Топочная камера котла. Камера сгорания котла

Изобретение относится к конструкции топочных камер котлов при сжигании жидкого и газообразного топлива. Конструкция состоит из внешнего ограждения, установленных внутри топочного объема уголковых или плоских стабилизаторов пламени. Внутри зон стабилизации устанавливаются трубы подвода вторичного/третичного воздуха. Вдоль внешнего ограждения установлены отражатели. Таким образом в процесс организации сжигания топлива вовлечены дополнительные поверхности нагрева, устанавливаемые внутри топки. Они используются не только в качестве поверхностей охлаждения, но и в качестве элементов, организующих сам процесс горения. Изобретение позволяет уменьшить габариты топочной камеры. 3 з.п. ф-лы, 3 ил.

Изобретение относится к конструкции топочных камер котлов при сжигании жидкого и газообразного топлива. Известны конструкции топочных камер котлов, выполненных из ограждающих и ширмовых поверхностей нагрева (2). Ширмовые или двухсветные экраны вводятся в объем топочной камеры, увеличивая теплоотвод на единицу длины или высоты топочной камеры, то есть указанные поверхности нагрева выполняют одну функцию - отвод тепла. Как известно, топочная камера современного котла выполняет две основные функции: сжигание топлива и охлаждение газов до определенной температуры на выходе из топки. Задачей изобретения является снижение объема и уменьшение габаритов топочной камеры путем вовлечения в процесс организации сжигания топлива устанавливаемых внутри топки дополнительных поверхностей нагрева, т.е. использование их не только в качестве поверхностей охлаждения, но и в качестве элементов, организующих сам процесс горения, т. е. выполняющих не одну, а несколько функций. Указанная задача достигается тем, что у топочной камеры для сжигания жидкого и газообразного топлива, состоящей из ограждающих и ширмовых (двухсветных) поверхностей нагрева и горелочного устройства, ширмовые поверхности нагрева располагают в виде уголковых или плоских стабилизаторов пламени, часть плоских стабилизаторов устанавливают под углом к потоку, в зоне стабилизаторов пламени устанавливают воздуховоды. Внутренняя поверхность стабилизаторов утеплена путем, например, набивки торкрета на шипы. Применение уголковых и плоских стабилизаторов пламени широко применяется в камерах сгорания газотурбинных двигателей (1). Конструкция упомянутых стабилизаторов выполняет функцию организации процесса горения, но не участвует в теплоотводе от газов. На фиг. 1 показан поперечный разрез в плане топочной камеры, на фиг. 2 - сечение А-А на фиг. 1, на фиг. 3 - узел Б на фиг. 1. Конструкция состоит из внешнего ограждения 1, установленных внутри топочного объема уголковых 2 или плоских 3 стабилизаторов пламени. Внутри зон стабилизации устанавливаются трубы подвода вторичного (третичного) воздуха 4. Вдоль внешнего ограждения 1 установлены отражатели потока 5. Работает конструкция следующим образом. Топливо на входе в камеру предварительно смешивается с первичным воздухом при избытке последнего меньше 1. Вторичный и третичный воздух для дожигания бедной смеси подводят далее по ходу газа непосредственно в зоны стабилизации пламени, доводя избыток воздуха до расчетного по условиям минимума химического и механического недожога. Сжигание топлива осуществляется по тракту с интенсивным отводом тепла поверхностями нагрева, которыми являются и сами стабилизаторы. Отвод тепла при сжигании эквивалентен, по эффекту снижения температуры горения, осуществлению рециркуляции охлажденного газа в ядро факела, что, как известно, способствует уменьшению образования окислов азота. По ходу движения горящей смеси при одновременном отводе тепла температура потока снижается, уменьшается при этом и объем газа. Для поддержания характера стабилизации на прежнем уровне угол раскрытия уголков целесообразно увеличивать 2 > 1 ; в пределе уголковый стабилизатор выраждается (при малых скоростях потока) в поперечно установленную пластину 3. На выходе потока пластины целесообразно ориентировать по повороту газа. Для отражения газа, двигающегося вдоль стен ограждения, установлены отражатели 5. Все вышесказанное позволяет организовать процесс сгорания топлива и его охлаждения в единый, что позволяет уменьшить габариты топочной камеры, особенно в длину.

Формула изобретения

1. Топочная камера котла для сжигания жидкого и газообразного топлива, состоящая из ограждающих и ширмовых поверхностей нагрева и горелочного устройства, отличающаяся тем, что ширмовые поверхности нагрева располагают в виде уголковых или плоских стабилизаторов пламени. 2. Камера по п. 1, отличающаяся тем, что часть плоских стабилизаторов устанавливают под углом к потолку. 3. Камера по п.1, отличающаяся тем, что в зоне стабилизаторов пламени устанавливают воздуховоды. 4. Камера по п.1, отличающаяся тем, что внутренняя поверхность стабилизаторов утеплена путем, например, набивки торкрета на шипы.

