Что такое спин электрона на самом деле. Спин электрона

Положительное число - так называемое спиновое квантовое число , которое обычно называют просто спином (одно из квантовых чисел).

В связи с этим говорят о целом или полуцелом спине частицы.

Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантовомеханического явления, не имеющего аналогии в классической механике: обменного взаимодействия .

Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике . Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами ; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы .

Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы .

Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином описываются однокомпонентной волновой функцией (скаляр), со спином 1 2 {\displaystyle {\frac {1}{2}}} описываются двухкомпонентной волновой функцией (спинор), со спином 1 {\displaystyle 1} описываются четырёхкомпонентной волновой функцией (вектор), со спином 2 {\displaystyle 2} описываются шестикомпонентной волновой функцией (тензор) .

Энциклопедичный YouTube

  • 1 / 5

    Хотя термин спин относится только к квантовым свойствам частиц, свойства некоторых циклически действующих макроскопических систем тоже может быть описаны неким числом, которое показывает на сколько частей нужно разделить цикл вращения некого элемента системы, для того, чтобы она вернулась в состояние, неотличимое от начального.

    Самый простой пример спина - это целый спин равный 1:

    если взять вектор (для примера - положить ручку на стол) и повернуть его на 360 градусов , то этот вектор вернется в своё первоначальное состояние (ручка опять будет лежать так же, как и до поворота).

    Также легко представить себе спин равный 0 :

    это точка - она со всех сторон выглядит одинаково , как её ни крути.

    Чуть сложнее с целым спином равным 2 :

    нужно будет придумать объект, который ведёт себя так же, как в предыдущем примере со спином 1, но при повороте на 180 градусов (то есть вдвое меньше полного оборота) - это тоже просто - нужно взять двунаправленный вектор (примером из жизни может служить обычный карандаш, только заточенный с двух сторон или не заточенный вообще - главное чтобы был без надписей и однотонный, Хокинг в качестве примера приводил обычную игральную карту типа короля или дамы ) - и тогда после поворота на 180 градусов он вернется в положение, не отличимое от исходного.

    А вот c полуцелым спином равным 1 / 2 уже придётся выходить в 3 измерения:

    • Если взять лист Мёбиуса и представить, что по нему ползет муравей, тогда, сделав один оборот (пройдя 360 градусов), муравей окажется в той же точке, но с другой стороны листа, а чтобы вернуться в точку, откуда он начал, придётся пройти все 720 градусов .
    • Еще один пример - четырехтактный двигатель внутреннего сгорания. При повороте коленчатого вала на 360 градусов поршень вернется в исходное положение (например, верхнюю мертвую точку), но распределительный вал вращается в 2 раза медленное и совершит полный оборот при повороте коленчатого вала на 720 градусов. То есть при повороте колечатого вала на 2 оборота двигатель внутреннего сгорания вернется в то же состояние. В этом случае третьим измерением будет положение распределительного вала.

    На подобных примерах можно проиллюстрировать сложение спинов:

    • Два заточенных только с одной стороны одинаковых карандаша ("спин" каждого - 1), скрепленные друг с другом, так, что острый конец одного будет рядом с тупым концом другого. Такая система вернется в неотличимое от начального состояния при повороте всего на 180 градусов, то есть "спин" системы стал равным двум.
    • Многоцилиндровый четырехтактный двигатель внутреннего сгорания ("спин" каждого из цилиндров которого равен 1/2). Если все цилиндры работают одинаково, то состояния, при которых поршень находится в начале такта рабочего хода в любом из цилиндров, будут неотличимы. Следовательно, двухцилиндровый двигатель будет возвращаться в состояние, неотличимое от исходного, через каждые 360 градусов (суммарный "спин" - 1), четырехцилиндровый - через 180 градусов ("спин" - 2), восьмицилиндровый - через 90 градусов ("спин" - 4).

    Свойства спина

    Любая частица может обладать двумя видами углового момента : орбитальным угловым моментом и спином.

