонкого пограничного слоя, в котором скорость резко уменьшается до нуля.

Турбулентное движение практически не зависит от вязкости жидкости. Сопротивление движению в турбулентных потоках пропорционально квадрату скорости.

Экспериментально установлено, что переход от ламинарного режима к турбулентному и обратно происходит при определенных соотношениях между скоростью vср и глубиной Hср потока. Это соотношение выражается безразмерным числом Рейнольдса

знаменатель (ν) — коэффициент кинематической вязкости.

Для открытых каналов критические числа Рейнольдса, при которых меняется режим движения, изменяются примерно в пределах 300-1200. Если принять Re = 360 и коэффициент кинематической вязкости = 0,011, то при глубине 10 см критическая скорость (скорость, при которой ламинарное движение переходит в турбулентное) равна 0,40 см/с; при глубине 100 см она снижается до 0,04 см/с. Малыми значениями критической скорости объясняется турбулентный характер движения воды в речных потоках.

По современным представлениям (А. В. Караушев и др.), внутри турбулентного потока в различных направлениях и с различными относительными скоростями перемещаются элементарные объемы воды (структурные элементы), обладающие различными размерами. Таким образом, наряду с общим движением потока можно заметить движение отдельных масс воды, в течение короткого времени ведущих как бы самостоятельное существование. Этим, очевидно, объясняется появление на поверхности турбулентного потока маленьких воронок — водоворотов, быстро появляющихся и так же быстро исчезающих, как бы растворяющихся в общей массе воды. Этим же объясняется не только пульсация скоростей в потоке, но и пульсации мутности, температуры, концентрации растворенных солей.

Турбулентный характер движения воды в реках обусловливает перемешивание водной массы. Интенсивность перемешивания усиливается с увеличением скорости течения. Явление перемешивания имеет большое гидрологическое значение. Оно способствует выравниванию по живому сечению потока температуры, концентрации взвешенных и растворенных частиц.


Рис. 65. Примеры кривой водной поверхности потока. а — крикая подпора, б — кривая спада (по А. В. Караушеву).

Движение воды в реках

Вода в реках движется под действием силы тяжести F’. Эту силу можно разложить на две составляющие: параллельную дну Fx и нормальную ко дну F’y (см. рис. 68). Сила F’ уравновешивается силой реакции со стороны дна. Сила F’х, зависящая от уклона, вызывает движение воды в потоке. Эта сила, действуя постоянно, должна бы вызвать ускорение движения. Этого не происходит, так как она уравновешивается силой сопротивления, возникающей в потоке в результате внутреннего трения между частицами воды и трения движущейся массы воды о дно и берега. Изменение уклона, шероховатости дна, сужения и расширения русла вызывают изменение соотношения движущей силы и силы сопротивления, что приводит к изменению скоростей течения по длине реки и в живом сечении.

Выделяются следующие виды движения воды в потоках: 1) равномерное, 2) неравномерное, 3) неустановившееся. При равномерном движении скорости течения, живое сечение, расход воды постоянны по длине потока и не меняются во времени. Такого рода движение можно наблюдать в каналах с призматическим сечением.

При неравномерном движении уклон, скорости, живое сечение не изменяются в данном сечении во времени, но изменяются по длине потока. Этот вид движения наблюдается в реках в период межени при устойчивых расходах воды в них, а также в условиях подпора, образованного плотиной.

Неустановившееся движение — это такое, при котором все гидравлические элементы потока (уклоны, скорости, площадь живого сечения) на рассматриваемом участке изменяются и во времени и по длине. Неустановившееся движение характерно для рек во время прохождения паводков и половодий.

При равномерном движении уклон поверхности потока I равен уклону дна i и водная поверхность параллельна выровненной поверхности дна. Неравномерное движение может быть замедленным и ускоренным. При замедляющемся течении вниз по реке кривая свободной водной поверхности принимает форму кривой подпора. Поверхностный уклон становится меньше уклона дна (I < i), и глубина возрастает в направлении течения. При ускоряющемся течении кривая свободной поверхности потока называется кривой спада; глубина убывает вдоль потока, скорость и уклон возрастают (I > i) (рис. 65).