При проектировании и эксплуатации котельных установок чаще всего выполняется порядок расчета топочных камер. Конструктивный порядок расчета топочных камер производится только при разработке новых агрегатов конструкторскими бюро заводов-изготовителей или при реконструкции топочных камер существующих котлоагрегатов.

При выполнении поверочного расчета топки известны: объем топочной камеры, степень ее экранирования и площадь лучевоспринимающих поверхностей нагрева, а также конструктивные характеристики труб экранных и конвективных поверхностей нагрева (диаметр труб, расстояние между осями труб S 1 и между рядами S 2).

Порядок расчета топочных камер определяет: температуру продуктов сгорания на выходе из топочной камеры, удельные нагрузки колосниковой решетки и топочного объема. Полученные значения сравниваются с допустимыми, рекомендуемыми в «Нормативном методе».

Если температура продуктов сгорания на выходе из топочной камеры окажется выше допустимой по условиям шлакования конвективных поверхностей нагрева, то необходимо увеличить площадь экранных поверхностей нагрева, что может быть осуществлено только реконструкцией топки. Если удельные нагрузки колосниковой решетки или топочного объема окажутся выше допустимых, это приведет к увеличению потерь теплоты от химической и механической неполноты сгорания по сравне-нию с потерями, приведенными в «Нормативном методе».

Поверочный порядок расчета топочных камер однокамерных топок производится в следующем порядке расчета топочных камер (п. 1 -14).

1.По чертежу котельного агрегата составляется эскиз топки, определяется объем топочной камеры и площадь поверхности стен топки. Объем топочной камеры складывается из объема верхней, средней (призматической) и нижней частей топки. Для определения активного объема топки ее следует разбить на ряд элементарных геометрических фигур в соответствии со схемами, показанными на рис. 5-41.

Верхняя часть объема топки ограничивается потолочным перекрытием и выходным окном, перекрытым фестоном или первым рядом труб конвективной поверхности. При определении объема верхней части топки за его границы принимают потолочное перекрытие и плоскость, проходящую через оси первого ряда труб фестона или ось конвективной поверхности нагрева в выходном окне топки. Границами средней (призматической) части объема топки являются осевые плоскости экранных труб или стен топочной камеры.

Нижняя часть камерных топок ограничивается подом или холодной воронкой, а слоевых - колосниковой решеткой со слоем топлива. За границы нижней части объема камерных топок принимается под или условная горизонтальная плоскость, проходящая посередине высоты холодной воронки. За границы объема слоевых топок с механическими забрасывателями принимаются плоскость колосниковой решетки и вертикальная плоскость, проходящая через концы колосников, скребки шлакоснимателя. В топках с цепными механическими решетками из этого объема исключается объем слоя топлива и шлака, находящийся на решетке. Средняя толщина слоя топлива и шлака принимается равной для каменных углей 150-200 мм, для бурых углей - 300 мм, для древесной щепы - 500 мм.

Полная поверхность стен топки (F ст) вычисляется по размерам поверхностей, ограничивающих объем топочной камеры, как показано штриховкой в одну линию на рис. 5-41. Для этого все поверхности, ограничивающие объем топки, разбиваются на элементарные геометрически фигуры.

2. Предварительно задаются температурой продуктов сгорания на выходе из топочной камеры. Для промышленных и водогрейных котлов температура продуктов сгорания на выходе из топочной камеры ориентировочно принимается для твердого топлива на 60 °С меньшей температуры начала деформации золы, для жидкого топлива - равной 950-1000 °С, для природного газа 950-1050 °С.

3. Для принятой в п. 2 температуры определяется энталь-пия продуктов сгорания на выходе из топки по табл. 3-7.

4. Подсчитывается полезное тепловыделение в топке, кДж/кг
(кДж/м3):

Теплота воздуха (Q в) складывается из теплоты горячего воздуха и холодного, присосанного в топку, кДж/кг или кДж/м 3:

Коэффициент избытка воздуха в топке (α т) принимается по табл. 5-1 - 5-4 в зависимости от вида топлива и способа его сжи-гания. Присосы воздуха в топку принимаются по табл. 3-5, а в систему пылеприготовления - по табл. 5-9. Энтальпия теоретически необходимого горячего воздуха (Iог. в) и присосанного холодного воздуха (I ох. в) определяется по табл. 3-7 соответственно при температуре горячего воздуха после воздухоподогревателя и холодного воздуха при t в = 30°С. Теплота, внесенная в котлоагрегат с воздухом, при подогреве его вне агрегата подсчитывается по формуле (4-16). Потери теплоты q 3 , и q 4 и G 6 определяются из составленного ранее теплового баланса (см. §4-4).

Определяется коэффициент тепловой эффективности экранов

5.Угловым коэффициентом (х) называется отношение количества энергии, посылаемой на облучаемую поверхность, ко всему полусферическому излучению излучающей поверхности. Угловой коэффициент показывает, какая часть полусферического лучистого потока, испускаемого одной поверхностью, па-дает на другую поверхность. Угловой коэффициент излучения зависит от формы и взаимного расположения тел, находящихся в лучистом теплообмене друг с другом. Значение углового коэффициента определяется из рис. 5-42.