    В отличие от орбитального углового момента, который порождается движением частицы в пространстве, спин не связан с движением в пространстве. Спин - это внутренняя, исключительно квантовая характеристика, которую нельзя объяснить в рамках релятивистской механики . Если представлять частицу (например, электрон) как вращающийся шарик, а спин как момент, связанный с этим вращением, то оказывается, что поперечная скорость движения оболочки частицы должна быть выше скорости света, что недопустимо с позиции релятивизма.

    «В частности было бы совершенно бессмысленным представлять себе собственный момент элементарной частицы, как результат ее вращения „вокруг собственной оси“»

    Будучи одним из проявлений углового момента, спин в квантовой механике описывается векторным оператором спина s → ^ , {\displaystyle {\hat {\vec {s}}},} алгебра компонент которого полностью совпадает с алгеброй операторов орбитального углового момента ℓ → ^ . {\displaystyle {\hat {\vec {\ell }}}.} Однако, в отличие от орбитального углового момента, оператор спина не выражается через классические переменные, иными словами, это только квантовая величина. Следствием этого является тот факт, что спин (и его проекции на какую-либо ось) может принимать не только целые, но и полуцелые значения (в единицах постоянной Дирака ħ ).

    Спин испытывает квантовые флуктуации. В результате квантовых флуктуаций строго определённое значение может иметь только одна компонента спина, например . При этом компоненты J x , J y {\displaystyle J_{x},J_{y}} флуктуируют вокруг среднего значения. Максимально возможное значение компоненты J z {\displaystyle J_{z}} равно J {\displaystyle J} . В то же время квадрат J 2 {\displaystyle J^{2}} всего вектора спина равен J (J + 1) {\displaystyle J(J+1)} . Таким образом J x 2 + J y 2 = J 2 − J z 2 ⩾ J {\displaystyle J_{x}^{2}+J_{y}^{2}=J^{2}-J_{z}^{2}\geqslant J} . При J = 1 2 {\displaystyle J={\frac {1}{2}}} среднеквадратические значения всех компонент из-за флуктуаций равны J x 2 ^ = J y 2 ^ = J z 2 ^ = 1 4 {\displaystyle {\widehat {J_{x}^{2}}}={\widehat {J_{y}^{2}}}={\widehat {J_{z}^{2}}}={\frac {1}{4}}} .

    Вектор спина меняет своё направление при преобразовании Лоренца. Ось этого поворота перпендикулярна импульсу частицы и относительной скорости систем отсчёта .

    Примеры

    Ниже указаны спины некоторых микрочастиц.

    спин общее название частиц примеры
    0 скалярные частицы π -мезоны , K-мезоны , хиггсовский бозон , атомы и ядра 4 He , чётно-чётные ядра, парапозитроний
    1/2 спинорные частицы электрон , кварки , мюон , тау-лептон , нейтрино , протон , нейтрон , атомы и ядра 3 He
    1 векторные частицы фотон , глюон , W- и Z-бозоны , векторные мезоны , ортопозитроний
    3/2 спин-векторные частицы Ω-гиперон , Δ-резонансы
    2 тензорные частицы гравитон , тензорные мезоны

    На июль 2004 года, максимальным спином среди известных барионов обладает барионный резонанс Δ(2950) со спином 15/2. Спин стабильных ядер не может превышать 9 2 ℏ {\displaystyle {\frac {9}{2}}\hbar } .

    История

    Математически теория спина оказалась очень прозрачной, и в дальнейшем по аналогии с ней была построена теория изоспина .

    Спин и магнитный момент

    Несмотря на то, что спин не связан с реальным вращением частицы, он тем не менее порождает определённый магнитный момент , а значит, приводит к дополнительному (по сравнению с классической электродинамикой) взаимодействию с магнитным полем . Отношение величины магнитного момента к величине спина называется гиромагнитным отношением , и, в отличие от орбитального углового момента, оно не равно магнетону ( μ 0 {\displaystyle \mu _{0}} ):

    μ → ^ = g ⋅ μ 0 s → ^ . {\displaystyle {\hat {\vec {\mu }}}=g\cdot \mu _{0}{\hat {\vec {s}}}.}

    Введённый здесь множитель g называется g -фактором частицы; значения этого g -фактора для различных элементарных частиц активно исследуются в физике элементарных частиц .

