Значение словосочетания «гравитационные волны. Что такое гравитационная волна

, США
© REUTERS, Handout

Гравитационные волны наконец-то открыты

Популярная наука

Колебания в пространстве-времени открыты спустя столетие после того, как их предсказал Эйнштейн. Начинается новая эра в астрономии.

Ученым удалось обнаружить колебания в пространстве-времени, вызываемые слиянием черных дыр. Это произошло через сто лет после того, как Альберт Эйнштейн в своей общей теории относительности предсказал эти «гравитационные волны», и через сто лет после того, как физики занялись их поисками.

Об этом знаковом открытии сообщили сегодня исследователи из Лазерной интерферометрической гравитационно-волновой обсерватории LIGO. Они подтвердили слухи, которые уже несколько месяцев окружали анализ первого набора собранных ими данных. Астрофизики говорят, что открытие гравитационных волн позволяет по-новому взглянуть на вселенную и дает возможность распознавать далекие события, которые невозможно увидеть в оптические телескопы, но можно почувствовать и даже услышать их слабое дрожание, доносящееся до нас через космос.

«Мы обнаружили гравитационные волны. Мы сделали это!» — объявил исполнительный директор научного коллектива из одной тысячи человек Дэвид Рейце (David Reitze), выступая сегодня на пресс-конференции в Вашингтоне в Национальном научном фонде.

Гравитационные волны — это, пожалуй, самое трудноуловимое явление из прогнозов Эйнштейна, на эту тему ученый дискутировал с современниками на протяжении десятилетий. Согласно его теории, пространство и время формируют растягивающуюся материю, которая искривляется под воздействием тяжелых объектов. Почувствовать гравитацию значит попасть в изгибы этой материи. Но может ли это пространство-время дрожать подобно шкуре барабана? Эйнштейн был в замешательстве, он не знал, что означают его уравнения. И неоднократно менял свою точку зрения. Но даже самые стойкие сторонники его теории полагали, что гравитационные волны в любом случае слишком слабы и не поддаются наблюдению. Они расходятся каскадом наружу после определенных катаклизмов, и по мере движения попеременно растягивают и сжимают пространство-время. Но к тому времени, как эти волны достигают Земли, они растягивают и сжимают каждый километр пространства на ничтожную долю диаметра атомного ядра.


© REUTERS, Hangout Детектор обсерватории LIGO в Ханфорде, штат Вашингтон

Чтобы засечь эти волны, понадобилось терпение и осторожность. Обсерватория LIGO запускала лазерные лучи туда и обратно вдоль расположенных под прямым углом четырехкилометровых колен двух детекторов, — один в Ханфорде, штат Вашингтон, а другой в Ливингстоне, штат Луизиана. Делалось это в поисках совпадающих расширений и сокращений этих систем при прохождении гравитационных волн. Используя самые современные стабилизаторы, вакуумные приборы и тысячи датчиков, ученые измеряли изменения в длине этих систем, составляющие всего одну тысячную от размера протона. Такая чувствительность приборов была немыслима сто лет тому назад. Невероятной она казалась и в 1968 году, когда Райнер Вайс (Rainer Weiss) из Массачусетского технологического института задумал эксперимент, получивший название LIGO.

«Это великое чудо, что в конечном итоге им все удалось. Они сумели засечь эти крохотные вибрации!» — сказал теоретический физик из Арканзасского университета Дэниел Кеннефик (Daniel Kennefick), написавший в 2007 году книгу Traveling at the Speed of Thought : Einstein and the Quest for Gravitational Waves (Путешествуя со скоростью мысли. Эйнштейн и поиски гравитационных волн).

Это открытие положило начало новой эре астрономии гравитационных волн. Есть надежда, что у нас появятся более точные представления о формировании, составе и галактической роли черных дыр — этих сверхплотных шаров массы, которые искажают пространство-время настолько резко, что оттуда не может выйти даже свет. Когда черные дыры сближаются друг с другом и сливаются, они порождают импульсный сигнал — пространственно-временные колебания, которые нарастают по амплитуде и тону, а затем резко заканчиваются. Те сигналы, которые может фиксировать обсерватория, находятся в звуковом диапазоне — правда, они слишком слабые , и невооруженным ухом их не услышать. Можно воссоздать этот звук, пробежав пальцами по клавишам фортепьяно. «Начинайте с самой низкой ноты и доходите до третьей октавы, — сказал Вайс. — Это то, что мы слышим».

Физики уже удивляются тому количеству и силе сигналов, которые зафиксированы на данный момент. Это значит, что в мире больше черных дыр, чем предполагалось ранее. «Нам повезло, но я всегда рассчитывал на такое везение, — сказал астрофизик Кип Торн (Kip Thorne), работающий в Калифорнийском технологическом институте и создавший LIGO совместно с Вайсом и Рональдом Дривером (Ronald Drever), которые тоже из Калтеха. — Обычно такое случается тогда, когда во вселенной открывается совершенно новое окно».

Подслушав гравитационные волны, мы можем сформировать совсем другие представления о космосе, а возможно, откроем невообразимые космические явления.

«Я могу сравнить это с моментом, когда мы впервые направили в небо телескоп, — сказала теоретический астрофизик Жанна Левин (Janna Levin) из Барнард-колледжа Колумбийского университета. — Люди поняли, что там что-то есть, и это можно увидеть, но они не могли предугадать тот невероятный набор возможностей, которые существуют во вселенной». Аналогичным образом, заметила Левин, открытие гравитационных волн может показать, что во вселенной «полно темной материи, которую мы не в состоянии просто так определить при помощи телескопа».

История открытия первой гравитационной волны началась в понедельник утром в сентябре, и началась она с хлопка. Сигнал был такой четкий и громкий, что Вайс подумал: «Нет, это ерунда, ничего из этого не выйдет».

Накал страстей

Эта первая гравитационная волна прокатилась по детекторам модернизированной LIGO — сначала в Ливингстоне, а спустя семь миллисекунд в Ханфорде — во время имитационного прогона рано утром 14 сентября, за два дня до официального начала сбора данных.

Детекторы проходили «обкатку» после модернизации, длившейся пять лет и стоившей 200 миллионов долларов. Их оснастили новыми зеркальными подвесками для шумоподавления и системой активной обратной связи для подавления посторонних колебаний в режиме реального времени. Модернизация дала усовершенствованной обсерватории более высокий уровень чувствительности по сравнению со старой LIGO, которая в период с 2002 по 2010 годы обнаружила «абсолютный и чистый ноль», как выразился Вайс.

Когда в сентябре пришел мощный сигнал, ученые в Европе, где в тот момент было утро, начали спешно засыпать своих американских коллег сообщениями по электронной почте. Когда проснулась остальная группа, новость распространилась очень быстро. По словам Вайса, практически все отнеслись к этому скептически, особенно когда увидели сигнал. Это была настоящая классика, как из учебника, и поэтому кое-кто подумал, что это подделка.

Ошибочные утверждения в процессе поиска гравитационных волн звучали многократно, начиная с конца 1960-х годов, когда Джозеф Вебер (Joseph Weber) из Мэрилендского университета посчитал, что он обнаружил резонансные колебания в алюминиевом цилиндре с датчиками в ответ на волны. В 2014 году состоялся эксперимент под названием BICEP2, по результатам которого было объявлено об обнаружении изначальных гравитационных волн — пространственно-временных колебаний от Большого взрыва, которые к настоящему времени растянулись и на постоянной основе застыли в геометрии вселенной. Ученые из группы BICEP2 объявили о своем открытии с большой помпой, но потом их результаты были подвергнуты независимой проверке, в ходе которой выяснилось, что они неправы, и что этот сигнал пришел от космической пыли.

