Общие сведения о коррозии металлов. Коррозия металлов

Металл служит примером прочности. Недаром, когда хотят подчеркнуть это свойство, говорят: «прочный, как сталь». С понятием «металл», «металлический», «стальной» связано представление о чем-то неизменном, твердом, прочном.

Но если заглянуть в Исторический музей, где нас познакомят с остатками вооружения наших предков, извлеченных при раскопках древних могил, то мы увидим, что когда-то блестящие и прочные мечи, топоры, стальные кольчуги и другие металлические изделия потеряли блеск и прочность. Они покрыты не только толстым слоем ржавчины, но почти полностью разрушены. Такому разрушению подвергаются металлические предметы, не только оставленные в земле, но и находящиеся в сыром помещении.

Следовательно, металлы оказываются далеко не такими прочными, как об этом гласит народная молва. Под влиянием внешней среды, водных растворов кислот, солей и электрического тока они окисляются, в результате чего разрушаются.

Такого рода разрушение металлов получило название коррозии. В переводе с латинского “corrodere” означает – разъедать.

Почему же они разрушаются?

Как известно, все металлы, за исключением золота, платины, серебра, встречаются в природе в виде соединений с кислородом, серой, а также в виде солей серной, соляной и других кислот, т. е. в окисленном состоянии. Чтобы получить их в чистом виде, необходимо затратить химическую или электрическую энергию. Так, например, для получения железа из его руд строятся громадные доменные печи, в которых оно выплавляется. Из естественного, природного (окисленного) состояния они переводятся в металлическое состояние. Это состояние неустойчиво. Металл как бы стремится вновь перейти в то соединение, в котором изначально существовал в природе.

Коррозия металлов – это процесс перехода металла в то природное, естественное состояние, в котором мы встречаем его в земной коре.

Почему же все-таки при некоторых условиях металлы не так быстро переходят в свое естественное состояние, в оксиды или соли кислот? Одним из замечательных памятников старого Дели в Индии является минарет Кутуб-Минар, построенный в 1200 г. Во дворе минарета уже более тысячи лет стоит известная Делийская железная колонна. Эта колонна знаменита тем, что она не подверглась разрушающему действию коррозии. О Делийской колонне рассказывают много легенд, касающихся ее исключительной коррозийной стойкости.

Чем же объясняют исключительную коррозийную устойчивость металла, из которого сделана эта колонна? Есть разные версии её антикоррозийной устойчивости, но, скорее всего, высокую коррозийную стойкость колонны можно объяснить условиями, в которых она находится. Дело в том, что климат Дели, в особенности там, где находится колонна, очень сухой: относительная влажность в течение года не превышает 50-60%, а обычная – в пределах 30- 40%.

Английский ученый Вернон нашел, что при относительной влажности до 30% коррозия металла практически не наблюдается, при повышении же влажности до 60-70% наблюдается медленное увеличение коррозии. При влажности выше 70% коррозия резко возрастает и несколько снижается при влажности выше 90%.

Итак, вывод:

Коррозийная стойкость металлов в значительной мере зависит и от условий, в которых они находятся.

А) Результаты опыта.

Для ответа на многие вопросы, связанные со скоростью коррозии металла в зависимости от среды, мною был заложен опыт, и проводились наблюдения за ходом процесса окисления металла в течение семи дней. Было взято 7 стаканов воды, только в первом стакане вода была кипяченая. В остальных 6-ти случаях – вода сырая, то есть содержащая определенное количество растворенного в воде кислорода.

№1 Описание условий эксперимента

Железный гвоздь полностью погружен в кипяченую воду

Железный гвоздь погружен в некипяченую воду, он виден из воды

Железный гвоздь полностью погружен в некипяченую воду

Железный гвоздь погружен в некипяченую воду, он виден из воды, в воду добавлена поваренная соль (NaCl)

Железный гвоздь погружен в некипяченую воду, он виден из воды, в воду добавлена питьевая сода (NaHCO3)

Железный гвоздь погружен в воду, он виден из воды, в воды, к гвоздю прикручена алюминиевая проволока

Железный гвоздь погружен в воду, он виден из воды, к гвоздю прикручена медная проволока

Результаты наблюдения:

1-ый стакан: Вода кипяченая, полностью покрывает железный гвоздь. Необходимо отметить, что в этом стакане гвоздь покрылся налетом ржавчины, но толщина слоя по сравнению с другими стаканами – минимальная. То есть, в кипяченой воде скорость коррозии самая малая из-за отсутствия растворенного в воде кислорода.

Во 2-ом и в 3-ем стаканах - вода сырая. Во втором стакане гвоздь виден из воды, а в третьем – полностью погружен в воду. Во втором стакане, где гвоздь виден из воды, коррозия железа достигла большего размера, чем в стакане, где гвоздь полностью покрыт водой. То есть, на границе раздела воздух – вода металл больше подвергается коррозии, так как идет соприкосновение воды и металла с кислородом воздуха и процесс окисления железа ярче выражен.