    Спин и статистика

    Вследствие того, что все элементарные частицы одного и того же сорта тождественны , волновая функция системы из нескольких одинаковых частиц должна быть либо симметричной (то есть не изменяется), либо антисимметричной (домножается на −1) относительно перестановки местами двух любых частиц. В первом случае говорят, что частицы подчиняются статистике Бозе - Эйнштейна и называются бозонами . Во втором случае частицы описываются статистикой Ферми - Дирака и называются фермионами .

    Оказывается, именно значение спина частицы говорит о том, каковы будут эти симметрийные свойства. Сформулированная Вольфгангом Паули в 1940 году теорема о связи спина со статистикой утверждает, что частицы с целым спином (s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином (s = 1/2, 3/2, …) - фермионами .

    Как в классической, так и в квантовой механике закон сохранения момента возникает как результат изотропии пространства по отношению к замкнутой системе. Уже в этом проявляется связь момента со свойствами симметрии по отношению к вращениям. Но в квантовой механике эта связь становится в особенности глубокой, делаясь по существу основным содержанием понятия о моменте, тем более, что классическое определение момента частицы как произведения теряет здесь свой непосредственный смысл в виду одновременной неизмеримости радиуса-вектора и импульса.

    Мы видели в § 28, что задание значений l к определяет угловую зависимость волновой функции частицы, а тем самым - все ее свойства симметрии по отношению к вращениям. В наиболее общем виде формулировка этих свойств сводится к указанию закона преобразования волновых функций при поворотах системы координат.

    Неизменной волновая функция системы частиц (с заданными значениями момента L и его проекции М) остается лишь при повороте системы координат вокруг оси . Всякий же поворот, меняющий направление оси , приводит к тому, что проекция момента на ось уже не будет иметь определенного значения. Это значит, что в новых координатных осях волновая функция превратится, вообще говоря, в суперпозицию (линейную комбинацию) функций, отвечающих различным возможным (при заданном L) значениям М. Можно сказать, что при поворотах системы координат функций преобразуются друг через друга. Закон этого преобразования, т. е. коэффициенты суперпозиции (как функции углов поворота координатных осей), полностью определяется заданием значения L. Таким образом, момент приобретает смысл квантового числа, классифицирующего состояния системы по их трансформационным свойствам по отношению к вращениям системы координат.

    Этот аспект понятия момента в квантовой механике в особенности существен в связи с тем, что он не связан непосредственно с явной зависимостью волновых функций от углов; закон их преобразования друг через друга может быть сформулирован сам по себе, без ссылки на эту зависимость.

    Рассмотрим сложную частицу (скажем, атомное ядро), покоящуюся как целое и находящуюся в определенном внутреннем состоянии. Помимо определенной внутренней энергии она обладает также и определенным по своей величине L моментом, связанным с движением частиц внутри нее; этот момент может еще иметь 2L + 1 различных ориентаций в пространстве. Другими словами, при рассмотрении движения сложной частицы как целого мы должны, наряду с ее координатами, приписывать ей еще и одну дискретную переменную - проекцию ее внутреннего момента на некоторое избранное направление в пространстве.

    Но при указанном выше понимании смысла момента становится несущественным вопрос о его происхождении, и мы приходим естественным образом к представлению о «собственном» моменте, который должен быть приписан частице вне зависимости от того, является ли она «сложной» или «элементарной».

    Таким образом, в квантовой механике элементарной частице следует приписывать некоторый «собственный» момент, не связанный с ее движением в пространстве. Это свойство элементарных частиц является специфически квантовым (исчезающим при переходе к пределу и поэтому принципиально не допускает классической интерпретации.

    Собственный момент частицы называют ее спином, в отличие от момента, связанного с движением частицы в пространстве, о котором говорят как об орбитальном моменте. Речь может идти при этом как об элементарной частице, так и о частице, хотя и составной, но ведущей себя в том или ином рассматриваемом круге явлений как элементарная (например, об атомном ядре). Спин частицы (измеренный, как и орбитальный момент, в единицах й) будем обозначать посредством s.