Рис. 68. Схема к выводу уравнения Шези (по А. В. Караушеву).

Скорости течения воды и распределение их по живому сечению

Скорости течения в реках неодинаковы в различных точках потока: они изменяются и по глубине и по ширине живого сечения. На каждой отдельно взятой вертикали наименьшие скорости наблюдаются у дна, что связано с влиянием шероховатости русла. От дна к поверхности нарастание скорости сначала происходит быстро, а затем замедляется, и максимум в открытых потоках достигается у поверхности или на расстоянии 0,2H от поверхности. Кривые изменения скоростей по вертикали называются годографами или эпюрами скоростей (рис. 66). На распределение скоростей по вертикали большое влияние оказывают неровности в рельефе дна, ледяной покров, ветер и водная растительность. При наличии на дне неровностей (возвышения, валуны) скорости в потоке перед препятствием резко уменьшаются ко дну. Уменьшаются скорости в придонном слое при развитии водной растительности, значительно повышающей шероховатость дна русла. Зимой подо льдом, особенно при наличии шуги, под влиянием добавочного трения о шероховатую нижнюю поверхность льда скорости малы. Максимум скорости смещается к середине глубины и иногда расположен ближе ко дну. Ветер, дующий в направлении течения, увеличивает скорость у поверхности. При обратном соотношении направления ветра и течения скорости у поверхности уменьшаются, а положение максимума смещается на большую глубину по сравнению с его положением в безветренную погоду.

По ширине потока скорости как поверхностная, так и средняя на вертикалях меняются довольно плавно, в основном повторяя распределение глубин в живом сечении: у берегов скорость меньше, в центре потока она наибольшая. Линия, соединяющая точки на поверхности реки с наибольшими скоростями, называется стрежнем. Знание положения стрежня имеет большое значение при использовании рек для целей водного транспорта и лесосплава. Наглядное представление о распределении скоростей в живом сечении можно получить построением изотах — линий, соединяющих в живом сечении точки с одинаковыми скоростями (рис. 67). Область максимальных скоростей расположена обычно на некоторой глубине от поверхности. Линия, соединяющая по длине потока точки отдельных живых сечений с наибольшими скоростями, называется динамической осью потока.


Рис. 66. Эпюры скоростей. а — открытое русло, б — перед препятствием, в — ледяной покров, г — скопление шуги.

Средняя скорость на вертикали вычисляется делением площади эпюры скоростей на глубину вертикали или при наличии измеренных скоростей в характерных точках по глубине (VПОВ, V0,2, V0,6, V0,8, VДОН) по одной из эмпирических формул, например

Средняя скорость в живом сечении. Формула Шези

Для вычисления средней скорости потока при отсутствии непосредственных измерений широко применяется формула Шези. Она имеет следующий вид:

где Hср — средняя глубина.

Величина коэффициента С не является величиной постоянной. Она зависит от глубины и шероховатости русла. Для определения С существует несколько эмпирических формул. Приведем две из них:

формула Манинга

формула Н. Н. Павловского
где n — коэффициент шероховатости, находится по специальным таблицам М. Ф. Срибного. Переменный показатель в формуле Павловского определяется зависимостью.

Из формулы Шези видно, что скорость потока растет с увеличением гидравлического радиуса или средней глубины. Это происходит потому, что с увеличением глубины ослабевает влияние шероховатости дна на величину скорости в отдельных точках вертикали и тем самым уменьшается площадь на эпюре скоростей, занятая малыми скоростями. Увеличение гидравлического радиуса приводит и к увеличению коэффициента С. Из формулы Шези следует, что скорость потока растет с увеличением уклона, но этот рост при турбулентном движении выражен в меньшей мере, чем при ламинарном.