Когда космолог из Университета штата Аризона Лоуренс Краусс (Lawrence Krauss) услышал об открытии команды LIGO, он сначала подумал, что это «слепой вброс». Во время работы старой обсерватории смоделированные сигналы тайком вставляли в потоки данных для проверки реакции, и большая часть коллектива об этом не знала. Когда Краусс от знающего источника узнал, что на сей раз это не «слепой вброс», он с трудом смог сдержать радостное возбуждение.

25 сентября он сообщил своим 200 тысячам подписчикам в Твиттере: «Слухи об обнаружении гравитационной волны на детекторе LIGO. Поразительно, если правда. Сообщу детали, если это не липа». Затем следует запись от 11 января: «Прежние слухи о LIGO подтверждены независимыми источниками. Следите за новостями. Возможно, открыты гравитационные волны!»

Официальная позиция ученых была такова: не распространяться о полученном сигнале, пока не будет стопроцентной уверенности. Торн, по рукам и ногам связанный этим обязательством хранить тайну, даже жене ничего не сказал. «Я отпраздновал в одиночку», — заявил он. Для начала ученые решили вернуться в самое начало и проанализировать все до мельчайших деталей, чтобы узнать, как распространялся сигнал через тысячи каналов измерения различных детекторов, и понять, не было ли чего-то странного в момент обнаружения сигнала. Они не нашли ничего необычного. Они также исключили хакеров, которые лучше всех должны были знать о тысячах потоков данных в ходе эксперимента. «Даже тогда, когда команда осуществляет слепые вбросы, они недостаточно совершенны, и оставляют после себя множество следов, — сказал Торн. — А здесь никаких следов не было».

В последующие недели они услышали еще один, более слабый сигнал.

Ученые анализировали первые два сигнала, а к ним поступали все новые. В январе они представили материалы своего исследования в журнале Physical Review Letters. Этот номер выходит в интернет-версии сегодня. По их оценкам, статистическая значимость первого, наиболее мощного сигнала превышает «5-sigma», а это значит, что исследователи на 99,9999% уверены в его подлинности.

Слушая гравитацию

Уравнения общей относительности Эйнштейна настолько сложны, что у большинства физиков ушло 40 лет на то, чтобы согласиться: да, гравитационные волны существуют, и их можно засечь — даже теоретически.

Сначала Эйнштейн думал, что объекты не могут выделять энергию в виде гравитационного излучения, но потом поменял свою точку зрения. В своей исторической работе, написанной в 1918 году, он показал, какие объекты могут это делать: гантелевидные системы, которые одновременно вращаются вокруг двух осей, например, двойные и сверхновые звезды, взрывающиеся подобно хлопушкам. Они-то и могут порождать волны в пространстве-времени.


© REUTERS, Handout Компьютерная модель, иллюстрирующая природу гравитационных волн в Солнечной системе

Но Эйнштейн и его коллеги продолжали колебаться. Некоторые физики утверждали, что даже если волны существуют, мир будет колебаться вместе с ними, и ощутить их будет невозможно. И лишь в 1957 году Ричард Фейнман (Richard Feynman) закрыл этот вопрос, продемонстрировав в ходе мысленного эксперимента, что если гравитационные волны существуют, теоретически их можно обнаружить. Но никто не знал, насколько распространены эти гантелевидные системы в космическом пространстве, и насколько сильны или слабы возникающие в результате волны. «В конечном итоге, вопрос звучал так: сможем ли мы когда-нибудь их обнаружить?» — сказал Кеннефик.

В 1968 году Райнер Вайс был молодым преподавателем Массачусетского технологического института, и ему поручили вести курс общей теории относительности. Будучи экспериментатором, он мало что знал о ней, но вдруг появились новости об открытии Вебером гравитационных волн. Вебер построил из алюминия три резонансных детектора размером с письменный стол и разместил их в разных американских штатах. Теперь он сообщил, что во всех трех детекторах зафиксировано «звучание гравитационных волн».

Ученики Вайса попросили объяснить природу гравитационных волн и высказать свое мнение о прозвучавшем сообщении. Изучая детали, он был поражен сложностью математических расчетов. «Я не мог понять, какого черта делает Вебер, как датчики взаимодействуют с гравитационной волной. Я подолгу сидел и спрашивал себя: „Какую я могу придумать самую примитивную вещь, чтобы она обнаруживала гравитационные волны?“ И тут мне в голову пришла идея, которую я называю концептуальной основой LIGO».

Представьте себе три предмета в пространстве-времени, скажем, зеркала в углах треугольника. «Посылайте световой сигнал от одного к другому, — рассказывал Вебер. — Смотрите, сколько времени уходит на переход от одной массы к другой, и проверяйте, изменилось ли время». Оказывается, отметил ученый, это можно сделать быстро. «Я поручил это своим студентам в качестве научного задания. Буквально вся группа смогла сделать эти расчеты».

В последующие годы, когда другие исследователи пытались повторить результаты эксперимента Вебера с резонансным детектором, но постоянно терпели неудачу (непонятно, что наблюдал он, но это были не гравитационные волны), Вайс начал готовить гораздо более точный и амбициозный эксперимент: гравитационно-волновой интерферометр. Лазерный луч отражается от трех зеркал, установленных в форме буквы «Г» и формирует два луча. Интервал пиков и провалов световых волн точно указывает длину колен буквы «Г», которые создают оси Х и Y пространства-времени. Когда шкала неподвижна, две световые волны отражаются от углов и гасят друг друга. Сигнал в детекторе получается нулевой. Но если через Землю проходит гравитационная волна, она растягивает длину одного плеча буквы «Г» и сжимает длину другого (и наоборот поочередно). Несовпадение двух световых лучей создает сигнал в детекторе, показывая легкие колебания пространства-времени.

Сначала коллеги-физики проявляли скептицизм, но вскоре эксперимент обрел поддержку в лице Торна, чья группа теоретиков из Калтеха исследовала черные дыры и прочие потенциальные источники гравитационных волн, а также порождаемые ими сигналы. Торна вдохновил эксперимент Вебера и аналогичные усилия российских ученых. Поговорив в 1975 году на конференции с Вайсом, «я начал верить, что обнаружение гравитационных волн пройдет успешно», сказал Торн. «И я хотел, чтобы Калтех в этом тоже участвовал». Он договорился с институтом, чтобы тот взял на работу шотландского экспериментатора Рональда Дривера, который также заявлял, что построит гравитационно-волновой интерферометр. Со временем Торн, Дривер и Вайс начали работать как одна команда, и каждый из них решал свою долю бесчисленных задач в рамках подготовки практического эксперимента. Это трио в 1984 году создало LIGO, а когда были построены опытные образцы и началось сотрудничество в рамках постоянно увеличивавшегося коллектива, они в начале 1990-х получили от Национального научного фонда финансирование в размере 100 миллионов долларов. Были составлены чертежи для строительства пары гигантских детекторов Г-образной формы. Спустя десятилетие детекторы заработали.