    Для частиц, обладающих спином, описание состояния с помощью волновой функции должно определять не только вероятности ее различных положений в пространстве, но и вероятности различных возможных ориентаций ее спина.

    Другими словами, волновая функция должна зависеть не только от трех непрерывных переменных - координат частицы, но и от одной дискретной спиновой переменной, указывающей значение проекции спина на некоторое избранное направление в пространстве (ось ) и пробегающей ограниченное число дискретных значений (которые мы будем обозначать далее буквой ).

    Пусть - такая волновая функция. По существу она представляет собой совокупность нескольких различных функций координат, отвечающих различным значениям а; об этих функциях мы будем говорить как о спиновых компонентах волновой функции. При этом интеграл

    определяет вероятность частице иметь определенное значение а. Вероятность же частице находиться в элементе Объема имея произвольное значение а, есть

    Квантовомеханический оператор спина при применении его к волновой функции действует именно на спиновую переменную . Другими словами, он каким-то образом преобразует друг через друга компоненты волновой функции. Вид этого оператора будет установлен ниже. Но, уже исходя из самых общих соображений, легко убедиться в том, что операторы удовлетворяют таким же условиям коммутации, как и операторы орбитального момента.

    Оператор момента в основном совпадает с оператором бесконечно малого поворота. При выводе в § 26 выражения для оператора орбитального момента мы рассматривали результат применения операции поворота к функции координат. В случае спинового момента такой вывод теряет смысл, поскольку оператор спина действует на спиновую переменную, а не на координаты. Поэтому для получения искомых соотношений коммутации мы должны рассматривать операцию бесконечно малого поворота в общем виде, как поворот системы координат. Производя последовательно бесконечно малые повороты вокруг оси х и оси у, а затем вокруг этих же осей в обратном порядке, легко убедиться непосредственным вычислением, что разница между результатами обеих этих операций эквивалентна бесконечно малому повороту вокруг оси (на угол, равный произведению углов поворота вокруг осей х и у). Мы не станем производить здесь этих простых вычислений, в результате которых вновь получаются обычные соотношения коммутации между операторами компонент момента импульса, которые, следовательно, должны иметь место и для операторов спина:

    со всеми вытекающими из них физическими следствиями.

    Соотношения коммутации (54,1) дают возможность определить возможные значения абсолютной величины и компонент спина. Весь вывод, произведенный в § 27 (формулы (27,7)-(27,9)), был основан только на соотношениях коммутации и потому полностью применим и здесь; надо только вместо L в этих формулах подразумевать s. Из формул (27,7) следует, что собственные значения проекции спина образуют последовательность чисел, отличающихся на единицу. Мы не можем, однако, теперь утверждать, что сами эти значения должны быть целыми, как это имело место для проекции орбитального момента (приведенный в начале § 27 вывод здесь неприменим, поскольку он основан на выражении (26,14) для оператора , специфическом для орбитального момента).

    Далее, последовательность собственных значений ограничена сверху и снизу значениями, одинаковыми по абсолютной величине и противоположными по знаку, которые мы обозначим посредством Разность между наибольшим и наименьшим значениями должна быть целым числом или нулем. Следовательно, число s может иметь значения 0, 1/2, 1, 3/2, ...

    Таким образом, собственные значения квадрата спина равны

    где s может быть либо целым числом (включая значение нуль), либо полуцелым. При заданном s компонента спина может пробегать значения - всего значений. Соответственно этому, и волновая функция частицы со спином s имеет компонент

    Опыт показывает, что большинство элементарных частиц - электроны, позитроны, протоны, нейтроны, мезоны и все гипероны - обладают спином 1/2. Кроме того, существуют элементарные частицы - -мезоны и -мезоны, - обладающие спином 0.

    Полный момент импульса частицы складывается из ее орбитального момента 1 и спина s. Их операторы, действуя на функции совершенно различных переменных, разумеется, коммутативны друг с другом.

    Собственные значения полного момента

    определяются тем же правилом «векторной модели», что и сумма орбитальных моментов двух различных частиц (§ 31).

