Как происходит управление скоростью вращения вентилятора? Как регулировать скорость вращения вентилятора Спаять схему регулятора оборотов вентилятора.

Сначала - терморегулятор. При выборе схемы учитывались такие факторы, как ее простота, доступность необходимых для сборки элементов (радиодеталей), особенно применяемых в качестве термодатчиков, технологичность сборки и установки в корпус БП.

По этим критериям наиболее удачной, на наш взгляд, оказалась схема В.Портунова . Она позволяет уменьшить износ вентилятора и снизить уровень шума, создаваемого им. Схема этого автоматического регулятора частоты вращения вентилятора показана на рис.1. Датчиком температуры служат диоды VD1- VD4, включенные в обратном направлении в цепь базы составного транзистора VT1, VT2. Выбор в качестве датчика диодов обусловила зависимость их обратного тока от температуры, которая имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания. Немаловажную роль сыграла распространенность диодов и их доступность для радиолюбителей.

Резистор R1 исключает возможность выхода из строя транзисторов VTI, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.
Рис.1

Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1,VT2. Если при указанном нa схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить. Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения слишком высокая, число диодов следует уменьшить.

Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 c припаянными к его выводам резисторами R1, R2 и транзистором VT1 (рис.2) устанавливают выводом эмиттера в отверстие «+12 В вентилятора» платы БП (раньше туда подключался красный провод от вентилятора). Налаживание устройства сводится к подбору резистора R2 спустя 2.. 3 мин после включения ПК и прогрева транзисторов БП. Временно заменив R2 переменным (100-150 кОм) подбирают такое сопротивление, чтобы при номинальной нагрузке теплоотводы транзисторов блока питания нагревались не более 40 ºС.
Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) "измерять" температуру на ощупь можно, только выключив компьютер.

Простую и надежную схему предложил И. Лаврушов (UA6HJQ). Принцип ее работы тот же, что и в предыдущей схеме, однако в качестве датчика температуры применен терморезистор NTC (номинал 10 кОм некритичен). Транзистор в схеме выбран типа КТ503. Как определено опытным путем его работа является более устойчивой, чем других типов транзисторов. Подстроечный резистор желательно применить многооборотный, что позволит точнее настроить температурный порог срабатывания транзистора и, соответственно, частоту вращения вентилятора. Терморезистор приклеивается к диодной сборке 12 В. При отсутствии его можно заменить двумя диодами. Более мощные вентиляторы с током потребления больше 100 мА следует подключать через схему составного транзистора (второй транзистор КТ815).


Рис.3

Схемы двух других, относительно простых и недорогих регуляторов частоты вращения вентиляторов охлаждения БП, часто приводятся в интернете (CQHAM.ru). Их особенность в том, что в качестве порогового элемента применяется интегральный стабилизатор TL431. Довольно просто «добыть» эту микросхему можно при разборке старых БП ПК АТХ.

Автор первой схемы (рис.4) Иван Шор (RA3WDK). При повторении выявилась целесообразность в качестве подстроечного резистора R1 применять многооборотный того же номинала. Терморезистор крепится на радиатор охлаждаемой диодной сборки (или на ее корпус) через термопасту КПТ-80.



Рис.4

Подобную схему, но на двух включенных параллельно КТ503 (вместо одного КТ815) применил Александр (RX3DUR). При указанных на схеме (рис.5) номиналах деталей на вентилятор поступает 7В, повышаясь при нагреве терморезистора. Транзисторы КТ503 можно заменить на импортные 2SC945, все резисторы мощностью 0,25Вт.

Более сложная схема регулятора частоты вращения вентилятора охлаждения описана в . Длительное время она с успехом применяется в другом БП. В отличие от прототипа в ней применены «телевизионные» транзисторы. Отошлю читателей к статье на нашем сайте «Еще один универсальный БП» и архиву, в котором представлен вариант печатной платы (рис.5 в архиве) и журнальный источник . Роль радиатора регулируемого транзистора Т2 на ней выполняет свободный участок фольги, оставленный на лицевой стороне платы. Эта схема позволяет, кроме автоматического увеличения частоты вращения вентилятора при нагреве радиатора охлаждаемых транзисторов БП или диодной сборки, устанавливать минимальную пороговую частоту вращения вручную, вплоть до максимума.
Рис.6


Рассмотрим ТОП-3 рабочих схемы регулятора скорости вращения вентилятора. Каждая схема не только проверена, но и отлично подойдёт для воплощения начинающими радиолюбителями. К каждой схеме прилагается список необходимых компонентов для монтажа своими руками и пошаговые рекомендации.