Таким образом, вода, содержащая растворенный кислород (опыты №№ 2,3), значительно опаснее в коррозионном отношении, чем вода, не содержащая его (опыт №1).

В 4-ом стакане в воду была добавлена поваренная соль – хлорид натрия NaCl. Гвоздь в этом стакане покрылся толстым слоем ржавчины, коррозия значительна. Причина кроется в среде – в воду добавлен электролит – поваренная соль, которая способствует разъеданию металла. В морской воде также содержится большое количество поваренной соли и других солей, которые тоже являются прекрасными электролитами, что способствует более быстрому протеканию коррозии корпусов кораблей.

В 5-ом стакане в воду было добавлено небольшое количество питьевой соды, которая имеется у всех дома – NaHCO3 (гидрокарбонат натрия). Раствор питьевой соды имеет слабо выраженную щелочную среду. Но коррозия быстрее протекает в кислых и нейтральных средах, в которых имеются растворенный в воде кислород и ионы водорода (Н+). В щелочной же среде концентрация гидроксид-ионов (ОН-) преобладает над концентрацией ионов водорода, то есть фактически ионы водорода устранены, что не позволяет разрушаться металлу. Щелочная среда препятствует протеканию реакций окисления металла. И по результатам опыта было видно, что в этом стакане гвоздь по истечении семи дней остался без изменений.

Что произошло в 6-ом и 7-ом стаканах? Об этом – немного позднее.

Человек не только должен знать, почему разрушается металл, но и как сберечь его от разрушения, ибо трудно себе представить сейчас нашу жизнь без металла, который в жизни человеческого общества играет первостепенную роль. Из него делают тысячи различных предметов: станки, автомобили, тракторы, сложные аппараты, самолеты, реактивные двигатели. Наши города и села связаны металлическими линиями проводов.

По металлическим трубам, проложенным под землей, протекают реки нефти из одних районов в другие. По трубам же подается вода от центральной водопроводной станции города на фабрики, заводы и в наши квартиры. Но металл играет большую роль не только в промышленности, он окружает нас и в быту. Всюду металл, без него нельзя представить себе современную жизнь.

Одной из важнейших задач в настоящее время является не только увеличение производства металла, но и сохранение его от разрушения. Чтобы представить, какое значение имеет борьба с коррозией металлов, рассмотрим, какой вред она приносит. Подсчеты, которые были сделаны в начале 20-х годов ХХ века, показали, что за время с 1860 по 1920 года, то есть за 60 лет, было выплавлено чугуна во всем мире 1860 млн. тонн, а в результате коррозионных разрушений погибло 660 млн. тонн, что составляет около 33% от всего выплавленного металла.

Сейчас считают, что примерно около 10% всей ежегодно выплавляемой стали идет на покрытие безвозвратных потерь металла от коррозии. Наша страна ежегодно теряет 5-6 млн. тонн металла. Иначе говоря, буквально в пыль превращается годовая продукция крупного металлургического комбината.

Чтобы понять, как можно лучше защитить металл от коррозии, познакомимся с некоторыми свойствами металлов.

Б) Общие свойства металлов.

В настоящее время известно 110 химических элементов, из них почти 90 – металлы. Последние весьма распространены в природе и встречаются в виде различных соединений в недрах земли, водах рек, озер, морей, океанов, составе тел животных, растений и даже в атмосфере. Можно сказать, что соединения металлов находятся повсюду: в горных породах, в воде.

По своим свойствам металлы резко отличаются от неметаллов.

Периодический закон, установленный великим русским ученым Д. И. Менделеевым, представляет основу классификации химических элементов. Химические и физические свойства каждого элемента можно охарактеризовать, зная то место, которое занимает данный элемент в периодической системе; можно заранее сказать, какими химическими, а следовательно, и коррозионными свойствами обладает тот или иной элемент.

Русский ученый Николай Николаевич Бекетов расположил все металлы по своей активности в электрохимический ряд активности металлов:

В этом ряду каждый металл, стоящий левее, является более активным, по сравнению с правостоящим. Более активные металлы легче вступают в химические реакции, а, следовательно, легче окисляются. Так, мы видим, что алюминий является более активным металлом, чем железо, а медь – менее активным металлом по сравнению с тем же железом. Поэтому, при соприкосновении двух металлов различной активности они сразу образуют гальваническую пару, или гальванический элемент. В этом случае, металл, являющийся более активным, начинает энергично разрушаться (он активнее отдает свои электроны), следовательно, активнее подвергается коррозии, а металл, менее активный, остается в неизменном виде. Этот момент появления гальванической пары я и исследовала в двух последних случаях моего опыта. В стакан под № 6 был помещен гвоздь, который находился в контакте с алюминиевой проволокой. Сравнив расположение двух металлов в ряду активности, мы видим, что алюминий – более активен, чем железо, следовательно, разрушаться в воде должен именно этот металл. Мои наблюдения полностью подтвердили эту гипотезу: алюминиевая проволока за 7 дней покрылась рыхлым белым налетом гидроксида алюминия (Al(OH)3), а железный гвоздь совсем не изменился. В стакан № 7 я поместила гальваническую пару, состоящую из железного гвоздя и медной проволоки. Из результата опыта видно, что железо, как более активный металл, покрылся толстым слоем ржавчины, а медная проволока осталась без изменений.