    Именно, при заданных значениях полный момент может иметь значения . Так, у электрона (спин 1/2) с отличным от нуля орбитальным моментом l полный момент может быть равен ; при момент имеет, конечно, лишь одно значение

    Оператор полного момента J системы частиц равен сумме операторов моментов каждой из них, так что его значения опредег ляются снова правилами векторной модели. Момент J можно представить в виде

    где S можно назвать полным спином, а L - полным орбитальным моментом системы.

    Отметим, что если полный спин системы - полуцелый (или целый), то то же самое будет иметь место и для полного момента, поскольку орбитальный момент всегда целый. В частности, если система состоит из четного числа одинаковых частиц, то ее полный спин во всяком случае целый, а потому будет целым и полный момент.

    Операторы полного момента частицы j (или системы частиц J) удовлетворяют тем же правилам коммутации, что и операторы орбитального момента или спина, поскольку эти правила являются вообще общими правилами коммутации, справедливыми для всякого момента импульса. Следующие из правил коммутации формулы (27,13) для матричных элементов момента тоже справедливы для всякого момента, если матричные элементы определять по отношению к собственным функциям этого же момента. Остаются справедливыми (с соответствующим изменением обозначений) также и формулы (29,7)-(29,10) для матричных элементов произвольных векторных величин.

    Учитывая также, что найдем

    Спин (spin – вращение) это наиболее простая вещь на которой можно продемонстрировать отличия квантовой механики от классической. Из определения кажется, что связан он с вращением, но не надо представлять себе электрон или протон вращающимися шариками. Как и в случае многих других устоявшихся научных терминов было доказано что это не так, но терминология уже устоялась. Электрон – точечная частица (нулевого радиуса). А спин отвечает за магнитные свойства. Если электрически заряженная частица движется по кривой траектории (в том числе вращается), то образуется магнитное поле. Электромагниты так работают – электроны движутся по проводам катушки. Но спин отличается от классического магнита. Вот неплохая анимация:

    Если магнитики пропускать через неоднородное магнитное поле (обратите внимание на различную форму северного и южного полюсов магнита, задающего поле), то в зависимости от ориентации магнитика (его вектора магнитного момента) они будут притягиваться (отталкиваться) от полюса с большей концентрацией силовых линий магнитного поля (заостренный полюс магнита). В случае перпендикулярной ориентации магнитик вообще никуда не отклонится и попадет в центр экрана.

    Пропуская электроны мы будем наблюдать только отклонение вверх или вниз на одно и то же расстояние . Это пример квантования (дискретности). Спин электрона может принимать только одно из двух значений относительно заданной оси ориентации магнита – «вверх» или «вниз». Поскольку электрон мысленно представить себе нельзя (у него нет ни цвета, ни формы, ни даже траектории движения), как и во всех подобных анимациях цветные шарики не отражают реальность, но суть думаю понятна.

    Если электрон отклонился вверх, то говорят, что его спин направлен «вверх» (+1/2 условно обозначают) относительно оси магнита. Если вниз, то -1/2. И казалось бы спин можно описать обычным вектором, указывающим направление. У тех электронов, где он был направлен вверх, они и отклонятся вверх в магнитном поле, а у которых вниз – те соответственно вниз. Но не все так просто! Электрон отклоняется вверх (вниз) на одно и тоже расстояние относительно любой ориентации магнита . На видео выше можно было бы менять не ориентацию пропускаемых магнитиков, а поворачивать сам магнит, создающий магнитное поле. Эффект в случае обычных магнитиков был бы тот же. Что будет в случае электронов – в отличие от магнитиков они всегда будут отклонятся на одно и тоже расстояние вверх или вниз.

    Если, например, пропустить вертикально расположенный классический магнитик через два перпендикулярно ориентированных друг относительно друга магнита, то отклоняясь вверх в первом, он не отклонится во втором вообще никак – его вектор магнитного момента будет перпендикулярен линиям магнитного поля. На видео выше это тот случай когда магнитик попадает в центр экрана. Электрон же обязан куда-нибудь отклонится.