Скорость течения горных и равнинных рек

Течение равнинных рек значительно более спокойное, чем горных. Водная поверхность равнинных рек сравнительно ровная. Препятствия обтекаются потоком спокойно, кривая подпора, возникающего перед препятствием, плавно сопрягается с водной поверхностью вышерасположенного участка.

Горные реки отличаются крайней неровностью водной поверхности (пенистые гребни, взбросы, провалы). Взбросы возникают перед препятствием (нагромождением валунов на дне русла) или при резком уменьшении уклона дна. Взброс воды в гидравлике носит название гидравлического (водного) прыжка. Его можно рассматривать как одиночную волну, появившуюся на водной поверхности перед препятствием. Скорость распространения одиночной волны на поверхности, как известно, c = , где g — ускорение силы тяжести, H — глубина.

Если средняя скорость течения vср потока оказывается равной скорости распространения волны или превышает ее, то образующаяся у препятствия волна не может распространиться вверх по течению и останавливается вблизи места ее возбуждения. Формируется остановившаяся волна перемещения.

Пусть vср = c. Подставляя в это равенство значение из предыдущей формулы, получим vср = , или

Левая часть этого равенства известна как число Фруда (Fr). Это число позволяет оценить условия существования бурного или спокойного режима течения: при Fr < 1 — спокойный режим, при Fr > 1 — бурный режим.

Таким образом, между характером течения, глубиной, скоростью, а следовательно, и уклоном существуют следующие соотношения: с увеличением уклона и скорости и уменьшением глубины при данном расходе течение становится более бурным; с уменьшением уклона и скорости и увеличением глубины при данном расходе течение приобретает более спокойный характер.

Горные реки характеризуются, как правило, бурным течением, равнинные реки имеют спокойный режим течения. Бурный режим течения может быть и на порожистых участках равнинных рек. Переход к бурному течению резко усиливает турбулентность потока.

Поперечные циркуляции

Одной из особенностей движения воды в реках является непараллельноструйность течений. Она отчетливо проявляется на закруглениях и наблюдается на прямолинейных участках рек. Наряду с общим параллельным берегам движением потока в целом имеются внутренние течения в потоке, направленные под различными углами к оси движения потока и производящие перемещения водных масс в поперечном к потоку направлении. На это еще в конце прошлого столетия обратил внимание русский исследователь Н. С. Лелявский. Он следующим образом объяснил структуру внутренних течений. На стрежне вследствие больших скоростей на поверхности воды происходит втягивание струй со стороны, в результате в центре потока создается некоторое повышение уровня. Вследствие этого в плоскости, перпендикулярной направлению течения, образуются два циркуляционых течения по замкнутым контурам, расходящиеся у дна (рис. 69 а). В сочетании с поступательным движением эти поперечные циркуляционные течения приобретают форму винтообразных движений. Поверхностное течение, направленное к стрежню, Лелявский назвал сбойным, а донное расходящееся — веерообразным.

На изогнутых участках русла струи воды, встречаясь с вогнутым берегом, отбрасываются от него. Массы воды, переносимые этими отраженными струями, обладающими меньшими скоростями, накладываясь на массы воды, переносимые набегающими на них следующими струями, повышают уровень водной поверхности у вогнутого берега. Вследствие этого возникает перекос водной поверхности, и струи воды, находящиеся у вогнутого берега, опускаются по откосу его и направляются в придонных слоях к противоположному выпуклому берегу. Возникает циркуляционное течение на изогнутых участках рек (рис. 69 б).


Рис. 69. Циркуляционные течения на прямолинейном (а) и на изогнутом (б) участке русла (по Н. С. Лелявскому). 1 — план поверхностных и донных струй, 2 — циркуляционные течения в вертикальной плоскости, 3 — винтообразные течения.

Особенности внутренних течений потока были изучены А. И. Лосиевским в лабораторных условиях. Им была установлена зависимость формы циркуляционных течений от соотношения глубины и ширины потока и выделены четыре типа внутренних течений (рис. 70).