В Ханфорде и Ливингстоне в центре каждого из четырехкилометровых колен детекторов находится вакуум, благодаря которому лазер, его пучок и зеркала максимально изолированы от постоянных колебаний планеты. Чтобы еще больше застраховаться, ученые LIGO следят за своими детекторами во время их работы при помощи тысяч приборов, измеряя все что можно: сейсмическую активность, атмосферное давление, молнии, появление космических лучей, вибрацию оборудования, звуки в районе лазерного луча и так далее. Затем они отфильтровывают свои данные от этих посторонних фоновых шумов. Пожалуй, главное в том, что у них два детектора, а это позволяет сличать полученные данные, проверяя их на наличие совпадающих сигналов.

Контекст

Гравитационные волны: завершено то, что Эйнштейн начал в Берне

SwissInfo 13.02.2016

Как умирают черные дыры

Medium 19.10.2014
Внутри создаваемого вакуума, даже в условиях полной изоляции и стабилизации лазеров и зеркал «все время происходят странные вещи», говорит заместитель пресс-секретаря проекта LIGO Марко Кавалья (Marco Cavaglià). Ученые должны отслеживать этих «золотых рыбок», «призраков», «непонятных морских монстров» и прочие посторонние вибрационные явления, выясняя их источник, чтобы устранить его. Один трудный случай произошел на проверочном этапе, рассказала научный исследователь из коллектива LIGO Джессика Макайвер (Jessica McIver), исследующая такие посторонние сигналы и помехи. Среди данных часто появлялась череда периодических одночастотных шумов. Когда она вместе с коллегами преобразовала вибрации зеркал в аудиофайлы, «стал отчетливо слышен звонок телефона», сказала Макайвер. «Оказалось, что это рекламщики связи звонили по телефону внутри лазерного помещения».

В предстоящие два года ученые продолжат совершенствовать чувствительность детекторов модернизированной Лазерной интерферометрической гравитационно-волновой обсерватории LIGO. А в Италии начнет работать третий интерферометр под названием Advanced Virgo. Один из ответов, который помогут дать полученные данные, это как формируются черные дыры. Являются ли они продуктом схлопывания самых ранних массивных звезд, или они появляются в результате столкновений внутри плотных звездных кластеров? «Это только два предположения, я полагаю, их будет больше, когда все успокоятся», — говорит Вайс. Когда в ходе предстоящей работы LIGO начнет накапливать новые статистические данные, ученые начнут слушать истории о происхождении черных дыр, которые им будет нашептывать космос.

Судя по форме и размеру, первый, самый громкий импульсный сигнал возник в 1,3 миллиарда световых лет от того места, где после длившегося вечность медленного танца под влиянием взаимного гравитационного притяжения наконец слились две черные дыры, каждая примерно в 30 раз больше солнечной массы. Черные дыры кружили все быстрее и быстрее, подобно водовороту, постепенно сближаясь. Потом произошло слияние, и они в мгновение ока выпустили гравитационные волны с энергией, сопоставимой энергии трех Солнц. Это слияние стало самым мощным энергетическим явлением из когда-либо зафиксированных.

«Как будто мы никогда не видели океан во время шторма», — сказал Торн. Он ждал этого шторма в пространстве-времени с 1960-х годов. То чувство, которое Торн испытал в момент, когда накатили эти волны, нельзя назвать волнением, говорит он. Это было нечто иное: чувство глубочайшего удовлетворения.

Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.

Напомним, на днях ученые LIGO объявили о крупном прорыве в области физики, астрофизики и нашего изучения Вселенной: открытие гравитационных волн, предсказанных еще Альбертом Эйнштейном 100 лет назад. Ресурсу Gizmodo удалось найти доктора Эмбер Ставер из обсерватории Ливингстона в Луизиане, коллаборации LIGO, и подробно расспросить о том, что это значит для физики. Понимаем, что за несколько статей к глобальному пониманию нового способа постигать наш мир прийти будет сложновато, но будем стараться.

Была проведена огромная работа по обнаружению одной-единственной гравитационной волны к настоящему времени, и это стало крупным прорывом. Похоже, открывается масса новых возможностей для астрономии - но является ли это первое обнаружение «простым» доказательством того, что обнаружение возможно само по себе, или вы уже можете извлекать из него дальнейшие научные достижения? Что вы надеетесь получить от этого в будущем? Появятся ли методы обнаружения этих волн попроще в будущем?

Это действительно первое обнаружение, прорыв, но целью всегда было использовать гравитационные волны, чтобы делать новую астрономию. Вместо того чтобы искать во Вселенной видимый свет, теперь мы можем чувствовать едва заметные изменения в гравитации, которые вызываются крупнейшими, сильнейшими и (на мой взгляд) наиболее интересными вещами во Вселенной - включая и те, информацию о которых мы никогда не смогли бы получить с помощью света.

Мы смогли применить этот новый тип астрономии к волнам первого обнаружения. Используя то, что мы уже знаем об ОТО (общей теории относительности), мы смогли предсказать, на что похожи гравитационные волны объектов вроде черных дыр или нейтронных звезд. Сигнал, который мы обнаружили, соответствует предсказанному для пары черных дыр, одна из которых в 36, а другая в 29 раз массивнее Солнца, закручивающихся по мере приближения друг к другу. Наконец, они сливаются в одну черную дыру. Так что это не только первое обнаружение гравитационных волн, но и первое прямое наблюдение черных дыр, ведь их нельзя наблюдать с помощью света (только по веществу, которое вращается вокруг них).

Почему вы уверены, что посторонние эффекты (вроде вибрации) не влияют на результаты?

В LIGO мы записываем гораздо больше данных, связанных с нашей окружающей средой и оборудованием, чем данных, которые могут содержать гравитационно-волновой сигнал. Причина этого в том, что мы хотим быть максимально уверены в том, что нас не водят за нос посторонние эффекты и не вводят в заблуждение относительно обнаружения гравитационной волны. Если в момент обнаружения сигнала гравитационной волны мы почувствуем ненормальную почву, скорее всего, мы откажемся от этого кандидата.

Видео: Вкратце о гравитационных волнах

Другая мера, которую мы предпринимаем, чтобы не увидеть что-то случайное, заключается в том, что оба детектора LIGO должны увидеть один и тот же сигнал с промежутком времени, которое необходимо для перемещения гравитационной волны между двумя объектами. Максимальное время для такого путешествия - примерно 10 миллисекунд. Чтобы убедиться в возможном обнаружении, мы должны увидеть сигналы одной формы, почти в одно время, и данные, которые мы собираем о нашей окружающей среде, должны быть лишены аномалий.

Есть много других тестов, которые проходит кандидат, но это основные.

Существует ли практический способ генерировать гравитационные волны, которые могут быть обнаружены с помощью подобных устройств? Сможем ли мы построить гравитационное радио или лазер?

Вы предлагаете то же, что Генрих Герц сделал в конце 1880-х для обнаружения электромагнитных волн в форме радиоволн. Но гравитация - самая слабая из фундаментальных сил, которые удерживают Вселенную вместе. По этой причине, движение масс в лаборатории или на другом объекте с целью создания гравитационных волн будет слишком слабым, чтобы его мог уловить даже такой детектор, как LIGO. Чтобы создать достаточно сильные волны, нам придется раскрутить гантель с такой скоростью, что она разорвет любой известный материал. Но во Вселенной много крупных объемов массы, которая движется чрезвычайно быстро, поэтому мы строим детекторы, которые будут заниматься их поиском.