    Если мы будем пропускать через второй магнит только электроны со спином вверх, как на рисунке, то окажется что часть из них оказались еще и со спином вверх (вниз) относительно другой перпендикулярной оси. Вправо и влево фактически, но спин измеряют относительно выбранной оси, поэтому «вверх» и «вниз» общепринятая терминология вместе с указанием оси. Вектор не может быть направлен сразу вверх и вправо. Делаем вывод, что спин – это не классический вектор, прикрепленный к электрону наподобие вектора магнитного момента магнитика. Более того, зная, что спин электрона направлен вверх после прохождения первого магнита (отклоняющиеся вниз блокируем), невозможно предсказать куда он отклонится во втором случае: вправо или влево.

    Ну и можно еще чуть-чуть усложнить эксперимент – блокировать электроны, отклонившиеся влево и пропустить через третий магнит, ориентированный как и первый.

    И мы увидим, что электроны будут отклонятся как вверх, так и вниз. То есть электроны, попадающие во второй магнит все имели спин вверх относительно ориентации первого магнита, а потом часть из них стала вдруг со спином вниз относительно той же самой оси.

    Странно! Если через такую конструкцию пропускать классические магнитики, повернутые под одним и тем же произвольно выбранным углом, то они всегда будут попадать в конце в одну и ту же точку экрана. Это называется детерминизмом. Повторив эксперимент при полном соответствии начальных условий мы должны получить тот же результат. В этом заключается основа предсказательной силы науки. Даже наша интуиция основана на повторяемости результатов в схожих ситуациях. В квантовой механике предсказать куда отклонится конкретно взятый электрон в общем случае невозможно. Хотя в некоторых ситуациях есть исключения: если поставить два магнита с одинаковой ориентацией, то если электрон отклонится вверх в первом, то он точно отклонится вверх и во втором. А если магниты повернуты на 180 градусов друг относительно друга и в первом электрон отклонился, например, вниз, то во втором он точно отклонится вверх. И наоборот. Сам по себе спин не меняется. Это уже хорошо)

    Какие из всего этого можно сделать общие выводы.

    1. Многие величины, которые могли принимать любые значения в классической механике, могут иметь только некоторые дискретные (квантованные) значения в квантовой теории. Помимо спина энергия электронов в атомах является ярким примером.
    2. Объектам микромира нельзя приписать никакие классические характеристики до момента измерения. Нельзя полагать, что спин имел какое-то определенное направление до того как мы посмотрели куда отклонился электрон. Это общее положение и оно касается всех измеряемых величин: координат, скорости и т.п. Квантовая механика . Она утверждает, что объективный, не зависимый ни от кого классический мир, просто не существует. наиболее наглядно демонстрирует данный факт. (наблюдателя) в квантовой механике чрезвычайно важна.
    3. Процесс измерения затирает (делает неактуальной) информацию о предыдущем измерении. Если спин оказался направлен вверх относительно оси y , то неважно, что раньше он был направлен вверх относительно оси x , он может оказаться и спином вниз относительно той же самой оси x впоследствии. Опять же данное обстоятельство касается не только спина. Например, если электрон обнаружен в точке с координатами (x , y , z ) это в общем случае не значит, что он был в этой точке до этого. Данный факт известен под названием «коллапс волновой функции».
    4. Есть такие физические величины значения которых невозможно знать одновременно. Например, нельзя измерить спин относительно оси x и одновременно относительно перпендикулярной ей оси y . Если мы попытаемся сделать это одновременно, то магнитные поля двух повернутых магнитов наложатся и мы вместо двух разных осей получим одну новую и измерим спин относительно нее. Последовательно измерять тоже не удастся вследствие предыдуще изложенного вывода №3. Это тоже общий принцип. Например, координату и импульс (скорость) тоже нельзя измерить одновременно с большой точностью — знаменитый принцип неопределенности Гейзенберга.
    5. Предсказать результат единичного измерения невозможно в принципе. Квантовая механика позволяет лишь вычислять вероятности того или иного события. Например, можно посчитать, что в опыте на первой картинке при ориентации магнитов 90° друг к другу 50% отклонится влево и 50% вправо. Предсказать куда отклонится конкретно взятый электрон нельзя. Данное общее обстоятельство известно как «правило Борна» и является центральным в .
    6. Детерминированные классические законы выводятся из вероятностных квантовомеханических за счет того, что в макроскопическом объекте очень много частиц и вероятностные флуктуации усредняются. Например, если в опыте на первой картинке пропускать вертикально ориентированный классический магнитик, то 50% составляющих его частиц будут «тянуть» его вправо, а 50% влево. В итоге он никуда не отклонится. При других ориентациях углов магнита меняется процентное соотношение, что в итоге и влияет на отклоняемое расстояние. Квантовая механика позволяет рассчитать конкретные вероятности и как следствие из нее можно вывести формулу для отклоняемого расстояния в зависимости от угла ориентации магнитика, получаемую обычно из классической электродинамики. Так классическая физика выводится и является следствием квантовой.