Типы I и II представлены двумя симметричными циркуляциями. Для типа I характерно схождение струй у поверхности и расхождение у дна. Этот случай свойствен водотокам с широким и неглубоким руслом, когда влияние берегов на поток незначительно. Во втором случае донные струи направлены от берегов к середине. Этот тип циркуляции характерен для глубоких потоков с большими скоростями. Тип III с односторонней циркуляцией наблюдается в руслах треугольной формы. Тип IV — промежуточный — может возникать при переходе типа I в тип II. В этом случае струи в середине потока могут быть сходящимися или расходящимися, соответственно у берегов — расходящимися или сходящимися. Дальнейшее развитие представления о циркуляционных течениях получили в работах М. А. Великанова, В. М. Маккавеева, А. В. Караушева и др. Теоретические исследования возникновения этих течений излагаются в специальных курсах гидравлики и динамики русловых потоков. Появление поперечных течений на закруглениях русла объясняется развивающейся здесь центробежной силой инерции и связанным с ней поперечным уклоном водной поверхности. Центробежная сила инерции, возникающая на закруглениях, неодинакова на различных глубинах.


Рис. 70. Схема внутренних течений (по А. И. Лосиевскому). 1 — поверхностная струя, 2 — донная струя.

Рис. 71. Схема сложения сил, вызывающих циркуляцию. а — изменение по вертикали центробежной силы P1, б — избыточное давление, в — результирующая эпюра действующих на вертикали сил центробежной и избыточного давления, г — поперечная циркуляция.
У поверхности она больше, у дна меньше вследствие уменьшения с глубиной продольной скорости (рис. 71 а).

В зависимости от направления излучины отклоняющая сила Кориолиса или усиливает, или ослабляет поперечные течения на закруглении. Эта же сила возбуждает поперечные течения на прямолинейных участках.

При низких уровнях на закруглении циркуляционные течения почти не выражены. С повышением уровней, увеличением скорости и центробежной силы циркуляционные течения становятся отчетливыми. Скорость поперечных течений обычно мала — в десятки раз меньше продольной составляющей скорости. Описанный характер циркуляционных течений наблюдается до выхода воды на пойму. С момента выхода воды на пойму в реке создаются как бы два потока — верхний, долинного направления, и нижний, в коренном русле. Взаимодействие этих потоков сложно и еще мало изучено.

В современной литературе по динамике русловых потоков (К. В. Гришанин, 1969 г.) приводится, по-видимому, более строгое объяснение возникновения поперечных циркуляции в речном потоке. Происхождение таких циркуляции связывается с механизмом передачи на элементарные объемы воды в потоке действия кориолисова ускорения посредством градиента давления, обусловленного4 поперечным уклоном (и постоянного на вертикали), и разности касательных напряжений, вызванных на гранях элементарных объемов воды различиями в скоростях потока по вертикали.

Аналогичную кориолисову ускорению роль выполняет на повороте русла центростремительное ускорение.

Помимо поперечных циркуляции, в потоке наблюдаются вихревые движения с вертикальной осью вращения (рис. 72).


Рис. 72. Схема вихрей с вертикальными осями (по К. В. Гришанину).

Одни из них подвижны и неустойчивы, другие стационарны и отличаются большими поперечными размерами. Чаще они возникают в местах слияния потоков, за крутыми выступами берегов, при обтекании некоторых подводных препятствий и т. д. Условия формирования стационарных вихрей пока не исследованы. Гришанин высказывает предположение, что образованию устойчивого локализованного вихря способствует значительная глубина потока и существование восходящего течения воды. Эти вихри в потоке, известные под названием водоворотов, напоминают воздушные вихри — смерчи.

Поперечные циркуляции, вихревые движения играют большую роль в транспортировании наносов и формировании речных русел.

Сразу оговорюсь, что здесь написаны только общие принципы. Все неиного сложнее, стоянки рыбы иеняются в зависииости от совокупности изиенения уровня воды и температуры воды. Однако для простоты лучше по порядку. И всё-таки не забывайте, что всё надо рассматривать в комплексе.