Интересен один исторический факт. В начале XX века по заказу одного американского миллионера была построена роскошная яхта «Зов моря». Днище ее было обшито монель-металлом (это сплав меди и никеля), а рама руля, киль и другие детали были изготовлены из стали. Когда яхту спустили на воду, возник гигантский гальванический элемент, состоящий из катода – монель-металла, стального анода и раствора электролита – морской воды. Последствия были ужасными! Еще до выхода в открытое море яхта полностью вышла из строя, а «Зов моря» остался в истории мореплавания как пример конструкторской недальновидности и самонадеянного невежества.

В) Виды коррозии.

Этот вид коррозии, которая возникает в результате контакта двух различных металлов, получил название – электрохимическая коррозия.

Известны и другие виды коррозии металлов. Например, электрическая коррозия металла под воздействием блуждающих токов. Что это за токи и откуда они берутся?

Такой вид коррозии характерен в тех местах, где проложены рельсы для электропоездов. Электрический ток попадает в почву от линий метро, электричек, сварочных аппаратов из-за недостаточной изоляции. Подземные трубопроводы, кабельные сети и другие металлические сооружения, находящиеся под землей, подвергаются наибольшей коррозии. Чтобы понять действие блуждающего тока, рассмотрим простейшую схему:

Воздушный провод Эл. ток от станции

Рельс Эл. ток к станции

Труба 1 2 3

Ток поступает от электростанции в рабочий воздушный провод, от которого питается электропоезд, а обратно к станции электрический ток двигается по рельсам. Но очень часто рельсы соприкасаются с почвой, и часть тока ответвляется и направляется в землю. Если металлическая труба расположена вблизи токонесущих рельсов, то часть электрического тока потечет уже по трубе. Таким образом, можно разделить зоны движения тока по трубе, находящейся в почве, на три части:

1. Участок входа блуждающего тока из почвы на трубопровод. Эта зона не опасна для трубопровода.

2. Зона протекания блуждающего тока по трубопроводу. Данная зона также не вызывает изменений в трубопроводе.

3. Участок выхода блуждающего тока из металлического трубопровода в почву и далее на рельсы. Вот здесь то и возникает коррозия трубопровода. Она проявляется в виде глубоких язв или даже разрывов. Коррозионные разрушения зависят от величины блуждающего тока.

Для борьбы с блуждающими токами в настоящее время разработан ряд мероприятий. Во-первых, это тщательная изоляция токонесущих систем. Для защиты трубопроводов, прокладываемых в земле, применяют битумное покрытие.

Еще один интересный вид коррозии металлов – биокоррозия. Это новый вид коррозии. Известно, что коррозия протекает при участии микроорганизмов. Они выделяют продукты, которые могут вызывать коррозию. Биокоррозия изучена еще недостаточно. Но интересно отметить особый вид бактерий - так называемых железных, которые усваивают железо в виде ионов, для чего они выделяют продукты, разрушающие металл, переводящий его в соединения железа, то есть в окисленное состояние.

Особе место в коррозионном разрушении металлов занимает морская вода. А коррозия, возникающая в морской воде, получила название морской коррозии. В морской воде очень значительно содержание различных солей. Кроме того, в ней в растворенном состоянии всегда находятся газы: азот, кислород, углекислый газ, оксиды азота и другие.

В морской воде корродируют не только подводные части морских судов, но и периодически орошаемые надводные и палубные надстройки, а также металлические конструкции и сооружения, установленные в море. Морская коррозия приносит громадные потери народному хозяйству.

Г) Защита металлов от коррозии.

Вопрос о том, как защищать металлы от разрушения, является столь же древним, как и их применение. Можно сказать, что вместе с использованием металла возникла необходимость и его защиты. Однако научные методы защиты металлов от коррозии возникли много позже.

Разработка методов защиты тесно связана с изучением причин, вызывающих коррозию металлов. Первые научные основы изучения коррозии металлов были заложены гениальным русским ученым М. В. Ломоносовым.

Наряду с разработкой методов защиты металлов от коррозии в настоящее время получают новые вещества, которые с успехом могут заменять в некоторых изделиях металлы. Следовательно, борьба с коррозией металлов идет не только по пути защиты самих металлов, но и замены их коррозионно-стойкими материалами.

Все применяемые методы защиты металлов можно разделить на две группы.

Способы защиты:

Покрытие металла: Электрохимические методы защиты:

1. Металлические покрытия, гальванотехника. 1. Протекторная защита.

2. Неметаллические покрытия: покрытие красками, эмалями, лаками, смазками, оксидирование.

К первой группе относят различного рода покрытия. Сущность этого метода сводится к тому, что на поверхности металла создается та или иная пленка, защищающая поверхность металла от контакта с внешней средой. Покрытия в свою очередь делятся на металлические и неметаллические.

Ко второй группе относят электрохимические методы защиты.