Регулятор скорости вентилятора - простая схема

Предлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814. Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов. Она имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор.

  • Схема
Список необходимых радиоэлементов:
  • 2 биполярных транзистора - КТ361А и КТ814А.
  • Стабилитрон - 1N4736A (6.8В).
  • Диод.
  • Электролитический конденсатор - 10 мкФ.
  • 8 резисторов - 1х300 Ом, 1х1 кОм, 1х560 Ом, 2х68 кОм, 1х2 кОм, 1х1 кОм, 1х1 МОм.
  • Терморезистор - 10 кОм
  • Вентилятор.
Плата регулятора скорости вентилятора:


Фото готового регулятора скорости вентилятора:

Регулятор вентилятора с датчиком температуры

Как известно, вентилятор в блоках питания компьютеров формата AT вращается с неизменной частотой независимо от температуры корпусов высоковольтных транзисторов. Однако блок питания не всегда отдает в нагрузку максимальную мощность. Пик потребляемой мощности приходится на момент включения компьютера, а следующие максимумы - на время интенсивного дискового обмена.

  • Как сделать управляемую
Если же учесть ещё и тот факт, что мощность блока питания обычно выбирается с запасом даже для максимума энергопотребления, нетрудно прийти к выводу, что большую часть времени он недогружен и принудительное охлаждение теплоотвода высоковольтных транзисторов чрезмерно. Иными словами, вентилятор впустую перекачивает кубометры воздуха, создавая при этом довольно сильный шум и засасывая пыль внутрь корпуса.

Уменьшить износ вентилятора и снизить общий уровень шума, создаваемого компьютером можно, применив автоматический регулятор частоты вращения вентилятора, схема которого показана на рисунке. Датчиком температуры служат германиевые диоды VD1–VD4, включенные в обратном направлении в цепь базы составного транзистора VT1VT2. Выбор в качестве датчика диодов обусловлен тем, что зависимость обратного тока от температуры имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания.


Необходимые радиодетали:
  • 2 биполярных транзистора (VT1, VT2) - КТ315Б и КТ815А соответственно.
  • 4 диода (VD1-VD4) - Д9Б.
  • 2 резистора (R1, R2) - 2 кОм и 75 кОм (подбор) соответственно.
  • Вентилятор (M1).
Резистор R1 исключает возможность выхода из строя транзисторов VT1, VT2 в случае теплового пробоя диодов (например, при заклинивании электродвигателя вентилятора). Его сопротивление выбирают, исходя из предельно допустимого значения тока базы VT1. Резистор R2 определяет порог срабатывания регулятора.

Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1, VT2. Если при указанном на схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить.

Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения окажется значительно больше требуемой, число диодов следует уменьшить.

Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу. Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 с припаянными к его выводам резисторами R1, R2 и транзистором VT1 устанавливают выводом эмиттера в отверстие «-cooler» платы блока питания.

Налаживание устройства сводится к подбору резистора R2. Временно заменив его переменным (100–150 кОм), подбирают такое сопротивление введенной части, чтобы при номинальной нагрузке (теплоотводы транзисторов блока питания теплые наощупь) вентилятор вращался с небольшой частотой. Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру наощупь можно, только выключив компьютер. При правильно отлаженном устройстве вентилятор должен запускаться не сразу после включения компьютера, а спустя 2–3 мин после прогрева транзисторов блока питания.

Схема регулятора скорости вентилятора для уменьшения шума

В отличии от схемы, которая замедляет обороты вентилятора после старта (для уверенного запуска вентилятора), данная схема позволит увеличить эффективность работы вентилятора путем увеличения оборотов при повышении температуры датчика. Схема также позволяет уменьшить шум вентилятора и продлить его срок службы.


Необходимые для сборки детали:
  • Биполярный транзистор (VT1) - КТ815А.
  • Электролитический конденсатор (С1) - 200 мкФ/16В.
  • Переменный резистор (R1) - Rt/5.
  • Терморезистор (Rt) - 10–30 кОм.
  • Резистор (R2) - 3–5 кОм (1 Вт).
Настройка производится до закрепления термодатчика на радиаторе. Вращая R1, добиваемся, чтобы вентилятор остановился. Затем, вращая в обратную сторону, заставляем его гарантированно запускаться при зажимании терморезистора между пальцами (36 градусов).