Коэффициент £ учитывает снижение тепловосприятия экранных поверхностей нагрева вследствие их загрязнения наружными отложениями или закрытия огнеупорной массой. Коэффициент загрязнения принимается по табл. 5-10. Если стены топки покрыты экранами с разными угловыми коэффициентами или частично покрыты огнеупорной массой (огнеупорным кирпичом), то определяется среднее значение коэффициента тепловой эффективности. При этом для неэкранированных участков топки коэффициент тепловой эффективности ф принимается равным нулю. При определении среднего коэффициента тепловой эффективности суммирование распространяется на все участки топочных стен. Для этого стены топочной камеры должны быть разбиты на отдельные участки, в которых угло-вой коэффициент и коэффициент загрязнения неизменны.

Определяется эффективная толщина излучающего слоя, м:

где V т, F ст - объем и площадь поверхности стен топочной камеры.

6. Определяется коэффициент ослабления лучей. При сжигании жидкого и газообразного топлива коэффициент ослабления лучей зависит от коэффициентов ослабления лучей трехатомными газами (k r) и сажистыми частицами (k c):

где rn - суммарная объемная доля трехатомных газов, берется из табл. 3-6.

Коэффициент ослабления лучей трехатомными газами (kr) определяется по номограмме (рис. 5-43) или по формуле

где p n = rn р - парциальное давление трехатомных газов, МПа; р - давление в топочной камере котлоагрегата (для агрегатов, работающих без наддува, принимается р = 0,1 МПа); r н2о - объемная доля водяных паров, берется из табл. 3-6; Т т " абсолютная температура на выходе из топочной камеры, К (равна принятой по предварительной оценке).

Коэффициент ослабления лучей сажистыми частицами 1/(м*МПа),

где С р, Н р - содержание углерода и жидкого топлива.

При сжигании природного газа водорода в рабочей массе где С m Н n - процентное содержание входящих в состав природного газа углеводородных соединений.

При сжигании твердого топлива коэффициент ослабления лучей зависит от коэффициентов ослабления лучей трехатомными газами, золовыми и коксовыми частицами и подсчитывается в 1/(м*МПа) по формуле

Коэффициент ослабления лучей частицами летучей золы (k эл) определяется по графику (рис. 5-44). Средняя массовая концентрация золы берется из расчетной табл. 3-6. Коэффициент ослабления лучей частицами кокса (k к) принимается: для топлив с малым выходом летучих (антрациты, полуантрациты, тощие угли) при сжигании в камерных топках к=1, а при сжигании в слоевых k к = 0,3; для высокореакционных топлив (каменный и бурый угли, торф) при сжигании в камерных топках k к = 0,5, а в слоевых k к = 0,15.

8. При сжигании твердого топлива определяется суммарная оптическая толщина среды kps. Коэффициент ослабления лучей k подсчитывается в зависимости от вида и способа сжигания топлива по формуле (5-22).

9. Подсчитывается степень черноты факела (α ф). Для твердого топлива она равна степени черноты среды, заполняющей топку (α). Эта величина определяется по графику (рис. 5-45)

или подсчитывается по формуле

где е - основание натуральных логарифмов Для жидкого и газообразного топлива степень черноты факела

где m - коэффициент, характеризующий долю топочного объема, заполненного светящейся частью факела, принимается из табл. 5-11; а св, а r - степень черноты светящейся части факела и несветящихся трехатомных газов, какой обладал бы факел при заполнении всей топки соответственно только светящимся пламенем или только несветящимися трехатомными газами; значения а св и а r определяются по формулам

здесь k r и k c - коэффициенты ослабления лучей трехатомными газами и сажистыми частицами (см. п. 7).

10.Определяется степень черноты топки:

для слоевых топок

где R - площадь зеркала горения слоя топлива, расположенного на колосниковой решетке, м 2 ;

для камерных топок при сжигании твердого топлива

для камерных топок при сжигании жидкого топлива и газа

11.Определяется параметр М в зависимости от относительного положения максимума температуры пламени по высоте толки (х т):

при сжигании мазута и газа

при камерном сжигании высокореакционных топлив и слоевом сжигании всех топлив

при камерном сжигании малореакционных твердых топлив (антрацит и тощий уголь), а также каменных углей с повышенной зольностью (типа экибастузского)

Максимальное значение М, рассчитанное по формулам (5-30) - (5-32), для камерных топок принимается не большим 0,5.

Относительное положение максимума температуры для большинства топлив определяется как отношение высоты размещения горелок к общей высоте топки

где h r подсчитывается как расстояние от пода топки или от середины холодной воронки до оси горелок, а H т - как рас-стояние от пода топки или от середины холодной воронки до середины выходного окна топки.

Для слоевых топок при сжигании топлива в тонком слое (топки с пневмомеханическими забрасывателями) и скоростных топок системы В. В. Померанцева принимается х т = 0; при сжигании топлива в толстом слое х т = 0,14.