Итак, первая группа защиты. Роль покрытия как средства защиты от коррозии большей частью сводится к тому, чтобы изолировать металл от внешней среды.

В качестве металлических покрытий корпусов изделий используют хром, никель, серебро и золото. Хромированные, никелированные, серебрённые и золочёные изделия имеют красивый внешний вид и в то же время коррозионно-стойки. Этот метод получил название гальванотехники. Часто металлические изделия, как говорят, «работают» в жидких средах, например в воде, растворах кислот, щелочей и солей. Здесь уже необходимы более сложные методы защиты. Из металлических покрытий для изделий, «работающих» в воде или во влажной атмосфере, широко применяют цинковые или оловянные покрытия: оцинкованные ведра, луженая посуда.

Из неметаллических покрытий часто используют покрытие эмалью, кислотоупорным лаком, различными смолами нефтяного происхождения, резиной. Многие из этих неметаллических покрытий являются очень стойкими, как, например, резина или фенолформальдегидные смолы, которые предохраняют металл даже в таких средах, как растворы соляной кислоты любой концентрации.

Часто на поверхность металла искусственно наносится оксидная пленка другого металла, которая является прочным веществом. Образование таких пленок получило название оксидирование. Оксидирование как средство защиты приборов, станков, а также основных частей огнестрельного оружия получило широкое распространение. Оксидирование не только играет защитную роль, но и придает изделиям красивую черную или синюю окраску. Поэтому очень часто оксидирование называют воронением, потому что окраска изделия в этом случае напоминает цвет воронова крыла.

Таким образом, мы видим, что выбор покрытия зависит от того, в каких условиях будет находиться изготовляемое металлическое изделие.

Из коррозионных разрушений металла мы наиболее часто встречаемся с ржавлением железа. Борьба с ржавлением железа и изделий из него имеет наибольшее значение в народном хозяйстве.

Рассматривая процесс ржавления металлов, я отметила, что если железо находится в контакте с другими металлами, то последние могут сильно изменить скорость ржавления. В одних случаях – контакта железа с медью (контакт с менее активным металлом) – скорость ржавления увеличивается, а в других, когда железо находится в контакте с алюминием, цинком (контакт железа с более активным металлом), наоборот, ржавление замедляется или полностью прекращается. Метод защиты металла способом создания гальванической пары получил название протекторная защита.

Цинк – один из наиболее широко применяемых металлов в протекторной защите. Кроме цинка, для этих целей используют сплавы магния и алюминия. Выбор протектора зависит от характера структуры металла, из которого изготовлена сама конструкция, а также условий, в которых находится данный металл.

Протекторную защиту обычно применяют для крупных сооружений: нефтехранилищ, танкеров, заводской арматуры, электрических кабелей, находящихся под землей, водопроводных труб, корпусов морских судов.

3. Заключение.

В своей работе я не ставила цель исследовать все существующие виды коррозии, их гораздо больше, чем я изложила. Но даже те виды коррозии, которые здесь представлены, уже говорят о значимости этой проблемы и путях ее решения. При изучении химии в дальнейшем мне еще предстоит более детальное знакомство с явлением разрушения металла под воздействием различных факторов. Но уже те немногие сведения, которые собраны здесь, думаю, заинтересуют тех ребят, которые прочтут данную работу, и помогут им в дальнейшем защитить свой собственный автомобиль, крышу дома, хозяйственный инвентарь от коррозии. А это уже не мало. Значит, есть результат от работы.

Интересные факты о ржавчине кратко изложенные в этой статье.

Интересные факты о коррозии металлов

Практически все сплавы и металлы медленно разрушаются под действием некоторых факторов окружающей среды. Когда металл взаимодействует с атмосферными осадками и веществами воздуха на его поверхности появляется пленка, которая состоит из карбонатов, оксидов, сульфидов и подобных соединений. Они обладают противоположными металлу свойствами. В повседневной жизни такой процесс мы называем «ржавчиной» и «ржавлением» когда видим налет коричнево-рыжего цвета на металлических изделиях. Научный термин ржавление – это коррозия железа.

Коррозия является самопроизвольным процессом разрушения металлов и его сплавов под воздействием факторов окружающей среды. С латыни термин «коррозия» обозначает «corrodere», то есть «разъедать». Действию коррозии подвергаются не только металлы, но и камни, дерево, полимеры и пластмассы.

Каждый год коррозия уничтожает от 10% до 20% всего выплавленного металла.

В Швейцарии ученые сконструировали прибор, который восстанавливает металл из ржавчины. В нем корродированная вещь или изделие «бомбардируются» молекулами водорода. В процессе водород объединяется с содержащимся кислородом в ржавчине. Спустя несколько часов происходит «омоложение» изделия и ему возвращается былой вид изделия, прочного и чистого. При этом его форма остается прежней. Конечно, металл, сильно поврежденный ржавчиной, возродить не удастся.

Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры . Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Ржавчина выступает в технике как и защитное средство. К примеру, люди освоили выплавку низколегированных сталей, содержащие в малом отношении хрома, никеля и меди. Такая сталь очень быстро ржавеет, но под слоем отпавшей ржавчины видно черную плотную пленку, которая защищает металл от дальнейшего воздействия коррозии. Единственный момент – для образования защитного слоя необходимо много времени, до 4-ех лет.