Изменит ли это подтверждение наше будущее? Сможем ли мы использовать силу этих волн для исследования космического пространства? Будет ли возможность общаться с помощью этих волн?

Из-за количества массы, которая должна двигаться с чрезвычайной скоростью, чтобы производить гравитационные волны, которые способны обнаружить детекторы вроде LIGO, единственным известным механизмом этого являются пары нейтронных звезд или черных дыр, вращающихся перед слиянием (могут быть и другие источники). Шансы того, что это некая продвинутая цивилизация манипулирует веществом, чрезвычайно малы. Лично я не думаю, что будет прекрасно обнаружить цивилизацию, способную использовать гравитационные волны как средство общения, поскольку она сможет играючи прикончить нас.

Когерентны ли гравитационные волны? Можно ли сделать их когерентными? Можно ли сфокусировать их? Что будет с массивным объектом, на который воздействует сфокусированный пучок гравитации? Можно ли использовать этот эффект для улучшения ускорителей частиц?

Некоторые виды гравитационных волн могут быть когерентны. Представим нейтронную звезду, которая почти идеально сферическая. Если она вращается быстро, небольшие деформации менее дюйма будут производить гравитационные волны определенной частоты, что будет делать их когерентными. Но сфокусировать гравитационные волны весьма трудно, поскольку Вселенная прозрачна для них; гравитационные волны проходят через материю и выходят неизменными. Вам нужно изменить путь по меньшей мере части гравитационных волн, чтобы их сфокусировать. Возможно, экзотическая форма гравитационного линзирования сможет хотя бы частично сфокусировать гравитационные волны, но будет сложно, если вообще возможно, их использовать. Если их можно будет сфокусировать, они по-прежнему будут настолько слабыми, что я не представляю никакого практического применения оных. Но также говорили и о лазерах, которые по сути просто сфокусированный когерентный свет, так что кто его знает.

Какова скорость гравитационной волны? Есть ли у нее масса? Если нет, может ли она двигаться быстрее скорости света?

Гравитационные волны, как полагают, движутся со скоростью света. Это скорость, ограниченная общей теорией относительности. Но эксперименты вроде LIGO должны это проверить. Возможно, они движутся чуть медленнее скорости света. Если так, то теоретическая частица, которую ассоциируют с гравитацией, гравитон, будет обладать массой. Поскольку гравитация сама по себе действует между массами, это добавит теории сложности. Но не невозможности. Мы используем бритву Оккама: простейшее объяснение, как правило, является самым верным.

Как далеко нужно быть от слияния черных дыр, чтобы суметь о них рассказать?

В случае с нашими бинарными черными дырами, которые мы обнаружили по гравитационным волнам, они произвели максимальное изменение длины наших 4-километровых рукавов на 1х10 -18 метра (это 1/1000 диаметра протона). Мы также считаем, что эти черные дыры в 1,3 миллиарда световых лет от Земли.

Теперь предположим, что наш рост два метра и мы плаваем на расстоянии Земли до Солнца от черной дыры. Думаю, вы испытали бы попеременное сплющивание и растяжение примерно на 165 нанометров (ваш рост изменяется на большее значение в течение суток). Это можно пережить.

Если использовать новый способ услышать космос, что больше всего интересует ученых?

Потенциал до конца неизвестен, в том смысле, что может быть куда больше мест, чем мы думали. Чем больше мы узнаем о Вселенной, тем лучше мы сможем отвечать на ее вопросы при помощи гравитационных волн. К примеру, на эти:

  • Что является причиной гамма-всплесков?
  • Как вещество ведет себя в экстремальных условиях коллапсирующей звезды?
  • Какими были первые мгновения после Большого Взрыва?
  • Как ведет себя вещество в нейтронных звездах?

Но мне больше интересно, что из неожиданного можно обнаружить с помощью гравитационных волн. Каждый раз, когда люди наблюдали Вселенную по-новому, мы открывали много неожиданных вещей, которые переворачивали наше представление о Вселенной. Я хочу найти эти гравитационные волны и обнаружить что-то, о чем мы понятия не имели раньше.

Поможет ли это нам сделать настоящий варп-двигатель?

Поскольку гравитационные волны слабо взаимодействуют с веществом, их вряд ли можно использовать для движения этого вещества. Но даже если бы вы могли, гравитационная волна движется всего лишь со скоростью света. Для варп-двигателя они не подойдут. Хотя было бы круто.

Как насчет антигравитационных устройств?

Чтобы создать антигравитационное устройство, нам нужно превратить силу притяжения в силу отталкивания. И хотя гравитационная волна распространяет изменения гравитации, это изменение никогда не будет отталкивающим (или отрицательным).

Гравитация всегда притягивает, поскольку отрицательной массы, похоже, не существует. В конце концов, существует положительный и отрицательный заряд, северный и южный магнитный полюс, но только положительная масса. Почему? Если бы отрицательная масса существовала, шар вещества падал бы вверх, а не вниз. Он бы отталкивался от положительной массы Земли.

Что это означает для возможности путешествий во времени и телепортации? Можем ли мы найти практическое применение этому явлению, кроме изучения нашей Вселенной?

Сейчас лучший способ путешествия во времени (и только в будущее) - это путешествовать с околосветовой скоростью (вспомним парадокс близнецов в ОТО) либо отправиться в область с повышенной гравитацией (такого рода путешествие во времени было продемонстрировано в «Интерстелларе»). Поскольку гравитационная волна распространяет изменения в гравитации, будут рождаться и очень малые флуктуации в скорости времени, но поскольку гравитационные волны по сути слабые, слабые также и временные флуктуации. И хотя я не думаю, что можно применить это к путешествиям во времени (или телепортации), никогда не говори никогда (спорю, у вас перехватило дыхание).

Настанет ли день, когда мы перестанем подтверждать Эйнштейна и снова начнем поиски странных вещей?

Конечно! Поскольку гравитация самая слабая из сил, с ней также трудно экспериментировать. До сих пор каждый раз, когда ученые подвергали ОТО проверке, они получали точно спрогнозированные результаты. Даже обнаружение гравитационных волн в очередной раз подтвердило теорию Эйнштейна. Но я полагаю, когда мы начнем проверять мельчайшие детали теории (может, с гравитационными волнами, может, с другим), мы будем находить «забавные» вещи, вроде не совсем точного совпадения результата эксперимента с прогнозом. Это не будет означать ошибочность ОТО, лишь необходимость уточнения ее деталей.

Видео: Как гравитационные волны взорвали интернет?

Каждый раз, когда мы отвечаем на один вопрос о природе, появляются новые. В конце концов, у нас появятся вопросы, которые будет круче, чем ответы, которые может позволить ОТО.

Можете ли вы объяснить, как это открытие может быть связано или повлияет на теорию единого поля? Мы оказались ближе к ее подтверждению или же развенчанию?

Сейчас результаты сделанного нами открытия в основном посвящают проверке и подтверждению ОТО. Единая теория поля ищет способ создать теорию, которая объяснит физику очень малого (квантовая механика) и очень большого (общая теория относительности). Сейчас эти две теории можно обобщить, чтобы объяснить масштабы мира, в котором мы живем, но не более. Поскольку наше открытие сосредоточено на физике очень большого, само по себе оно мало продвинет нас в направлении единой теории. Но вопрос не в этом. Сейчас только-только родилась область гравитационно-волновой физики. Когда мы узнаем больше, мы обязательно расширим наши результаты и в области единой теории. Но перед пробежкой нужно пройтись.