Давайте попробуем разобраться, что происходит в реке при изменении уровня воды. Если представить себе теоретически реку с абсолютно плоским, как жёлоб, дном, то тут всё просто. С уменьшением объёма воды понемногу замедляется течение. На практике всё сложнее.

Все реки имеют довольно сложный рельеф. Глубокие ямы и плёсы сменяются стремительными перекатами. Основное русло реки петляет от одного берега к другому, образуя прижимы и улова. В русле часто стоят крупные камни, образуя сложные завихрения водного потока.

Поэтому изменение уровня воды в реке создаёт разнообразные изменения в скорости течения на различных участках реки. Важно: чем выше уровень воды, тем однороднее течение. Чем ниже уровень воды, тем больше разница в скорости течения в зависимости от рельефа дна реки.

Скорость течения на конкретном участке реки разная на различной глубине. Например, у поверхности воды скорость течения будет максимальной, а у дна, где даже некрупные камни создают завихрения воды, скорость течения будет относительно небольшой.

Давайте теперь попробуем поискать стоянки рыбы при различных уровнях воды. Основные правила поиска:

  1. Комфортная глубина. Рыба остановится там, где будет чувствовать себя безопасно. Знаете поговорку - рыба ищет, где глубже, а человек - где лучше? Вот она и будет искать места с глубинами хотя бы от 1,5м и глубже. Хотя в небольших реках с галечниковым дном и малыми глубинами в русле она может вставать и на более мелких местах, но в любом случае, там будет несколько глубже, чем поблизости. Чем крупнее рыба, тем большую глубину она постарается занять в реке.
  2. Скорость течения. Рыба остановится там, где течение не очень сильное, она экономит энергию. С другой стороны, течение должно быть достаточным, чтобы обеспечить рыбе хороший кислородный режим. Вот здесь начинаются проблемы. Такие места трудно искать в глубоких реках со сложным рельефом дна. Даже в бушующем пороге встречаются скальные разломы, где рыба может встать и чувствовать себя прекрасно. С берега такие места засечь бывает очень сложно. Есть и другие сложности, связанные с различием скорости течения на разных глубинах. Надо постоянно изучать рельеф дна реки - это лучше всего делать при низком уровне воды. И никогда не стоит делать быстрых выводов. Вы же не рыба, а ей все равно гораздо лучше видно, где встать. Надо постоянно экспериментировать - всё далеко не так, как видим мы с берега.
  3. Обратное течение. Рыба часто может стоять на местах с обратным течением, т.е. головой вниз по отношению к главному течению реки. Сложность в том, что такие струйки не всегда заметны с берега. Просто есть удобная и комфортная обратная струйка, вот она там и стоит, и её это нисколько не смущает. А вас?
  4. Крупные камни в русле. Рыбу магически притягивают крупные камни в русле. Они создают сильные завихрения воды. Перед таким камнем течение чаще всего вымывает небольшую ямку, это излюбленные места стоянки сёмги. Если такой ямки перед камнем нет или она занята, рыба может встать сбоку от камня. Непосредственно за камнем она стоит редко - туда замывает песок, который образует холмик. Там чаще всего могут находиться посторонние рыбы - кумжа, хариус или пестрята сёмги. В глубоких реках при высоком уровне воды такие камни могут быть не видны - это ещё одна причина для изучения русла реки по малой воде.
  5. Глубокие прижимы у берега. Близость берега рыбу совершенно не пугает. Она может встать в прижиме в полуметре от уреза воды, если там есть достаточная глубина и скорость течения. Поэтому к точке с приличной глубиной у берега стоит подходить осторожно и, Боже упаси вас сразу лезть по пояс в воду и шмалять со всей силы мушку на середину реки.

Итак, давайте разбираться по пунктам. Представим себе, что уровень воды сначала опускается с высоких отметок до минимальных, а потом поднимается опять.