Если ваш вентилятор иногда не запускается даже при сильном нагреве (паяльник поднести), то нужно добавить цепочку С1, R2. Тогда R1 выставляем так, чтобы вентилятор гарантированно запускался при подаче напряжения на холодный блок питания. Через несколько секунд после заpяда конденсатора, обороты падали, но полностью вентилятор не останавливался. Теперь закрепляем датчик и проверяем, как все это будет крутится пpи реальной работе.

Rt - любой терморезистор с отрицательным ТКЕ, например, ММТ1 номиналом 10–30 кОм. Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку (лучше слюдяную) к радиатору высоковольтных транзисторов (или к одному из них).

Видео о сборке регулятора оборотов вентилятора:

Пропорциональное управление – залог тишины!
Какая задача ставится перед нашей системой управления? Да чтобы пропеллеры зря не вращались, чтобы зависимость скорости вращения была от температуры. Чем горячее девайс - тем быстрей вращается вентилятор. Логично? Логично! На том и порешим.

Заморачиваться с микроконтроллерами конечно можно, в чем то будет даже проще, но совершенно не обязательно. На мой взгляд проще сделать аналоговую систему управления - не надо будет заморачиваться с программированием на ассемблере.
Будет и дешевле, и проще в наладке и настройке, а главное любой при желании сможет расширить и надстроить систему по своему вкусу, добавив каналов и датчиков. Всё что от тебя потребуется это лишь несколько резисторов, одна микросхема и термодатчик. Ну а также прямые руки и некоторый навык пайки.

Платка вид сверху

Вид снизу

Состав:

  • Чип резисторы размера 1206. Ну или просто купить в магазине – средняя цена одного резистора 30 копеек. В конце концов никто не мешает тебе чуток подправить плату, чтобы на место чип резисторов впаять обычные, с ножками, а уж их в любом старом транзисторном телевизоре навалом.
  • Многооборотный переменный резистор примерно на 15кОм.
  • Также потребуется чип конденсатор размера 1206 на 470нф (0.47мкФ)
  • Любой электролитический кондер напряжением от 16 вольт и выше и емкостью в районе 10-100мкФ.
  • Винтовые клеммники по желанию – можно просто припаять провода к плате, но я поставил клеммник, чисто по эстетическим соображениям – девайс должен выглядеть солидно.
  • В качестве силового элемента, который и будет управлять питанием кулера, мы возьмем мощный MOSFET транзистор. Например IRF630 или IRF530 его иногда можно выдрать из старых блоков питания от компа. Конечно для крохотного пропеллера его мощность избыточна, но мало ли, вдруг ты захочешь туда что-нибудь помощней всунуть?
  • Температуру будем щупать прецезионным датчиком LM335Z он стоит не более десяти рублей и дефицита из себя не представляет, да и заменить его при случае можно каким-нибудь терморезистором, благо он тоже не является редкостью.
  • Основной деталью, на которой основано все, является микросхема представляющая из себя четыре операционных усилителя в одном корпусе – LM324N очень популярная штука. Имеет кучу аналогов (LM124N, LM224N, 1401УД2А) главное убедись, чтобы она была в DIP корпусе (такой длинный, с четырнадцатью ножками, как на рисунках).