Ржавчина имеет хорошую сорбционную способность к органическим веществам. После того, как ржавое железо было выкопано с органическими веществами, его нагревали в горнах, после закаливали водой путем охлаждения. В поверхностном слое металла появлялись азот и углерод, которые упрочняли изделие и придавали ему особую твердость.

Римский бог Робигус является покровителем ржавчины.

Для того, чтобы изделия из железа не ржавели, следует из покрыть суриком (особой красной краской) или лаком. Чугун покрывают эмалью, а сталь другим металлом, например, цинком.

Ржавчина является одной из наиболее распространённых причин аварий мостов. Так как ржавчина имеет гораздо больший объём, чем исходная масса железа, её наращивание может привести к неравномерному прилеганию друг к другу конструкционных деталей. Это стало причиной разрушения моста через реку Мианус в 1983 году, когда подшипники подъёмного механизма проржавели внутри. 15 декабря 1967 года Серебряный мост, соединяющий Пойнт Плезант, штат Западная Виргиния, и Канауга, штат Огайо, неожиданно рухнул в реку Огайо. В момент обрушения 37 автомобилей двигались по мосту, и 31 из них упали вместе с мостом. 46 человек погибли, и 9 пострадали. Причиной обрушения стала коррозия.

Что есть общего между ржавым гвоздем, проржавевшим мостом или прохудившимся железным забором? Отчего вообще ржавеют железные конструкции и изделия из железа? Что такое ржавчина как таковая? На эти вопросы постараемся дать ответы в нашей статье. Рассмотрим причины ржавления металлов и способы защиты от этого вредного для нас природного явления.

Причины ржавления

Все начинается с добычи металла. Не только железо, но и, например, и магний - добывают изначально в виде руды. Алюминиевая, марганцевая, железная, магниевая руды содержат в себе не чистые металлы, а их химические соединения: карбонаты, оксиды, сульфиды, гидроксиды.

Это химические соединения металлов с углеродом, кислородом, серой, водой и т. д. Чистых металлов в природе раз, два и обчелся — платина, золото, серебро — благородные металлы - они встречаются в форме металлов в свободном состоянии, и не сильно стремятся к образованию химических соединений.

Однако большинство металлов в природных условиях все же не являются свободными, и чтобы высвободить их из исходных соединений, необходимо руды плавить, восстанавливать таким образом чистые металлы.

Но выплавляя металлсодержащую руду, мы хоть и получаем металл в чистом виде, это все же состояние неустойчивое, далекое от естественного природного. По этой причине чистый металл в обычных условиях окружающей среды стремится вернуться назад в исходное состояние, то есть окислиться, а это и есть коррозия металла.

Таким образом, коррозия является естественным для металлов процессом разрушения, происходящим в условиях их взаимодействия с окружающей средой. В частности ржавление — это процесс образования гидроксида железа Fe(ОН)3, который протекает в присутствии воды.

Но на руку людям играет тот естественный факт, что окислительная реакция протекает в привычной нам атмосфере не особо стремительно, она идет с очень небольшой скоростью, поэтому мосты и самолеты не разрушаются мгновенно, а кастрюли не рассыпаются на глазах в рыжий порошок. К тому же коррозию в принципе можно замедлить, прибегнув к некоторым традиционным хитростям.

Например, нержавеющая сталь не ржавеет, хотя и состоит из железа, склонного к окислению, она тем не менее не покрывается рыжим гидроксидом. А дело здесь в том, что нержавеющая сталь — это не чистое железо, нержавеющая сталь — это сплав железа и другого металла, главным образом — хрома.

Кроме хрома в состав стали могут входить никель, молибден, титан, ниобий, сера, фосфор и т. д. Добавление в сплавы дополнительных элементов, ответственных за определенные свойства получаемых сплавов, называется легированием.

Пути защиты от коррозии

Как мы отметили выше, главным легирующим элементом, добавляемым к обычной стали для придания ей антикоррозийных свойств, является хром. Хром окисляется быстрее железа, то есть принимает удар на себя. На поверхности нержавеющей стали, таким образом, появляется сначала защитная пленка из оксида хрома, которая имеет темный цвет, и не такая рыхлая как обычная железная ржавчина.

Оксид хрома не пропускает через себя вредные для железа агрессивные ионы из окружающей среды, и металл оказывается защищенным от коррозии, словно прочным герметичным защитным костюмом. То есть оксидная пленка в данном случае несет защитную функцию.

Количество хрома в нержавеющей стали, как правило, не ниже 13%, чуть меньше в нержавеющей стали содержится никеля, и в гораздо меньших количествах имеются другие легирующие добавки.

Именно благодаря защитным пленкам, принимающим на себя воздействие окружающей среды первыми, многие металлы получаются стойкими к коррозии в различных средах. Например, ложка, тарелка или кастрюля, изготовленные из алюминия, никогда особо не блестят, они, если присмотреться, имеют белесый оттенок. Это как раз оксид алюминия, который образуется при контакте чистого алюминия с воздухом, и защищает затем металл от коррозии.