  1. Комфортная глубина. Здесь всё довольно просто. Упал уровень воды и глубина стала недостаточно большой - рыба уходит с этого места на более глубокие точки. При подъёме воды тут опять появится рыба.
  2. Скорость течения. Вот тут всё намного сложнее. Изменение скорости течения так или иначе зависит от разнообразия рельефа дна. Рассмотрим три принципиально разных участка реки:

  3. Подпорожная яма. Представим себе перекат или порог, впадающий в яму. При высоком уровне огромные массы воды с большой скоростью несутся в яму и создают в ней длинный "хвост" течения, при отсутствии оного поблизости берегов ямы. Рыба может стоять немного сбоку от такого хвоста и под струёй, а вот расстояние от входа струи в яму до стоянки рыбы будет меняться в зависимости от уровня воды. Чем ниже уровень - тем меньшие массы воды входят в яму, "хвост" течения в яме становится короче, соответственно стоянки рыбы перемешаются [ближе к началу ямы - там создаётся комфортная для рыбы (скорость течения. При подъёме уровня воды течение усилится и |рыба отойдёт от начала ямы.


    Небольшой перекат в глубоком плёсе реки. В большую воду это место вообще ничем не выделяется. Просто речка течёт однородно (по крайней мере, её поверхностные слои). Ловить здесь при высоком уровне воды бесполезно - рыба может стоять где угодно. Можно разве что некоторые камушки обстрелять, хотя их, опять же, знать надо - при высоком уровне воды их не видно. Однородность течения при высоком уровне воды вызвана

    I"сильным подпором. С понижением уровня воды всё становится гораздо интереснее - разница скоростей течения в зависимости от рельефа дна увеличивается. Начинают выражаться разнообразные струйки, течение реки образует интересные потенциальные стоянки для сёмги. На глубоких местах вверх и [вниз по течению от переката течение ослабло, и сёмга будет [искать места с более сильным течением. А оно - вот, рядом.


    Сливы перед порогом. Сливы могут быть глубокие и мелкие.

    В глубоких сливах рыба будет стоять всегда, немного перемешаясь ближе или дальше от него в зависимости от комфортной скорости течения. Непосредственно у слива чаше всего можно встретить некрупную рыбу. Крупняк будет стоять немного дальше от слива, где глубина больше.

    IB мелких сливах рыба останавливается только при очень высоком уровне воды, с падением уровня она эти места покидает, с повышением - возвращается.

  4. Обратное течение. При высоком уровне воды река часто образует обратные течения. Оно встречается при впадении в яму, в прижимах у берега. С уменьшением уровня воды сила обратного течения ослабевает. Однако есть места, где обратное течение есть даже при низком уровне воды. Рыба часто стоит на обратках. Но если обратка слишком ослабла, рыба её покидает. Да и муху в совсем слабой обратке придётся тащить со стрипами, т.е. немного подтягивать на себя шнур для лучшей работы мухи.
  5. Крупные камни в русле. Рыба стоит возле них практически при любом уровне воды, если позволяет сила течения и глубина реки (не надо забывать о глубине комфорта). При высоком уровне воды не все эти камни видны. Даже не видно бурунов от них. Тут надо реку знать. При низком уровне воды большинство таких камней уже видно. При определённом уровне воды над некоторыми камнями образуется мощный шумный бурун. Сёмге он не нравится. А как вы относитесь к шумному ремонту у соседей на этаж выше? Рыба отойдёт и найдёт новую стоянку поблизости. Когда условия станут более благоприятными, место у некогда бывшего шумным камня опять будет занято рыбой.
  6. Глубокие прижимы у берега. При высоком уровне воды на быстрых участках рек это довольно перспективные места. При понижении уровня воды в прижимах слишком сильно ослабевает течение и рыбе там делать нечего.

Ну вот, я думаю, некоторая ясность наступает? Однако, всё написанное - полная ерунда, если не рассматривать тему в комплексе с динамикой изменения температурного режима воды в реке. Для этого почитаем о том,