Замечательный режим – ШИМ

Образование ШИМ сигнала

Чтобы вентилятор вращался медленней достаточно снизить его напряжение. В простейших реобасах это делается посредством переменного резистора, который ставят последовательно с двигателем. В итоге, часть напряжения упадет на резисторе, а на двигатель попадет меньше как результат – снижение оборотов. Где падляна, не замечаешь? Да засада в том, что энергия выделившаяся на резисторе преобразуется не во что нибудь, а в обычное тепло. Тебе нужен обогреватель внутри компа? Явно нет! Поэтому мы пойдем более хитрым способом – применим широтно-импульсную модуляцию aka ШИМ или PWM . Страшно звучит, но не бойся, тут все просто. Представь, что двигатель это массивная телега. Ты можешь толкать его ногой непрерывно, что равносильно прямому включению. А можешь двигать пинками – это и будет ШИМ . Чем длинней по времени толчок ногой тем сильней ты разгоняешь телегу.
При ШИМ питании на двигатель идет не постоянное напряжение, а прямоугольные импульсы, словно ты включаешь и выключаешь питание, только быстро, десятки раз в секунду. Но двигатель имеет неслабую инерцию, а еще индуктивность обмоток, поэтому эти импульсы как бы суммируются между собой – интегрируются. Т.е. чем больше суммарная площадь под импульсами в единицу времени, тем большее эквивалентное напряжение идет на двигатель. Подаешь узенькие, словно иголки, импульсы – двигатель еле вращается, а если подать широкие, практически без просветов, то это равносильно прямому включению. Включать и выключать двигатель будет наш MOSFET транзистор, а формировать импульсы будет схема.
Пила + прямая = ?
Столь хитрый управляющий сигнал получается элементарно. Для этого нам надо в компаратор загнать сигнал пилообразной формы и сравнить его с каким либо постоянным напряжением. Смотри на рисунок. Допустим у нас пила идет на отрицательный выход компаратора , а постоянное напряжение на положительный. Компаратор складывает эти два сигнала, определяет какой из них больше, а потом выносит вердикт: если напряжение на отрицательном входе больше чем на положительном, то на выходе будет ноль вольт, а если положительное будет больше отрицательного, то на выходе будет напряжение питания, то есть около 12 вольт. Пила у нас идет непрерывно, она не меняет свою форму со временем, такой сигнал называется опорным.
А вот постоянное напряжение может двигаться вверх или вниз, увеличиваясь или уменьшаясь в зависимости от температуры датчика. Чем выше температура датчика, тем больше напряжение с него выходит , а значит напруга на постоянном входе становится выше и согласно этому на выходе компаратора импульсы становятся шире, заставляя вентилятор крутиться быстрее. Это будет до тех пор, пока постоянное напряжение не перекроет пилу, что вызовет включение двигателя на полные обороты. Если же температура низкая, то и напряжение на выходе датчика низкое и постоянная уйдет ниже самого нижнего зубчика пилы, что вызовет прекращение вообще каких либо импульсов и двигатель вообще остановится. Загрузил, да? ;) Ничего, мозгам полезно работать.

Температурная математика

Регулирование

В качестве датчика у нас используется LM335Z . По сути это термостабилитрон . Прикол стабилитрона в том, что на нем, как на ограничительном клапане, выпадает строго определенное напряжение. Ну, а у термостабилитрона это напряжение зависит от температуры. У LM335 го зависимость выглядит как 10mV * 1 градус по Kельвину . Т.е. отсчет ведется от абсолютного нуля. Ноль по Цельсию равен двести семьдесят три градуса по Кельвину. А значит, чтобы получить напряжение выходящее с датчика, скажем при плюс двадцати пяти градусах Цельсия, то нам надо к двадцати пяти прибавить двести семьдесят три и умножит полученную сумму на десять милливольт.
(25+273)*0.01 = 2,98В
При других температурах напряжение будет меняться не сильно, на те же 10 милливольт на градус . В этом заключается очередная подстава:
Напряжение с датчика меняется несильно, на какие то десятые доли вольта, а сравнивать его надо с пилой у которой высота зубьев достигает аж десяти вольт. Чтобы получить постоянную составляющую напрямую с датчика на такое напряжение нужно нагреть его до тысячи градусов - редкостная лажа. Как тогда быть?
Так как у нас температура все равно вряд ли опустится ниже двадцати пяти градусов, то все что ниже нас не интересует, а значит можно из выходного напряжения с датчика выделить лишь самую верхушку, где происходят все изменения. Как? Да просто вычесть из выходного сигнала две целых девяносто восемь сотых вольта. А оставшиеся крохи умножить на коэффициент усиления , скажем, на тридцать.
В аккурат получим порядка 10 вольт на пятидесяти градусах, и вплоть до нуля на более низких температурах. Таким образом, у нас получается своеобразное температурное “окно” от двадцати пяти до пятидесяти градусов в пределах которого работает регулятор. Ниже двадцати пяти – двигатель выключен, выше пятидесяти – включен напрямую. Ну а между этими значениями скорость вентилятора пропорциональна температуре. Ширина окна зависит от коэффициента усиления. Чем он больше, тем уже окно, т.к. предельные 10 вольт, после которых постоянная составляющая на компараторе будет выше пилы и мотор включится напрямую, наступят раньше.
Но ведь мы не используем ни микроконтроллера, ни средства компьютера, как же мы будем делать все эти вычисления? А тем же операционным усилителем. Он ведь не зря назван операционным, его изначальное назначение это математические операции. На них построены все аналоговые компьютеры - потрясающие машины, между прочим.
Чтобы вычесть одно напряжение из другого нужно подать их на разные входы операционного усилителя. Напряжение с термодатчика подаем на положительный вход , а напряжение которое надо вычесть, напряжение смещения, подаем на отрицательный . Получается вычитание одного из другого, а результат ещё и умножается на огромное число, практически на бесконечность, получился еще один компаратор.
Но нам же не нужна бесконечность, так как в этом случае наше температурное окно сужается в точку на температурной шкале и мы имеем либо стоящий, либо бешено вращающийся вентилятор, а нет ничего более раздражающего чем включающийся и выключающийся компрессор совкового холодильника. Аналог холодильника в компе нам также не нужен. Поэтому будем понижать коэффициент усиления, добавляя к нашему вычитателю обратные связи .
Суть обратной связи в том, чтобы с выхода сигнал загнать обратно на вход. Если напряжение с выхода вычитается из входного, то это отрицательная обратная связь, а если складывается, то положительная. Положительная обратная связь увеличивает коэффициент усиления, но может привести к генерации сигнала (автоматчики называют это потерей устойчивости системы). Хороший пример положительной обратной связи с потерей устойчивости это когда ты включаешь микрофон и тычешь им в динамик, обычно сразу же раздается противный вой или свист – это и есть генерация. Нам же надо уменьшить коэффициент усиления нашего операционника до разумных пределов, поэтому мы применим отрицательную связь и заведем сигнал с выхода на отрицательный вход.
Соотношение резисторов обратной связи и входа дадут нам коэффициент усиления влияющий на ширину окна регулирования. Я прикинул, что тридцати будет достаточно, ты же можешь пересчитать под свои нужды.