Пленка оксида возникает сама, и если зачистить алюминиевую кастрюлю наждачной бумагой, то через несколько секунд блеска поверхность снова станет белесой — алюминий на зачищенной поверхности вновь окислится под действием кислорода воздуха.

Поскольку пленка оксида алюминия образуется на нем сама, без особых технологических ухищрений, она называется пассивной пленкой. Такие металлы, на которых оксидная пленка образуется естественным образом, называются пассивирующимися. В частности алюминий — пассивирующийся металл.

Некоторые металлы принудительно переводят в пассивное состояние, например высший оксид железа — Fe2О3 способен защитить железо и его сплавы на воздухе при высоких температурах и даже в воде, чем не может похвастаться ни рыжий гидроксид, ни низшие оксиды все того же железа.

Есть в явлении пассивации и нюансы. Например, в крепкой серной кислоте мгновенно пассивированная сталь оказывается устойчивой к коррозии, а в слабом растворе серной кислоты тут же начнется коррозия.

Почему так происходит? Разгадка кажущегося парадокса состоит в том, что в крепкой кислоте на поверхности нержавеющей стали мгновенно образуется пассивирующая пленка, поскольку кислота большей концентрации обладает ярко выраженными окислительными свойствами.

В то же время слабая кислота не окисляет сталь достаточно быстро, и защитная пленка не формируется, начинается просто коррозия. В таких случаях, когда окисляющая среда не достаточно агрессивна, для достижения эффекта пассивации прибегают к специальным химическим добавкам (ингибиторам, замедлителям коррозии), помогающим образованию пассивной пленки на поверхности металла.

Так как не все металлы склонны к образованию на их поверхности пассивных пленок, даже принудительно, то добавление замедлителей в окисляющую среду попросту приводит к превентивному удержанию металла в условиях восстановления, когда окисление энергетически подавляется, то есть в условиях присутствия в агрессивной среде добавки оказывается энергетически невыгодным.

Есть и другой путь удержания металла в условиях восстановления, если нет возможности использовать ингибитор, - применить более активное покрытие: оцинкованное ведро не ржавеет, поскольку цинк покрытия корродирует при контакте с окружающей средой вперед железа, то есть принимает удар на себя, являясь более активным металлом, цинк охотнее вступает в химическую реакцию.

Днище корабля часто защищено аналогичным образом: к нему крепят кусок протектора, и тогда протектор разрушается, а днище остается невредимым.

Электрохимическая антикоррозийная защита подземных коммуникаций — также весьма распространенный путь борьбы с образованием на них ржавчины. Условия восстановления создаются подачей отрицательного катодного потенциала на металл, и в таком режиме процесс окисления металла уже не сможет протекать просто энергетически.

Кто-то может спросить, почему подверженные риску коррозии поверхности просто не красят краской, почему бы просто не покрывать каждый раз эмалью уязвимую к коррозии деталь? Для чего нужны именно разные способы?

Ответ прост. Эмаль может повредиться, например автомобильная краска может в неприметном месте отколоться, и кузов начнет постепенно но непрерывно ржаветь, поскольку сернистые соединения, соли, вода, кислород воздуха, - станут поступать к этому месту, и в итоге кузов будет разрушаться.

Чтобы такое развитие событий предотвратить, прибегают к дополнительной антикоррозийной обработке кузова. Автомобиль — это не эмалированная тарелка, которую можно в случае повреждения эмали просто выбросить, и купить новую..

Текущее положение дел

Несмотря на кажущуюся изученность и проработанность явления коррозии, несмотря на применяемые разносторонние методы защит, коррозия по сей день представляет определенную опасность. Трубопроводы разрушаются и это приводит к выбросам нефти и газа, падают самолеты, терпят крушение поезда. Природа более сложна, чем может показаться на первый взгляд, и человечеству предстоит изучить еще многие стороны коррозии.

Так, даже коррозиестойкие сплавы оказываются стойкими лишь в некоторых предсказуемых условиях, для работы в которых они изначально предназначены. Например, нержавеющие стали не терпят хлоридов, и поражаются ими — возникает язвенная, точечная и межкристальная коррозия.

Внешне без намека на ржавчину конструкция может внезапно рухнуть, если внутри образовались мелкие, но очень глубокие поражения. Микротрещины, пронизывающие толщу металла незаметны снаружи.

Даже сплав не подверженный коррозии может внезапно растрескаться, будучи под длительной механической нагрузкой — просто огромная трещина внезапно разрушит конструкцию. Такое уже случалось по всему миру с металлическими строительными конструкциями, механизмами, и даже с самолетами и вертолетами.

Андрей Повный

Неотъемлемым атрибутом промышленной революции и символом индустриальной мощи. Важность данного ресурса, безусловно, очень велика, но многие ли задумывались, сколь многообразной является данная группа химических элементов? Или какие любопытные свойства наблюдаются у некоторых металлов, а также какие невероятные качества им порой приписывают? Вряд ли. Так что стоит расширить понимание данной темы и перечислить некоторые интересные факты о металлах.