12.Порядок расчета топочных камер определяет среднюю суммарнюю теплоемкость продуктов сгорания на 1 кг сжигаемого твердого и жидкого топлива или на 1 м 3 газа при нормальных условиях, кДж/(кг*К) или кДж/(м 3 *К):

где Т a - теоретическая (адиабатная) температура горения, К, определяемая из табл. 3-7 по Q T , равному энтальпии продуктов сгорания а; Т т " - температура на выходе из топки, принятая по предварительной оценке, К; I т "- энтальпия продуктов сгорания, берется из табл. 3-7 при принятой на выходе из топки температуре; Q T - полезное тепловыделение в топке (см. п. 4).

13.Определяется действительная температура на выходе из топки, °С, по номограмме (рис. 5-46) или формуле

Полученная температура на выходе из топки сравнивается с температурой, принятой ранее, в п. 2. Если расхождение между полученной температурой (Ɵ т ") и ранее принятой на выходе из топки не превысит ±100 °С, то расчет считается оконченным. В противном случае задаются новым, уточненным, значением температуры на выходе из топки и весь расчет повторяется.

Определяются удельные нагрузки колосниковой решетки и топочного объема по формулам (5-2), (5-4) и сравни-ваются с допустимыми значениями, приведенными для различных топок в табл. 5-1 - 5-4.

Расчет топочной камеры может быть выполненным поверочным или конструктивным методом.

При поверочном расчете должны быть известны конструктивные данные топки. При этом расчет сводится к определению температуры газов на выходе из топки θ” Т. Если в результате расчета θ” Т окажется значительно выше или ниже допустимой, то её необходимо изменить до рекомендуемой за счет уменьшения или увеличения лучевоспринимающих поверхностей нагрева топки Н Л.

При конструкторском расчете топки используется рекомендуемая температура θ”, исключающая шлакование последующих поверхностей нагрева. При этом определяется необходимая лучевоспринимающая поверхность нагрева топки Н Л, а так же площадь стен F СТ, на которых должны быть возмещены экраны и горелки.

Для выполнения теплового расчета топки составляет её эскиз. Объём топочной камеры V Т; поверхность стен, ограничивающих объём F СТ; площадь колосниковой решетки R; эффективную лучевоспринимающую поверхность нагрева Н Л; степень экранирования Х определяют в соответствии со схемами рис.1. Границами активного

топочного объема V Т являются стены топочной камеры, а при наличии экранов – осевые плоскости экранных труб. В выходном сечении её объем ограничивается поверхностью, проходящей через оси первого котельного пучка или фестона. Границей объема нижней части топки являются пол. При наличии холодной воронки за нижнюю границу объёма топки условно принимается горизонтальная плоскость, отделяющая половину высоты холодной воронки.

Полная поверхность стен топки F ст вычисляется суммированием всех боковых поверхностей, ограничивающих объем топочной камеры и камеры сгорания.

Площадь колосниковой решетки R определяется по чертежам или по типоразмерам соответствующих топочных устройств.

Задаемся

t΄ вых =1000°C.

Рисунок 1. Эскиз топки

Площадь каждой стенки топки, м 2

Полная поверхность стен топки F ст, м 2

Лучевоспринимающая поверхность нагрева топки Н л, м 2 , рассчитыва­ется по формуле

где F пл X - лучевоспринимающая поверхность экранов стены, м 2 ; F пл =bl - площадь стены, занятой экранами. Определяется как произведение рас­стояния между осями крайних труб данного экрана b , м, на освещенную длину экранных труб l , м. Величина l определяется в соответствии со схемами рис.1 .

X - угловой коэффициент облучения экрана, зависящий от относительного шага экранных труб S/d и расстояния от оси экранных труб до стенки топки (номограмма 1 ).

Принимаем Х=0,86 при S/d=80/60=1,33

Степень экранирования камерной топки

Эффективная толщина излучающего слоя топки, м

Передача тепла в топки от продуктов сгорания к рабочему телу происходит в основном за счет излучения газов. Целью расчета теплообмена в топке является определение температуры газов на выходе из топки υ” т по номограмме. При этом необходимо предварительно определить следующие величины:

М, а Ф, В Р ×Q Т /F СТ, θ теор, Ψ

Параметр М зависит от относительного положения максимальной температуры пламени по высоте топки Х Т.

Для камерных топок при горизонтальном расположении осей горелок и верхнем отводе газов из топки:

Х Т =h Г /h Т =1/3

где h Г – высота расположения осей горелок от пола топки или от середины холодной воронки; h Т - общая высота топки от пола или середины холодной воронки до середины выходного окна топки или ширм при полном заполнении ими верхней части топки.

При сжигании мазута:

М=0.54-0.2Х Т =0,54-0,2·1/3=0,5

Эффективная степень черноты факела а Ф зависит от рода топлива и условий его сжигания.