Теперь, когда мы слушаем гравитационные волны, что должны услышать ученые, чтобы буквально выс*ать кирпич? 1) Неестественные паттерны/структуры? 2) Источники гравитационных волн из регионов, которые мы считали пустыми? 3) Rick Astley - Never gonna give you up?

Когда я прочитала ваш вопрос, я сразу вспомнила сцену из «Контакта», в которой радиотелескоп улавливает паттерны простых чисел. Вряд ли такое можно встретить в природе (насколько нам известно). Так что ваш вариант с неестественным паттерном или структурой был бы наиболее вероятен.

Не думаю, что мы когда-то будем уверены в пустоте в определенном регионе космоса. В конце концов, система черных дыр, которую мы обнаружили, была изолирована, и из этого региона не приходил никакой свет, но мы все равно обнаружили там гравитационные волны.

Что касается музыки… Я специализируюсь на отделении сигналов гравитационных волн от статического шума, который мы постоянно измеряем на фоне окружающей среды. Если бы я нашла в гравитационной волне музыку, особенно которую слышала раньше, это был бы розыгрыш. Но музыка, которую на Земле никогда не слышали… Это было бы как с простыми случаями из «Контакта».

Раз эксперимент регистрирует волны по изменению расстояния между двумя объектами, амплитуда одного направления больше, чем другого? В противном случае не означают ли считываемые данные, что Вселенная меняется в размерах? И если так, подтверждает ли это расширение или что-нибудь неожиданное?

Нам нужно увидеть множество гравитационных волн, приходящих из множества разных направлений во Вселенной, прежде чем мы сможем ответить на этот вопрос. В астрономии это создает модель популяции. Как много различных типов вещей существует? Это главный вопрос. Как только мы заимеем много наблюдений и начнем видеть неожиданные паттерны, к примеру, что гравитационные волны определенного типа приходят из определенной части Вселенной и больше ниоткуда, это будет крайне интересный результат. Некоторые паттерны могли бы подтвердить расширение (в котором мы весьма уверены), либо другие явления, о которых мы пока не знали. Но сначала нужно увидеть много больше гравитационных волн.

Мне совершенно непонятно, как ученые определили, что измеренные ими волны принадлежат двум сверхмассивным черным дырам. Как можно с такой точностью определить источник волн?

Методы анализа данных используют каталог предсказанных сигналов гравитационных волн для сравнения с нашими данными. Если имеется сильная корреляция с одним из таких прогнозов, или шаблонов, то мы не только знаем, что это гравитационная волна, но и знаем, какая система ее образовала.

Каждый отдельный способ создания гравитационной волны, будь то слияние черных дыр, вращение или смерть звезд, все волны имеют разные формы. Когда мы обнаруживаем гравитационную волну, мы используем эти формы, как предсказывала ОТО, чтобы определить их причину.

Откуда мы знаем, что эти волны произошли из столкновения двух черных дыр, а не какого-нибудь другого события? Возможно ли предсказать, где или когда произошло такое событие, с любой степенью точности?

Как только мы узнаем, какая система произвела гравитационную волну, мы можем предсказать, насколько сильной была гравитационная волна вблизи от места своего рождения. Измеряя ее силу по мере достижения Земли и сравнивая наши измерения с предсказанной силой источника, мы можем рассчитать, как далеко находится источник. Поскольку гравитационные волны движутся со скоростью света, мы также можем рассчитать, как долго гравитационные волны двигались к Земле.

В случае с обнаруженной нами системой черных дыр, мы измерили максимальное изменение длины рукавов LIGO на 1/1000 диаметра протона. Эта система расположена в 1,3 миллиарда световых лет. Гравитационная волна, обнаруженная в сентябре и анонсированная на днях, двигалась к нам 1,3 миллиарда лет. Это произошло до того, как на Земле образовалась животная жизнь, но уже после возникновения многоклеточных.

Во время объявления было заявлено, что другие детекторы будут искать волны с более длинным периодом - некоторые из них будут вовсе космическими. Что вы можете рассказать об этих крупных детекторах?

В разработке действительно находится космический детектор. Он называется LISA (Laser Interferometer Space Antenna). Поскольку он будет в космосе, он будет достаточно чувствительным к низкочастотным гравитационным волнам, в отличие от земных детекторов, вследствие естественных вибраций Земли. Будет сложно, поскольку спутники придется разместить дальше от Земли, чем бывал человек. Если что-то пойдет не так, мы не сможем отправить астронавтов на ремонт, как с Хабблом в 1990-х. Чтобы проверить необходимые технологии, в декабре запустили миссию LISA Pathfinder. Пока что она справилась со всеми поставленными задачами, но миссия еще далека от завершения.

Можно ли преобразовать гравитационные волны в звуковые? И если да, на что они будут похожи?

Можно. Конечно, вы не услышите просто гравитационную волну. Но если взять сигнал и пропустить через динамики, то услышать можно.

Что нам делать с этой информацией? Излучают ли эти волны другие астрономические объекты с существенной массой? Можно ли использовать волны для поиска планет или простых черных дыр?

При поиске гравитационных значений имеет значение не только масса. Также ускорение, которое присуще объекту. Обнаруженные нами черные дыры вращались друг вокруг друга со скоростью в 60% световой, когда сливались. Поэтому мы смогли обнаружить их во время слияния. Но теперь от них больше не поступает гравитационных волн, поскольку они слились в одну малоподвижную массу.

Так что все, что обладает большой массой и движется очень быстро, создает гравитационные волны, которые можно уловить.

Экзопланеты вряд ли будут обладать достаточной массой или ускорением, чтобы создать обнаружимые гравитационные волны. (Я не говорю, что они их не создают вообще, только то, что они будут недостаточно сильными или с другой частотой). Даже если экзопланета будет достаточно массивной, чтобы производить нужные волны, ускорение разорвет ее на части. Не забывайте, что самые массивные планеты, как правило, представляют собой газовых гигантов.

Насколько верна аналогия волн в воде? Можем ли мы «оседлать» эти волны? Существуют ли гравитационные «пики», как уже известные «колодцы»?

Поскольку гравитационные волны могут двигаться через вещество, нет никакого способа оседлать их или использовать их для движения. Так что никакого гравитационно-волнового серфинга.

«Пики» и «колодцы» - это прекрасно. Гравитация всегда притягивает, поскольку не существует отрицательной массы. Мы не знаем почему, но ее никогда не наблюдали в лаборатории или во Вселенной. Поэтому гравитацию обычно представляют в виде «колодца». Масса, которая движется вдоль этого «колодца», будет сваливаться вглубь; так работает притяжение. Если у вас будет отрицательная масса, то вы получите отталкивание, а вместе с ним и «пик». Масса, которая движется на «пике», будет изгибаться от него. Так что «колодцы» существуют, а «пики» нет.

Аналогия с водой прекрасна, пока мы говорим о том, что сила волны уменьшается вместе с пройденным расстоянием от источника. Водяная волна будет становиться меньше и меньше, а гравитационная волна - слабее и слабее.