Подгруппы

На данный момент в периодической таблице насчитывают 94 химических элемента, которые рассматриваются в качестве металлов. Все разделены на 7 подгрупп:

  • щелочные;
  • щелочноземельные;
  • переходные;
  • легкие;
  • полуметаллы;
  • лантаноиды;
  • актиноиды.

Особого рассмотрения требуют металлы первых четырех подгрупп.

Щелочные металлы

Своё название они обрели за счет свойства преобразования в щелочи в условиях водной среды.

Малоизвестный интересный факт о щелочных металлах: литий обладает некоторыми живительными свойствами. В частности - способствует лечению подагры. Так, ещё в древности люди заметили целебные свойства глины, которая обогащена литием. Мази и компрессы из этого материала способствовали ослаблению симптомов подагры.

Своё применение элементы данной группы нашли и в построении атомных подводных лодок. Натрий используется как теплоноситель в электрогенераторах, установленных на атомном реакторе подводной лодки. Он обеспечивает вращение паровых лопастей.

Но натрий требует особого обращения. При взаимодействии с ним следует учитывать его бурную реакцию с жидкостями. Даже простое прикосновение к натрию голой влажной рукой может спровоцировать небольшой взрыв.

Важны щёлочи и для здоровья. Дефицит натрия и калия в организме человека вызывает сильные судороги и боль, ввиду чего не следует ограничивать себя в воде и соли.

Щелочноземельные металлы

Данной группе присуща высокая плотность и большая температура плавления. Интересный факт о металлах: барий и радий обладают высокой токсичностью. Любопытно, что попавший в организм радий склонен транспортироваться более чем на 70 % в кости, но в силу своей высокой токсичности способствует образованию онкологических поражений костной ткани.

В 1950 году в республиканскую больницу Республики Коми поступило сразу 4 человека, с процентом поражения скелетных тканей злокачественными опухолями в районе 70-85 %, что было вызвано длительными разработками подземных минерализованных месторождений радия.

Переходные металлы

Эта группа заслуживает особого внимания. Интересные факты про металлы, относящиеся к ней, нельзя не упомянуть, так как она является наиболее многочисленной. Эта группа объединяет элементы с самыми разными свойствами.

Многие переходной группы задействованы в сфере производства продуктов электротехнической индустрии, так как обладают свойствами проводников электричества.

Забавный факт: общеизвестно, что Япония является лидером по поставкам хай-тек-оборудования на мировом рынке. В городе Сува была произведена оценка концентрации золота в пепельной массе, полученной от сожжения осадочных отложений городского коллектора. Итоговые показатели превосходили результаты аналогичных опытов в самых богатых рудниках на планете примерно в 50 раз, что объяснялось наличием огромной промышленной зоны, где изготавливают изделия электроники с применением сплавов драгоценных металлов, главным образом - золота. Кстати, о нём можно поведать немало интересного.

Золото

Всем известно, что изделия из этого материала сочетают в себе престиж, изысканность и роскошь. Украшения из золота являются замечательным подарком. Но кто бы мог подумать, что в Швейцарии есть ряд компаний, производящих из него фрагментированные плитки на манер шоколадных, которые могут быть использованы в качестве подарка? Либо же в расчетных операциях. Занимательно, что каждая плитка состоит из долей достоинством в 1 грамм и легко делится на части.

Интересный факт о металле: по состоянию на 2014 год во всем мире было добыто примерно 179 тонн золота, около половины которого приходится на Южно-Африканскую Республику. Почти такое же количества железа добывается из недр Земли ежечасно.

Золото - очень мягкий металл, по этой причине в изготовлении ювелирной продукции его обычно сплавляют с примесями меди или серебра.

Ртуть

Это - единственный металл, способный пребывать в жидком агрегатном состоянии в комнатных условиях. О токсичности ртутных испарений известно всем, но только химики знают, как данный элемент влияет на свойства алюминия.

Законодательными актами и документами, регламентирующими порядок и правила перемещения грузов на борту самолетов в некоторых странах, строго запрещается транспортировка ртути, так как при попадании на алюминиевую поверхность, она способна прожечь отверстие, что особенно важно на борту самолета, конструкция которого включает множество деталей, сделанных из этого материала.

Медь и кобальт

Перечисляя интересные факты о металлах по химии, стоит упомянуть и данные элементы. Медь является объектом особого интереса вандалов и охотников за цветными металлами. Она встречается в трансформаторных будках, так как медные элементы не способны давать искру.

Но на Востоке, главным образом в Японии, медь применяется в рыбных хозяйствах как вещество, препятствующее появлению в водоемах водных грибковых заболеваний.

А возникновение кобальта сопряжено со скандинавской мифологией. Норвежские кузнецы, которые занимались плавкой кобальтосодержащих минералов, получали мышьяковое отравление. Недомогание и головную боль они объясняли местью горного демона - Кобольда, мстящего людям за разорение его рудников. Так и появилось название данного металла. Аналогично происхождение названия никеля.