При сжигании жидкого топлива эффективная степень черноты факела:

a Ф =m×а св +(1-m)×а г =0,55·0,64+(1-0,55)·0,27=0,473

где m=0,55 – коэффициент усреднения, зависящий от теплового напряжения топочного объёма; q V – удельное тепловыделение на единицу объёма топочной камеры.

В промежуточных значениях q V величина m определяется линейной интерполяцией.

а г, а св – степень черноты, какой обладал бы факел при заполнении всей топки соответственно только светящимся пламенем или только несветящимися трехатомными газами. Величины а св и а г определяются по формулам

а св =1-е -(Кг× Rn +Кс)Р S =1-е -(0.4·0.282+0.25)·1·2,8 =0.64

а г =1-е -Кг× Rn ×Р S =1-е -0,4·0,282·1·2,8 =0,27

где е – основание натуральных логарифмов; к r – коэффициент ослабления лучей трёхатомными газами, определяется по номограмме с учетом температуры на выходе из топки, способа размола и вида сжигания; r n =r RO 2 +r H 2 O – суммарная объёмная доля трёхатомных газов (определяется по табл.1.2).

Коэффициент ослабления лучей трехатомными газами:

К r =0.45(по номограмме 3)

Коэффициент ослабления лучей сажистыми частицами, 1/м 2 ×кгс/см 2:

0,03·(2-1,1)(1,6·1050/1000-0,5)·83/10,4=0,25

где а т – коэффициент избытка воздуха на выходе из топки;

С Р и Н Р – содержание углерода и водорода в рабочем топливе,%.

Для природного газа С Р /Н Р =0.12∑m×C m ×H n /n.

Р – давление в топке, кгс/см 2 ; для котлов без наддува Р=1;

S – эффективная толщина излучающего слоя, м.

При сжигании твердых топлив степень черноты факела а Ф находят по номограмме, определив суммарную оптическую величину К×Р×S,

где Р – абсолютное давление (в топках с уравновешенной тягой Р=1 кгс/см 2); S – толщина излучающего слоя топки, м.

Тепловыделение в топки на 1 м 2 ограждающих ее поверхностей нагрева, ккал/м 2 ч:

q v =

Полезное тепловыделение в топке на 1 кг сжигаемого топлива, нм 3:

где Q в – тепло, вносимое воздухом в топку (при наличии воздухоподогревателя) , ккал/кг:

Q B =(a т -∆a т -∆a пп)×I 0 в +(∆a т +∆a пп)×I 0 хв =

=(1,1-0,1)·770+0,1·150=785

где ∆а т – величина присоса в топке;

а пп – величина присоса в пылеприготовительной системе (выбирают по таблице). ∆а пп = 0, т.к. мазут.

Энтальпии теоретически необходимого количества воздуха Ј 0 г.в =848,3 ккал/кг при температуре за воздухоподогревателем (предварительно принятой) и холодного воздуха Ј 0 х.в. принимают по таблице 1.3.

Температура горячего воздуха на выходе из воздухоподогревателя выбирается для мазута – по таблице 3, t гор. в-ха =250 ○ С.

Теоретическую температуру горения υ теор =1970°C определяют по таблице 1.3 по найденному значению Q т.

Коэффициент тепловой эффективности экранов:

где Х – степень экранирования топки (определена в конструктивных характеристиках); ζ – условный коэффициент загрязнения экранов.

Условный коэффициент загрязнения экранов ζ для мазута равен 0,55 с открытыми гладкотрубными экранами.

Определив М, а Ф, В Р ×Q T /F CT ,υ теор, Ψ, находят температуру газов на выходе из топки υ˝ т по номограмме 6.

При расхождениях в значениях υ” т менее чем на 50 0 С определенную по номограмме температуру газов на выходе из топки принимают как окончательную. С учетом сокращений в вычислениях принимаем υ" т =1000°C.

Тепло, переданное в топке излучением, ккал/кг:

где φ – коэффициент сохранения тепла (из теплового баланса).

Энтальпию газов на выходе из топки Ј” Т находят по таблице 1.3 при а т и υ” т видимое тепловое напряжение топочного объёма, ккал/м 3 ч.

В курсовом проекте выполняется поверочный расчет топочной камеры. В этом случае известны объем топочной камеры, степень е экранирования, площадь лучевоспринимающих поверхностей нагрева, конструктивные характеристики экранных и конвективных поверхностей нагрева (диаметр труб, расстояния между осями труб и т.д.).

В результате расчета определяется температура продуктов сгорания на выходе из топки , удельные тепловые нагрузки колосниковой решетки и топочного объема.

Поверочный расчет однокамерных топок выполняется в следующей последовательности.

1. По чертежу котельного агрегата составляется эскиз топочной камеры. Нижняя часть камерных топок ограничивается подом или холодной воронкой, а слоевых – колосниковой решеткой и слоем топлива. Средняя толщина слоя топлива и шлака принимается для каменных углей 150-200 мм, для бурых углей – 300 мм, для древесной щепы – 500 мм.