Как это открытие повлияет на наше описание инфляционного периода Большого Взрыва?

На данный момент это открытие пока практически никак не затрагивает инфляцию. Чтобы делать заявления вроде этого, необходимо наблюдать реликтовые гравитационные волны Большого Взрыва. Проект BICEP2 полагал, что косвенно наблюдал эти гравитационные волны, но оказалось, что виной всему космическая пыль. Если он получит нужные данные, вместе с ними подтвердится и существование короткого периода инфляции вскоре после Большого Взрыва.

LIGO сможет непосредственно увидеть эти гравитационные волны (это также будет самый слабый тип гравитационных волн, который мы надеемся обнаружить). Если мы их увидим, то сможем заглянуть глубоко в прошлое Вселенной, как не заглядывали раньше, и по полученным данным судить об инфляции.

Что значит для нас обнаружение гравитационных волн.

Думаю, все уже в курсе, что пару дней назад учёные впервые объявили об обнаружении гравитационных волн. Про это было много новостей, по ТВ, на новостных сайтах и вообще везде. Однако при этом никто не затруднился объяснить доступным языком, что дает нам это открытие в практическом плане.

На самом деле, всё просто, достаточно провести аналогию с подводной лодкой:

Источник:

Обнаружение подводных лодок - является первой и главной задачей при борьбе с ними. Как и всякий предмет, лодка своим присутствием влияет на окружающую среду. Иными словами, лодка имеет собственные физические поля. К более известным физическим полям подводной лодки относятся гидроакустическое, магнитное, гидродинамическое, электрическое, низкочастотное электромагнитное, а также тепловое, оптическое. Выделение физических полей лодки на фоне полей океана (моря) лежит в основе главных способов обнаружения.
Способы обнаружения подводных лодок разделяются по типу физических полей: Акустический, Магнитометрический, Радиолокационный, Газовый, Тепловой и.т.д.

С космосом та же фигня. Мы смотрим на звезды через телескопы, делаем фотографии Марса, ловим излучения и вообще пытаемся познать небеса всеми доступными способами. А теперь, после того как зафиксированы эти волны, добавился и ещё один способ изучения - гравитационный. Мы сможем осмотреть космос основываясь на этих колебаниях.

То есть, как подводная лодка прошла в морском пространстве, и оставила за собой "след", по которому её могут вычислить, точно так же и небесные тела, теперь могут изучаться под другим углом для более полной картины. В будущем, мы сможем посмотреть как гравитационные волны огибают разные светила, галактики, планеты, научимся ещё лучше вычислять космические траектории объектов (А может даже и заранее узнавать и прогнозировать приближения метеоритов) увидим поведение волн в особых условиях, ну и всякое такое.

Что это даст?

Пока не ясно. Но со временем, аппаратура станет более точной и чувствительной, и о гравитационных волнах наберётся богатый материал. Основываясь на этих материалах пытливые умы начнут находить разного рода аномалии, загадки и закономерности. Эти закономерности и аномалии, в свою очередь, будут служить либо опровержением, либо подтверждением старых теорий. Будут создаваться дополнительные математические формулы, интересные гипотезы (Британские учёные выяснили, что голуби находят дорогу домой ориентируясь по гравитационным волнам!) и многое подобное. А жёлтая пресса, обязательно запустит какой-нибудь миф, типа "Гравитационное цунами", которое однажды нагрянет, накроет нашу солнечную систему и всему живому придет кидык. И Вангу приплетут ещё. Короче, весело будет:]

И что в итоге?

В итоге, мы получим более совершенную область науки, которая сможет давать более точное и широкое представление о нашем мире. А если повезёт и учёным попадётся какой-нибудь удивительный эффект... (Типа, если две гравитационные волны в полнолуние "врезаются" друг в друга под определённым углом с нужной скоростью, то случается локальный очаг антигравитации, о-па!)... то мы сможем надеяться на серьёзный научный прогресс.

«Не так давно сильный интерес научной общественности вызвала серия долгосрочных экспериментов по непосредственному наблюдению гравитационных волн, — писал специалист в области теоретической физики Митио Каку в книге «Космос Эйнштейна» в 2004 году. — Проект LIGO («Лазерный интерферометр для наблюдения гравитационных волн»), возможно, окажется первым, в ходе которого удастся «увидеть» гравитационные волны, скорее всего, от столкновения двух черных дыр в дальнем космосе. LIGO — сбывшаяся мечта физика, первая установка достаточной мощности для измерения гравитационных волн».

Предсказание Каку сбылось: в четверг группа международных ученых из обсерватории LIGO объявила об открытии гравитационных волн.

Гравитационные волны — это колебания пространства-времени, которые «убегают» от массивных объектов (например, черных дыр), движущихся с ускорением. Иными словами, гравитационные волны — это распространяющееся возмущение пространства-времени, бегущая деформация абсолютной пустоты.

Черная дыра — это область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть ее не могут даже объекты, движущиеся со скоростью света (и сам свет в том числе). Граница, отделяющая черную дыру от всего остального мира, называется горизонтом событий: все, что происходит внутри горизонта событий, скрыто от глаз внешнего наблюдателя.

Erin Ryan Снимок торта, выложенный в сеть Эрин Райан.

Ловить гравитационные волны ученые начали еще полвека назад: именно тогда американский физик Джозеф Вебер увлекся общей теорией относительности Эйнштейна (ОТО), взял творческий отпуск и стал изучать гравитационные волны. Вебер изобрел первое приспособление, детектирующее гравитационные волны, и вскоре заявил, что зафиксировал «звучание гравитационных волн». Впрочем, научное сообщество опровергло его сообщение.

Однако именно благодаря Джозефу Веберу множество ученых превратилось в «охотников за волнами». Сегодня Вебер считается отцом научного направления гравитационно-волновой астрономии.

«Это — начало новой эры гравитационной астрономии»

Обсерватория LIGO, в которой ученые зафиксировали гравитационные волны, состоит из трех лазерных установок в США: две находятся в штате Вашингтон и одна — в штате Луизиана. Вот как описывает работу лазерных детекторов Митио Каку: «Лазерный луч расщепляется на два отдельных луча, которые далее идут перпендикулярно друг другу. Затем, отразившись от зеркала, они вновь соединяются. Если через интерферометр (измерительный прибор) пройдет гравитационная волна, длины путей двух лазерных лучей претерпят возмущение и это отразится в их интерференционной картине. Чтобы убедиться в том, что сигнал, зарегистрированный лазерной установкой, не случаен, детекторы следует разместить в разных точках Земли.

Только под действием гигантской гравитационной волны, намного превышающей по размеру нашу планету, все детекторы сработают одновременно».

Сейчас коллаборация LIGO зафиксировала гравитационное излучение, вызванное слиянием двойной системы черных дыр с массами 36 и 29 солнечных масс в объект массой 62 массы Солнца. «Это первое прямое (очень важно, что это прямое!) измерение действия гравитационных волн, — дал комментарий корреспонденту отдела науки «Газеты.Ru» профессор физического факультета МГУ Сергей Вятчанин. — То есть принят сигнал от астрофизической катастрофы слияния двух черных дыр. И этот сигнал идентифицирован — это тоже очень важно! Понятно, что это от двух черных дыр. И это есть начало новой эры гравитационной астрономии, которая позволит получать информацию о Вселенной не только через оптические, рентгеновские, электромагнитные и нейтринные источники — но еще и через гравитационные волны.