    Да, описанные действия с магнитиками называются эксперимент Штерна-Герлаха.

    Существует видеоверсия данного поста в и элементарного введения в квантовую механику.

    Определение 1

    Спин электрона (и других микрочастиц) -- это квантовая величина, у которой нет классического аналога. Это внутреннее свойство электрона, которое можно уподобить заряду или массе. Понятие спина было предложено американскими физиками Д. Уленбеком и С. Гаудсмитом для того, чтобы объяснить существование тонкой структуры спектральных линий. Ученые предположили, что электрон имеет собственный механический момент импульса , который не связан с движением электронам в пространстве который был назван спином.

    Если считать, что электрон имеет спин (собственный механический момент импульса (${\overrightarrow{L}}_s$)), то значит должен иметь собственный магнитный момент (${\overrightarrow{p}}_{ms}$). В соответствии с общими выводами квантовой физики спин квантуется как:

    где $s$ -- спиновое квантовое число. Проводя аналогию с механическим моментом импульса, проекция спина ($L_{sz}$) квантуется таким образом, что число ориентаций вектора ${\overrightarrow{L}}_s$ равно $2s+1.$ В опытах Штерна и Герлаха ученые наблюдали две ориентации, то $2s+1=2$, следовательно, $s=\frac{1}{2}$.

    При этом проекция спина на направление внешнего магнитного поля определена формулой:

    где $m_s=\pm \frac{1}{2}$-магнитное спиновое квантовое число.

    Получилось, что экспериментальные данные привели к необходимости введения дополнительной внутренней степени свободы. Для полного описания состояния электрона в атоме необходимы: главное, орбитальное, магнитное и спиновое квантовые числа.

    Позднее Дирак показал, что наличие спина следует из полученного им релятивистского волнового уравнения.

    Атомы первой валентной группы периодической системы имеют валентный электрон, находящийся в состоянии с $l=0$. При этом момент импульса всего атома равен спину валентного электрона. Поэтому когда обнаружили для подобных атомов, пространственное квантование момента импульса атома в магнитном поле это стало доказательством существования спина только двух ориентаций во внешнем поле.

    Спиновое квантовое число, отличаясь от других квантовых чисел, является дробным. Количественную величину спина электрона можно найти в соответствии с формулой (1):

    Для электрона имеем:

    Иногда говорят, что спин электрона ориентирован по направлению или против направления напряженности магнитного поля. Такое высказывание является неточным. Так как при этом на самом деле имеется в виду направление его составляющей $L_{sz}.$

    где ${\mu }_B$ -- магнетон Бора.

    Найдем отношение проекций $L_{sz}$ и $p_{ms_z}$, применяя формулы (4) и (5), имеем:

    Выражение (6) называют спиновым гиромагнитным отношением. Оно в два раза превышает орбитальное гиромагнитное отношение. В векторной записи гиромагнитное отношение записывают как:

    Опыты Эйнштейна и де Гааза определили спиновое гиромагнитное отношение для ферромагнетиков . Это дало возможность определить спиновую природу магнитных свойств ферромагнетиков и получить теорию ферромагнетизма.

    Пример 1

    Задание: Найдите численные значения: 1) собственного механического момента импульса (спина) электрона, 2) проекции спина электрона на направление внешнего магнитного поля.