Полная поверхность стен топочной камеры F ст и объем топочной камеры вычисляется следующим путем. Поверхностью, ограничивающей топочный объем, считается поверхность, проходящая через оси экранных труб на экранированных стенах топки, через стены топки на неэкранированных участках и через под топочной камеры для газомазутных топок или через слой топлива для топок со слоевым сжиганием твердого топлива, как указано выше.

2. Предварительно задаемся температурой продуктов сгорания на выходе из топочной камеры . Для твердого топлива температура продуктов сгорания на выходе из топочной камеры принимается ориентировочно на 60 о С меньше температуры начала деформации золы, для жидкого топлива равной 950-1000 0 С, для природного газа 950-1050 0 С.

3. Для предварительно принятой температуры на выходе из топки по диаграмме определяют энтальпию продуктов сгорания на выходе из топки .

4. Определяется полезное тепловыделение в топке, кДж/кг, кДж/м 3 . для промышленных котлов без воздухоподогревателя:

(5.1)

Потери теплоты q 3 , q 4 и q 6 принимаются из раздела 4.

5. Определяем коэффициент тепловой эффективности топочных экранов

Угловой коэффициент излучения x зависит от формы и расположения тел, находящимися в лучистом теплообмене друг с другом и определяется для однорядного гладкотрубного экрана по рис.5.1.



Рис.5.1. Угловой коэффициент однорядного гладкотрубного экрана.

1 – при расстоянии от стенки ; 2 - при ; 3 - при ; 4 - при ; 5 без учета излучения обмуровки при .

Коэффициент тепловой эффективности учитывает снижение тепловосприятия экранных поверхностей вследствие их загрязнения наружными отложениями или покрытия огнеупорной массой. Коэффициент загрязнения принимается по таблице 5.1. При этом, если стены топочной камеры покрыты экранами с разными угловыми коэффициентами или имеют неэкранированные участки топки определяется средний коэффициент тепловой эффективности по выражению

, (5.3)

где - площадь поверхности стен, занятая экранами;

F ст – полная поверхность стен топочной камеры, вычисляется по размерам поверхностей, ограничивающих топочный объем, рис.5.2. При этом, для неэкранированных участков топки принимается равным нулю.




Рис.5.2.Определение активного объема характерных частей топки


Рис.5.3. Коэффициент ослабления лучей трехатомными газами


Таблица 5.1.

Коэффициент загрязнения топочных экранов

Экраны Топливо Значение
Открытые гладкотрубные и плавниковые настенные Газообразное 0,65
Мазут 0,55
АШ и ПА при , тощий уголь при , каменные и бурые угли, фрезерный торф 0,45
Экибастузский уголь при 0,35-0,40
Бурые угли с при газовой сушке и прямом вдувании 0,55
Сланцы северо-западных месторождений 0,25
Все виды топлива при слоевом сжигании 0,60
Ошипованные, покрытые огнеупорной массой, в топках с твердым шлакоудалением Все виды топлива 0,20
Закрытые огнеупорным кирпичом Все виды топлива 0,1

6.Определяется эффективная толщина излучающего слоя, м:

где V т и F ст – объем и площадь поверхности стен топочной камеры.

7. Определяется коэффициент ослабления лучей. При сжигании жидкого и газообразного топлива коэффициент ослабления лучей зависит от коэффициента ослабления лучей трехатомными газами (k г) и сажистыми частицами (k с), 1/(м МПа):

где r п – суммарная объемная доля трехатомных газов, берется из табл. 3.3.

Коэффициент ослабления лучей трехатомными газами может определяться по номограмме (рис.5.4) или по формуле, 1/(м МПа)

, (5.6)

Где р п =r п р – парциальное давление трехатомных газов, МПа; р – давление в топочной камере котлоагрегата (для котлоагрегатов, работающих без наддува р=0,1 МПа; r Н2О – объемная доля водяных паров, принимается из таблицы 3.3; - абсолютная температура на выходе из топки, К (предварительно принятая).

Коэффициент ослабления лучей сажистыми частицами, 1/(м МПа),

k с = , (5.7)

где С р и Н р –содержание углерода и водорода в рабочей массе твердого или жидкого топлива.

При сжигании природного газа

, (5.8)

где С m H n – процентное содержание углеводородистых соединения в природном газе.

При сжигании твердого топлива коэффициент ослабления лучей определяется по формуле:


, (5.9)

где k зл – коэффициент ослабления лучей частицами летучей золы, определяется по графику (рис.5.4)

Рис.5.4. Коэффициент ослабления лучей золовыми частицами.

1 – при сжигании пыли в циклонных топках; 2 – при сжигании углей, размолотых в шаровых барабанных мельницах; 3 – то же, размолотых в среднеходных и молотковых мельницах и в мельницах вентиляторах; 4 – при сжигании дробленки в циклонных топках и топлива в слоевых топках; 5 – при сжигании торфа в камерных топках.

k к – коэффициент ослабления лучей частицами кокса принимается: для топлив с малым выходом летучих (антрациты, полуантрациты, тощие угли) при сжигании в камерных топках k к = 1, а при сжигании в слоевых k к =0,3; для высокореакционных топлив (каменный и бурый уголь, торф) при сжигании в камерных топках k к =0,5, а в слоевых k к =0,15.