Пила
Осталось изготовить пилу, а точнее собрать генератор пилообразного напряжения. Состоять он будет из двух операционников. Первый за счет положительной обратной связи оказывается в генераторном режиме, выдавая прямоугольные импульсы, а второй служит интегратором, превращая эти прямоугольники в пилообразную форму.
Конденсатор в обратной связи второго операционного усилителя определяет частоту импульсов. Чем меньше емкость конденсатора, тем выше частота и наоборот. Вообще в ШИМ генерации чем больше тем лучше. Но есть один косяк, если частота попадет в слышимый диапазон (20 до 20 000 гц) то двигатель будет противно пищать на частоте ШИМ , что явно расходится с нашей концепцией бесшумного компьютера.
А из добиться из данной схемы частоты больше чем пятнадцать килогерц мне не удалось – звучало отвратительно. Пришлось пойти в другую сторону и загнать частоту в нижний диапазон, в район двадцати герц. Движок начал чуток вибрировать, но это не слышно и ощущается только пальцами.
Схема.

Такс, с блоками разобрались, пора бы и на схемку поглядеть. Думаю большинство уже догадались что тут к чему. А я все равно поясню, для большей ясности. Пунктиром на схеме обозначены функциональные блоки.
Блок #1
Это генератор пилы. Резисторы R1 и R2 образуют делитель напряжения, чтобы подать в генератор половину питающего, в принципе они могут быть любого номинала, главное, чтобы были одинаковыми и не сильно большого сопротивления, в пределах сотни килоом. Резистор R3 на пару с конденсатором С1 определяют частоту, чем меньше их номиналы тем больше частота, но опять повторюсь, что мне не удалось вывести схему за звуковой диапазон, поэтому лучше оставь как есть. R4 и R5 это резисторы положительной обратной связи. Также они влияют на высоту пилы относительно нуля. В данном случае параметры оптимальные, но если не найдешь таких же то можно брать примерно плюс минус килоом. Главное соблюдать пропорцию между их сопротивлениями примерно 1:2. Если сильно снизить R4 то придется снизить и R5.
Блок #2
Это блок сравнения, тут происходит формирование ШИМ импульсов из пилы и постоянного напряжения.
Блок #3
Это как раз схема устраивающая вычисление температуры. Напряжение с термодатчика VD1 подается на положительный вход, а на отрицательный вход подается напряжение смещения с делителя на R7 . Вращая ручку подстроечного резистора R7 можно сдвигать окно регулирования выше или ниже по температурной шкале.
Резистор R8 может быть в пределах 5-10кОм больше нежелательно, меньше тоже – может сгореть термодатчик. Резисторы R10 и R11 должны быть равны между собой. Резисторы R9 и R12 также должны быть равны между собой. Номинал резисторов R9 и R10 может быть в принципе любым, но надо учитывать, что от их отношения зависит коэффициент усиления определяющий ширину окна регулирования. Ku = R9/R10 исходя из этого соотношения можно выбирать номиналы, главное, чтобы он был не меньше килоома. Оптимальным, на мой взгляд, является коэффициент равный 30, что обеспечивается резисторами на 1кОм и 30кОм.
Монтаж