Железо

Является самым популярным элементом переходной группы. Интересный факт о металле: в глубокой древности, когда человечество еще не было знакомо с технологиями производства стали, железо укреплялось посредством обжига в навозе и лоскутах кожи, за счет чего происходило углеродное обогащение материала и значительно повышалась прочность. Поэтому кузницы зачастую строились возле конюшен.

Нельзя не упомянуть и о коррозии металла. Интересный факт: то, что железо окисляется при взаимодействии с кислородом, в первую очередь учитывается космонавтами при снаряжении инвентарного отсека космического корабля. И ясное дело, почему! Ведь в условиях космического вакуума железо не способно окислиться, а при соприкосновении с другими металлами они буквально слипаются.

Во избежание данной проблемы, инструменты для работы в открытом космосе обволакивают специальной пластиковой основой либо подвергают окислению на Земле.

Серебро

Многим знакомо выражение: «Серебро дороже золота». Оно не соответствует действительности. Тем не менее данное утверждение произрастает на почве благотворных, целебных, очистительных свойств серебра. Вода, долгое время пребывавшая в посуде из этого материала, приобретает антитоксичные свойства. Чем и объяснялась высокая популярность серебряной утвари в старые времена. Из этих соображений, на современных космических станциях функционируют серебряные водоочистители.

Первые изделия из данного металла были обнаружены в Египте, и насчитывают они возраст более 6 тысяч лет. На территории современной Индии принято употреблять в пищу десерты, покрытые тончайшей серебряной фольгой, что помогает поддерживать здоровье желудочно-кишечного тракта в условиях высокой антисанитарии.

Данный металл активно применяется азиатскими производителями терморегуляционной техники, главным образом - при сборке кондиционеров с функцией воздушной очистки.

В старину серебро служило средством предотвращения молочного окисления. Ложку из этого металла помещали в крынку с молоком, за счет чего оно не окислялось долгое время. И наконец, он стимулирует репродукцию гемоглобина, положительно влияет на центральную нервную систему. Такой вот удивительный металл - серебро. Интересных фактов о нём ещё много, но это - основные.

Легкие металлы

Данная категория является особо токсичной и трудно выявляемой. Полоний, чрезвычайно ядовитый металл, неоднократно использовался при покушениях на высокопоставленных чиновников и политиков. Его особенность состоит в том, что его трудно обнаружить в организме на ранних этапах, а его токсический эффект очень высок. Человек, чья пища была отравлена полонием, обречен на мучительную кончину.

Очень вредными являются испарения цинка. Тем не менее цинк благоприятно воздействует на репродуктивную функцию мужских тестикул. У индийских работников змеиных ферм, занимающихся добычей змеиного яда, после неоднократных укусов кобр или гадюк наблюдается сильная эрекция и интенсивная выработка половых гормонов, что объясняется повышенным содержанием цинка в яде змей.

Коррозия

Это сугубо негативный процесс, хотя есть у него и свои преимущества. Ещё 100 лет назад кавказские джигиты осознали всю полезность коррозийного процесса для производства прочных, не тупящихся клинков.

Так, они первые стали зарывать свои сабли и клинки в землю на пару лет, где те обретали прочность и способность разрезать даже самые твердые волокна. Данные характеристики металла достигались за счет абсорбирующего свойства ржавчины, которая, находясь в земле, впитывала в себя органические элементы и углеродистые соединения.

Индийское инженерное научное сообщество изобрело собственный инновационный метод защиты металлических поверхностей посредством катализа коррозии и последующего нанесения оксидированной краски на заржавевшую поверхность. Таким образом, специальная краска вступает в реакцию с ржавчиной и образует однородный, крепкий защитный слой.

В производстве инструментов для разделки туш применяются сплавы с небольшим процентом хрома, меди и никеля, за счет чего изделие быстро покрывается коррозией, под которой со временем образовывается прочный защитный слой, препятствующий дальнейшему образованию ржавчины.

Другие любопытные факты

Невероятно прочный титан, на удивление, находит свое наивысшее признание не в металлургии, не в машиностроении или технике, а в производстве синтетических пластиков, бумаги и красок.

Алюминий в 1885 году считался одним из самых дорогих металлов. И ценился он выше золота и серебра. Наличие алюминиевых пуговиц у офицеров французской армии расценивалось как знак высшего благородства.

При строительстве спутников и космических радиационных дозиметров американцы в свое время решились на распиливание затонувшего в конце Первой мировой войны корабля «Кронпринц Вильгельм», так как сталь, изготавливаемая после 1945 года, содержит слишком большой процент радиации. Использование такого металла воспрепятствовало бы сбору достоверных данных.

И наконец, факт о калифорнии. Он является самым дорогостоящим синтезированным металлом. Его стоимость превышает 6,5 миллиона за грамм. Фото, кстати, представлено выше.

На самом деле, ещё можно рассказать много интересных фактов про металлы. Химия - удивительная наука, и каждый элемент периодической таблицы обладает уникальными, неповторимыми свойствами и качествами.