8. При сжигании твердого топлива определяется суммарная оптическая толщина среды kps. Коэффициент ослабления лучей подсчитывается по формуле (5.9).

9. Подсчитывается степень черноты факела . Для твердого топлива она равна степени черноты среды, заполняющей топку а. Эта величина может быть определена по графику 5.5 или подсчитана по формуле


где е основание натурального логарифма.

Рис.5.6. Степень черноты продуктов сгорания в зависимости от суммарной оптической толщины среды

Для котлов, работающих без наддува и с наддувом, на большим 0,105 МПА, принимается р=0,1 МПа

Для жидкого и газообразного топлива степень черноты факела

(5.11)

где - коэффициент, характеризующий долю топочного объема, заполненную светящейся частью факела, при мается по табл. 5.2;

а св и а г – степень черноты светящейся и несветящейся части пламени, определяются по формулам

(5.12)лицтаблицепо таблицеризующий долю топочного объема, заполненную светящейся частью факелажет быть определена по графику

здесь k г и k с – коэффициенты ослабления лучей трехатомными газами и сажистыми частицами.

Таблица 5.2.

Доля топочного объема, заполненная светящейся частью факела

Примечание. При удельных нагрузках топочного объема больше 400 и меньше 1000 кВт/м 3 значение коэффициента m определяется линейной интерполяцией.

10. Определяется степень черноты топки:

для слоевых топок

, (5.14)

где R – площадь горения слоя топлива, расположенного на колосниковой решетке, м 2 ;

для камерных топок при сжигании твердого, жидкого и газообразного топлива

. (5.15)

11. Определяется параметр М, зависящий от относительного положения максимума температуры по высоте топки х т:

при сжигании газа и мазута

М=0,54-0,2х т; (5.16)

при сжигании высокореакционных топлив и слоевом сжигании всех видов топлива

М=0,59-0,5х т; (5.17)

При камерном сжигании малореакционных твердых топлив (антрацит и тощий уголь), а также каменных углей с повышенной зольностью (типа экибастузского)

М=0,56-0,5 т. (5.18)

Максимальное значение М для камерных топок принимается не более 0,5.

Относительное положение максимума температуры для большинства топок определяется как отношение высоты размещения горелок к высоте топки

где h г подсчитывается как расстояние от пода топки или от середины холодной воронки до оси горелок, а Н т – как расстояние от пода топки или от середины хододной воронки до середины выходного окна топки.

Диаграмме по предварительно принятой температуре на выходе из топки; - полезное тепловыделение в топке (5.1).

13. Определяется действительная температура продуктов сгорания на выходе из топки, о С, по формуле

(5.20)

Полученная температура на выходе из топки сравнивается с предварительно принятой температурой. Если расхождение между полученной температурой и ранее принятой на выходе из топки не превышает 100 о С, то расчет считается оконченным. В противном случае задаются новым, уточненным значением температуры на выходе из топки и весь расчет повторяют.

14. Определяются тепловые напряжения колосниковой решетки и топочного объема, кВт/м 2 , кВт/м 3

и сравниваются с допустимыми значения, приведенными в таблице характеристик принятого типа топки.

Классификация

Технологии сжигания органических топлив

По способу сжигания топлива:

  • слоевые;
  • камерные.

Слоевые топки в свою очередь классифицируют:

  • По расположению относительно обмуровки котла:
    • внутренние;
    • выносные.
  • По расположению колосниковых решеток:
    • с горизонтальными решетками;
    • с наклонными решетками.
  • По способу подачи топлива и организации обслуживания:
    • ручные;
    • полумеханические;
    • механизированные.
  • По характеру организации слоя топлива на решетке:
    • с неподвижной колосниковой решеткой топлива ;
    • с неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива;
    • с движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива (перемещение слоя топлива вместе с колосниковой решеткой).

Камерные топки разделяют:

  • По способу удаления шлака:
    • с твердым шлакоудалением;
    • с жидким шлакоудалением:
      • однокамерные;
      • двухкамерные.

Слоевая топка

Слоевая топка

Топки, в которых производится слоевое сжигание кускового твердого топлива , называются слоевыми. Эта топка состоит из колосниковой решетки , поддерживающей слой кускового топлива, и топочного пространства, в котором сгорают горючие летучие вещества. Каждая топка предназначена для сжигания определенного вида топлива . Конструкции топок разнообразны, и каждая из них соответствует определенному способу сжигания. От размеров и конструкции топки зависят производительность и экономичность котельной установки .

Слоевые топки по характеру организации слоя топлива на решетке разделяются на три класса:

  • С неподвижной колосниковой решеткой и неподвижно лежащим на ней слоем топлива ;
  • С неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива;
  • С движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива (перемещение слоя топлива вместе с колосниковой решеткой).