Можно сказать, что процентов на 90 черные дыры перестали быть гипотетическими объектами. Некоторая доля сомнения остается, но все-таки сигнал, который пойман, уж больно хорошо ложится на то, что предсказывают бесчисленные моделирования слияния двух черных дыр в соответствии с общей теорией относительности.

Это является сильным доводом того, что черные дыры существуют. Другого объяснения такому сигналу пока нет. Поэтому принимается, что черные дыры существуют».

«Эйнштейн был бы очень счастлив»

Гравитационные волны в рамках своей общей теории относительности предсказал Альберт Эйнштейн (который, кстати, скептически относился к существованию черных дыр). В ОТО к трем пространственным измерениям добавляется время, и мир становится четырехмерным. Согласно теории, перевернувшей с ног на голову всю физику, гравитация — это следствие искривления пространства-времени под воздействием массы.

Эйнштейн доказал, что любая материя, движущаяся с ускорением, создает возмущение пространства-времени — гравитационную волну. Это возмущение тем больше, чем выше ускорение и масса объекта.

Из-за слабости гравитационных сил по сравнению с другими фундаментальными взаимодействиями эти волны должны иметь весьма малую величину, с трудом поддающуюся регистрации.

Объясняя ОТО гуманитариям, физики часто просят их представить натянутый лист резины, на который опускают массивные шарики. Шарики продавливают резину, и натянутый лист (который олицетворяет пространство-время) деформируется. Согласно ОТО, вся Вселенная — это резина, на которой каждая планета, каждая звезда и каждая галактика оставляют вмятины. Наша Земля вращается вокруг Солнца словно маленький шарик, пущенный кататься вокруг конуса воронки, образованной в результате «продавливания» пространства-времени тяжелым шаром.

HANDOUT/Reuters

Тяжелый шар — это и есть Солнце

Вполне вероятно, что открытие гравитационных волн, являющееся главным подтверждением теории Эйнштейна, претендует на Нобелевскую премию по физике. «Эйнштейн был бы очень счастлив», — сказала Габриэлла Гонсалез, представитель коллаборации LIGO.

По словам ученых, пока рано говорить о практической применимости открытия. «Хотя разве Генрих Герц (немецкий физик, доказавший существование электромагнитных волн. — «Газета.Ru») мог подумать, что будет мобильный телефон? Нет! Мы сейчас ничего не можем представить, — рассказал Валерий Митрофанов, профессор физического факультета МГУ им. М.В. Ломоносова. — Я ориентируюсь на фильм «Интерстеллар». Его критикуют, да, но вообразить ковер-самолет мог даже дикий человек. И ковер-самолет реализовался в самолет, и все. А здесь уже нужно представить что-то очень сложное. В «Интерстелларе» один из моментов связан с тем, что человек может путешествовать из одного мира в другой. Если так представить, то верите ли вы, что человек может путешествовать из одного мира в другой, что может быть много вселенных — все, что угодно? Я не могу ответить «нет». Потому что физик не может ответить на такой вопрос «нет»! Только если это противоречит каким-то законам сохранения! Есть варианты, которые не противоречат известным физическим законам. Значит, путешествия по мирам могут быть!»

Спустя сто лет после теоретического предсказания, которое в рамках общей теории относительности сделал Альберт Эйнштейн, ученым удалось подтвердить существование гравитационных волн. Начинается эра принципиально нового метода изучения далекого космоса — гравитационно-волновой астрономии.

Открытия бывают разные. Бывают случайные, в астрономии они встречаются часто. Бывают не совсем случайные, сделанные в результате тщательного «прочесывания местности», как, например, открытие Урана Вильямом Гершелем. Бывают серендипические — когда искали одно, а нашли другое: так, например, открыли Америку. Но особое место в науке занимают запланированные открытия. Они основаны на четком теоретическом предсказании. Предсказанное ищут в первую очередь для того, чтобы подтвердить теорию. Именно к таким открытиям относятся обнаружение бозона Хиггса на Большом адронном коллайдере и регистрация гравитационных волн с помощью лазерно-интерферометрической гравитационно-волновой обсерватории LIGO. Но для того чтобы зарегистрировать какое-то предсказанное теорией явление, нужно довольно неплохо понимать, что именно и где искать, а также какие инструменты необходимы для этого.

Гравитационные волны традиционно называют предсказанием общей теории относительности (ОТО), и это в самом деле так (хотя сейчас такие волны есть во всех моделях, альтернативных ОТО или же дополняющих ее). К появлению волн приводит конечность скорости распространения гравитационного взаимодействия (в ОТО эта скорость в точности равна скорости света). Такие волны — возмущения пространства-времени, распространяющиеся от источника. Для возникновения гравитационных волн необходимо, чтобы источник пульсировал или ускоренно двигался, но определенным образом. Скажем, движения с идеальной сферической или цилиндрической симметрией не подходят. Таких источников достаточно много, но часто у них маленькая масса, недостаточная для того, чтобы породить мощный сигнал. Ведь гравитация — самое слабое из четырех фундаментальных взаимодействий, поэтому зарегистрировать гравитационный сигнал очень трудно. Кроме того, для регистрации нужно, чтобы сигнал быстро менялся во времени, то есть имел достаточно высокую частоту. Иначе нам не удастся его зарегистрировать, так как изменения будут слишком медленными. Значит, объекты должны быть еще и компактными.

Первоначально большой энтузиазм вызывали вспышки сверхновых, происходящие в галактиках вроде нашей раз в несколько десятков лет. Значит, если удастся достичь чувствительности, позволяющей видеть сигнал с расстояния в несколько миллионов световых лет, можно рассчитывать на несколько сигналов в год. Но позднее оказалось, что первоначальные оценки мощности выделения энергии в виде гравитационных волн во время взрыва сверхновой были слишком оптимистичными, и зарегистрировать подобный слабый сигнал можно было бы только в случае, если б сверхновая вспыхнула в нашей Галактике.

Еще один вариант массивных компактных объектов, совершающих быстрые движения, — нейтронные звезды или черные дыры. Мы можем увидеть или процесс их образования, или процесс взаимодействия друг с другом. Последние стадии коллапса звездных ядер, приводящие к образованию компактных объектов, а также последние стадии слияния нейтронных звезд и черных дыр имеют длительность порядка нескольких миллисекунд (что соответствует частоте в сотни герц) — как раз то что надо. При этом выделяется много энергии, в том числе (а иногда и в основном) в виде гравитационных волн, так как массивные компактные тела совершают те или иные быстрые движения. Вот они — наши идеальные источники.

Правда, сверхновые вспыхивают в Галактике раз в несколько десятков лет, слияния нейтронных звезд происходят раз в пару десятков тысяч лет, а черные дыры сливаются друг с другом еще реже. Зато сигнал гораздо мощнее, и его характеристики можно достаточно точно рассчитать. Но теперь нам надо научиться видеть сигнал с расстояния в несколько сотен миллионов световых лет, чтобы охватить несколько десятков тысяч галактик и обнаружить несколько сигналов за год.