    Решение:

      В качестве основания для решения задачи используем выражение:

      где $s=\frac{1}{2}$. Зная величину $\hbar =1,05\cdot {10}^{-34}Дж\cdot с$, проведем вычисления:

      В качестве основы для решения задачи используем формулу:

      где $m_s=\pm \frac{1}{2}$-магнитное спиновое квантовое число. Следовательно, можно провести вычисления:

    Ответ: $L_s=9,09\cdot {10}^{-35}{\rm Дж}\cdot {\rm с},\ L_{sz}=\pm 5,25\cdot {10}^{-35}Дж\cdot с.$

    Пример 2

    Задание: Каков спиновый магнитный момент электрона ($p_{ms}$) и его проекция ($p_{ms_z}$) на направление внешнего поля?

    Решение:

    Спиновый магнитный момент электрона может быть определен из гиромагнитного соотношения как:

    Собственный механический момента импульса (спина) электрона можно найти как:

    где $s=\frac{1}{2}$.

    Подставим выражение для спина электрона в формулу (2.1), имеем:

    Используем известные для электрона величины:

    поведем вычисление магнитного момента:

    Из опытов Штерна и Герлаха получено, что $p_{ms_z}$ (проекция собственного магнитного момента электрона) равна:

    Вычислим $p_{ms_z}$ для электрона:

    Ответ: $p_{ms}=1,6\cdot {10}^{-23}A\cdot м^2,\ p_{ms_z}=9,27\cdot {10}^{-24}A\cdot м^2.$

    Вопреки расхожему мнению, спин - чисто квантовое явление. И тем более спин никак не связан с "вращением частицы" вокруг самой себя.

    Чтобы понять правильно что такое спин, давайте сперва поймем, что такое частица. Из квантовой теории поля мы знаем, что частицы - это такие определенного типа возбуждения первичного состояния (вакуума), которые обладают определенными свойствами. В частности, некоторые из этих возбуждений обладают массой, которая очень напоминает нам традиционную массу из законов Ньютона. Некоторые из этих возбуждений обладают ненулевым зарядом, который получается так похож на заряд из законов Кулона.

    Помимо свойств, которые имеют свои аналоги в классической физике (масса, заряд), получается так (в экспериментах), что эти возбуждения должны иметь еще одно свойство, которое не имеет абсолютно никаких аналогов в классической физике. Я поставлю акцент на этом еще раз: НИКАКИХ аналогов (это НЕ вращение частицы). При расчетах получилось так, что этот спин - не скалярная характеристика частицы, как масса или заряд, а другая (не векторная).

    Получилось, что спин - это внутренняя характеристика такого возбуждения, которая по своим математическим свойствам (закону преобразования, например) очень похожа на квантовый момент.

    Дальше пошло-поехало. Оказалось, что свойства таких возбуждений, их волновые функции очень сильно зависят от величины этого самого спина. Так частицу со спином 0 (например бозон Хиггса) можно описать однокомпонентной волновой функцией, а для частицы со спином 1/2 - должна быть двухкомпонентная функция (вектор-функция), соответствующая проекции спина на данную ось 1/2 или -1/2. Также оказалось, что спин несет в себе и фундаментальную разницу между частицами. Так для частиц с целым спином (0, 1, 2) имеет место закон распределения Бозе-Эйнштейна, который позволяет сколь угодно много частиц находится в одном квантовом состоянии. А для частиц с полуцелым спином (1/2, 3/2) из-за принципа запрета Паули действует распределение Ферми-Дирака, запрещающего двум частицам находиться на одном квантовом состоянии. Благодаря последнему, атомы имеют боровские уровни, из-за этого возможны связи и, следовательно, возможна жизнь.

    Значит спин задаёт характеристику частице, как ей себя вести при взаимодействии с другими частицами. Фотон имеет спин равный 1 и много фотонов могут находиться очень близко к друг другу и не взаимодействовать между собой либо фотоны с глюонами, поскольку у последних также спин = 1 и так далее. А электроны, у которых спин 1/2 будут отталкиваться друг от друга (как учат в школе - от -, + от +.)Я правильно понял?

    И ещё вопрос: а что задаёт самой частице спин или почему существует спин? Если спин описывает поведение частиц, то что описывает, делает возможным само появление спина (какие-либо бозоны (в том числе существующие гипотетически) или, так называемые, струны)?