В зависимости от степени механизации подачи топлива и удаления шлака слоевые топки разделяются на:

  • топки с ручным обслуживанием (ручные топки);
  • полумеханические;
  • полностью механизированные;

Камерная топка

Камерная топка

Камерные топки применяют для сжигания твердого, жидкого и газообразного топлива. При этом твердое топливо должно быть предварительно размолото в тонкий порошок в специальных пылеприготовительньгх установках - углеразмольных мельницах, а жидкое топливо - распылено на очень мелкие капли в мазутных форсунках. Газообразное топливо не требует предварительной подготовки.

Характеристика топки

Тепловые характеристики топки

Количество топлива, которое можно сжечь с минимальными потерями в данной топке для получения необходимого количества тепла, определяется размерами и типом топочного устройства, а также видом топлива и способом его сжигания. К качественным показателям работы топочного устройства относится величина потерь тепла вследствие химической неполноты сгорания и механического недожога . Численное значение этих потерь для различных топочных устройств различно; оно также зависит от вида топлива и способа его сжигания. Так, для камерных топок величина колеблется от 0,5 до 1,5%, для слоевых - от 2 до 5%(потери тепла); при камерном сжигании топлива составляет 1-6%, при слоевом 6-14%(недожог).

Конструктивные характеристики топки

Основными конструктивными показателями топки являются:

  • Объем топочной камеры (м 3);
  • Площадь стен топки (м 2);
  • Площадь, занимаемая лучевоспинимающей поверхностью (м 2);
  • Площадь променесприймальнои поверхности (м 2);
  • Степень экранирования стен топки;
  • Коэффициент тепловой эффективности топки.

Теплообмен в топке

В топке одновременно происходят горение топлива и сложный радиационный и конвективный теплообмен между заполняющей ее средой и поверхностями нагрева .

Источниками излучения в топках при слоевом сжигании топлива являются поверхность раскаленного слоя топлива, пламя горения летучих веществ, выделившихся из топлива, и трехатомные продукты сгорания С0 2 , S0 2 и Н 2 О.

При факельном сжигании пыли твердого топлива и мазута источниками излучения являются центры пламени, образующиеся вблизи поверхности частиц топлива от горения летучих, распределенных в факеле, раскаленные частицы кокса и золы, а также трехатомные продукты сгорания. При горении в факеле распыленного жидкого топлива излучение частиц топлива незначительно.

При сжигании газа источниками излучения являются объем его горящего факела и трехатомные продукты сгорания. При этом интенсивность излучения факела зависит от состава газа и условий протекания процесса горения.

Наиболее интенсивно излучает теплоту пламя горящих летучих веществ, выделяющихся при горении твердого и жидкого топлива. Менее интенсивно излучение горящего кокса и раскаленных частиц золы, наиболее слабым оказывается излучение трехатомных газов. Двухатомные газы практически не излучают теплоты. По интенсивности излучения в видимой области спектра различают:

  • светящийся
  • полусветящийся
  • несветящийся факелы.

Излучение светящегося и полусветящегося факела определяется наличием твердых частиц-коксовых, сажистых и золовых в потоке продуктов сгорания . Излучение не-светящегося факела - излучением трехатомных газов. Интенсивность излучения твердых частиц зависит от их размера и концентрации в топочном объеме. По удельной интенсивности излучения коксовые частицы приближаются к абсолютно черному телу, но при сжигании пыли твердого топлива их концентрация в факеле мала (примерно 0,1 кг/м 3) и поэтому излучение коксовых частиц на экраны топки составляет 25-30 % суммарного излучения топочной среды. Золовые частицы заполняют весь топочный объем, концентрация их зависит от зольности топлива. Тепловое излучение золовых частиц в факельных топках составляет 40-60 % суммарного излучения топочной среды. Сажистые частицы образуются при сжигании мазута и природного газа. В ядре факела они имеют высокую концентрацию и обладают большой излучательной способностью. Излу-чение трехатомных газов, заполняющих объем топочной камеры, определяется их концентрацией и толщиной объ¬ема излучения.

Доля излучения трехатомных газов составляет 20-30 % суммарного излучения. В газомазутных топках условно разделяют длину факела на две части:

  • светящуюся
  • несветящуюся

Интенсивность излучения ядра факела мазута в 2-3 раза выше, чем ядра факела при сжигании пыли твердого топлива. Тепловосприятие экранов топки определяется интенсивностью излучения топочной среды и тепловой эффективностью экранов. Увеличение интенсивности излучения среды топки повышает падающий на экраны тепловой поток. Снижение тепловой эффективности экранов уменьшает их тепловосприятие.

Литература

  • Киселев Н.А. Котельные установки. - Москва: Высшая школа, 1979. - 270 с.
  • Сидельковский Л.Н., Юренев В.Н. Котельные установки промышленнх предприятий. - Москва: Энергия, Энергоотомиздат, 1988. - 528 с. - 35000 экз. -