Определившись с источниками, начнем проектировать детектор. Для этого надо понять, что же делает гравитационная волна. Не вдаваясь в детали, можно сказать, что прохождение гравитационной волны вызывает приливную силу (обычные лунные или солнечные приливы — это отдельное явление, и гравитационные волны тут ни при чем). Так что можно взять, например, металлический цилиндр, снабдить датчиками и изучать его колебания. Это несложно, поэтому такие установки начали делать еще полвека назад (есть они и в России, сейчас в Баксанской подземной лаборатории монтируется усовершенствованный детектор, разработанный командой Валентина Руденко из ГАИШ МГУ). Проблема в том, что такой прибор будет видеть сигнал без всяких гравитационных волн. Есть масса шумов, с которыми трудно бороться. Можно (и это было сделано!) установить детектор под землей, попытаться изолировать его, охладить до низких температур, но все равно для того, чтобы превысить уровень шума, понадобится очень мощный гравитационно-волновой сигнал. А мощные сигналы приходят редко.

Поэтому был сделан выбор в пользу другой схемы, которую в 1962 году выдвинули Владислав Пусто-войт и Михаил Герценштейн. В статье, опубликованной в ЖЭТФ (Журнал экспериментальной и теоретической физики), они предложили использовать для регистрации гравитационных волн интерферометр Майкельсона. Луч лазера бегает между зеркалами в двух плечах интерферометра, а затем лучи из разных плеч складываются. Анализируя результат интерференции лучей, можно измерить относительное изменение длин плеч. Это очень точные измерения, поэтому, если победить шумы, можно достичь фантастической чувствительности.

В начале 1990-х было принято решение о строительстве нескольких детекторов по такой схеме. Первыми в строй должны были войти относительно небольшие установки, GEO600 в Европе и ТАМА300 в Японии (числа соответствуют длине плеч в метрах) для обкатки технологии. Но основными игроками должны были стать установки LIGO в США и VIRGO в Европе. Размер этих приборов измеряется уже километрами, а окончательная плановая чувствительность должна была бы позволить видеть десятки, если не сотни событий в год.

Почему нужны несколько приборов? В первую очередь для перекрестной проверки, поскольку существуют локальные шумы (например, сейсмические). Одновременная регистрация сигнала на северо-западе США и в Италии была бы прекрасным свидетельством его внешнего происхождения. Но есть и вторая причина: гравитационно-волновые детекторы очень плохо определяют направление на источник. А вот если разнесенных детекторов будет несколько, указать направление можно будет довольно точно.

Лазерные исполины

В своем первоначальном виде детекторы LIGO были построены в 2002 году, a VIRGO — в 2003-м. По плану это был лишь первый этап. Все установки поработали по несколько лет, а в 2010-2011 годах были остановлены для доработки, чтобы затем выйти на плановую высокую чувствительность. Первыми заработали детекторы LIGO в сентябре 2015 года, VIRGO должна присоединиться во второй половине 2016-го, и начиная с этого этапа чувствительность позволяет надеяться на регистрацию как минимум нескольких событий в год.

После начала работы LIGO ожидаемый темп всплесков составлял примерно одно событие в месяц. Астрофизики заранее оценили, что первыми ожидаемыми событиями должны стать слияния черных дыр. Связано это с тем, что черные дыры обычно раз в десять тяжелее нейтронных звезд, сигнал получается мощнее, и его «видно» с больших расстояний, что с лихвой компенсирует меньший темп событий в расчете на одну галактику. К счастью, долго ждать не пришлось. 14 сентября 201 5 года обе установки зарегистрировали практически идентичный сигнал, получивший наименование GW150914.

С помощью довольно простого анализа можно получить такие данные, как массы черных дыр, мощность сигнала и расстояние до источника. Масса и размер черных дыр связаны очень простым и хорошо известным образом, а по частоте сигнала сразу можно оценить размер области выделения энергии. В данном случае размер указывал на то, что из двух дыр массой 25-30 и 35-40 солнечных масс образовалась черная дыра с массой более 60 солнечных масс. Зная эти данные, можно получить и полную энергию всплеска. В гравитационное излучение перешло почти три массы Солнца. Это соответствует светимости 1023 светимостей Солнца — примерно столько же, сколько за это время (сотые доли секунды) излучают все звезды в видимой части Вселенной. А из известной энергии и величины измеренного сигнала получается расстояние. Большая масса слившихся тел позволила зарегистрировать событие, произошедшее в далекой галактике: сигнал шел к нам примерно 1,3 млрд лет.

Более детальный анализ позволяет уточнить отношение масс черных дыр и понять, как они вращались вокруг своей оси, а также определить и некоторые другие параметры. Кроме того, сигнал с двух установок позволяет примерно определить направление всплеска. К сожалению, пока тут точность не очень велика, но с вводом в строй обновленной VIRGO она возрастет. А еще через несколько лет начнет принимать сигналы японский детектор KAGRA. Затем один из детекторов LIGO (изначально их было три, одна из установок была сдвоенной) будет собран в Индии, и ожидается, что тогда будут регистрироваться многие десятки событий в год.

Эра новой астрономии

На данный момент самый важный результат работы LIGO — это подтверждение существования гравитационных волн. Кроме того, уже первый всплеск позволил улучшить ограничения на массу гравитона (в ОТО он имеет нулевую массу), а также сильнее ограничить отличие скорости распространения гравитации от скорости света. Но ученые надеются, что уже в 2016 году они смогут получать с помощью LIGO и VIRGO много новых астрофизических данных.

Во-первых, данные гравитационно-волновых обсерваторий — это новый канал изучения черных дыр. Если ранее можно было только наблюдать потоки вещества в окрестностях этих объектов, то теперь можно прямо «увидеть» процесс слияния и «успокоения» образующейся черной дыры, как колеблется ее горизонт, принимая свою окончательную форму (определяемую вращением). Наверное, вплоть до обнаружения хокинговского испарения черных дыр (пока что этот процесс остается гипотезой) изучение слияний будет давать лучшую непосредственную информацию о них.

Во-вторых, наблюдения слияний нейтронных звезд дадут много новой, крайне нужной информации об этих объектах. Впервые мы сможем изучать нейтронные звезды так, как физики изучают частицы: наблюдать за их столкновениями, чтобы понять, как они устроены внутри. Загадка строения недр нейтронных звезд волнует и астрофизиков, и физиков. Наше понимание ядерной физики и поведения вещества при сверхвысокой плотности неполно без разрешения этого вопроса. Вполне вероятно, что именно гравитационноволновые наблюдения сыграют здесь ключевую роль.

Считается, что именно слияния нейтронных звезд ответственны за короткие космологические гамма-всплески. В редких случаях удастся одновременно наблюдать событие сразу и в гамма-диапазоне, и на гравитационно-волновых детекторах (редкость связана с тем, что, во-первых, гамма-сигнал сконцентрирован в очень узкий луч, и он не всегда направлен на нас, а во-вторых, от очень далеких событий мы не зарегистрируем гравитационных волн). Видимо, понадобится несколько лет наблюдений, чтобы удалось это увидеть (хотя, как обычно, может повезти, и это произойдет прямо сегодня). Тогда, кроме всего прочего, мы сможем очень точно сравнить скорость гравитации со скоростью света.

Таким образом, лазерные интерферометры вместе будут работать как единый гравитационно-волновой телескоп, приносящий новые знания и астрофизикам, и физикам. Ну а за открытие первых всплесков и их анализ рано или поздно будет вручена заслуженная Нобелевская премия.

2198