Печатная плата

Девайс выполнен печатным монтажом, чтобы быть как можно компактней и аккуратней. Рисунок печатной платы в виде Layout файла выложен тут же на сайте, программу Sprint Layout 5.1 для просмотра и моделирования печятных плат можно скачать от сюда

Сама же печатная плата выполняется на раз-два посредством лазеро-утюжной технологии.
Когда все детали будут в сборе, а плата вытравлена, то можно приступать к сборке. Резисторы и конденсаторы можно припаивать без опаски, т.к. они почти не боятся перегрева. Особую осторожность следует проявить с MOSFET транзистором.
Дело в том, что он боится статического электричества. Поэтому прежде чем его доставать из фольги, в которую Вам его должны завернуть в магазине, рекомендую снять с себя синтетическую одежду и коснуться рукой оголенной батареи или крана на кухне. Микруху можно перегреть, поэтому когда будешь паять ее, то не держи паяльник на ножках дольше пары секунд. Ну и еще, напоследок, дам совет по резисторам, а точнее по их маркировке. Видишь цифры на его спинке? Так вот это сопротивление в омах, а последняя цифра обозначает число нулей после. Например 103 это 10 и 000 то есть 10 000 Ом или 10кОм.
Апгрейд дело тонкое.
Если, например, захочешь добавить второй датчик для контроля другого вентилятора, то совершенно не обязательно городить второй генератор, достаточно добавить второй компаратор и схему вычисления, а пилу подать из одного и того же источника. Для этого, конечно, придется перерисовать рисунок печатной платы, но я не думаю, что для тебя это составит большого труда.


Это мой первый пост, в последующих я расскажу о том как сделать видео наблюдение, систему жидкостного охлаждения, автоматизированное(программируемое) освещение и еще много чего вкусного, будем паять, сверлить и прошивать чипы, а пока начнем с самого простого, но тем не менее, весьма эффективного приема: монтаж переменного резистора.

Шум от кулера зависит от количества оборотов, формы лопастей, типа подшипников и прочего. Чем больше количество оборотов, тем эффективнее охлаждение, и тем больше шума. Не всегда и не везде нужны 1600 об. и если мы их понизим, то температура поднимется на несколько градусов, что не критично, а шум может исчезнуть вовсе!

На современных материнских платах интегрировано управление оборотами кулеров, которые питаются от нее. В БИОСе можно выставить «разумный» режем, который будет менять скорость кулеров в зависимости от температуры охлаждаемого чипсета. Но на старых и бюджетных платах такой опции нет и как быть с другими кулерами, например, кулером БП или корпусным? Для этого можно монтировать переменный резистор в цепь питания кулера, такие системы продают, но они стоят невероятных денег, если учесть, что себестоимость такой системы около 1,5 - 2 долларов! Такая система продается за $40:

Вы же можете сделать ее сами, используя в качестве панельки - заглушку от вашего системного блока(заглушка в корзину, где DVD/CD приводы вставляются), а о прочем Вы узнаете из этого поста.

Т.к. я отломал 1 лопасть от кулера на БП, я купил новый на шарикоподшипниках, он значительно тише обычных:

Теперь нужно найти провод с питанием, в разрыв которого монтируем резистор. У этого кулера 3 провода: черный(GND), красный(+12V) и желтый(тахометрический контакт).

Режем красный, зачищаем и лудим.

Теперь нам понадобится переменный резистор с сопротивлением в 100 - 300 Ом и мощностью в 2-5 Вт . Мой кулер рассчитан на 0.18 А и 1,7 Вт. Если резистор будет рассчитан на меньшую мощность, чем мощность в цепи, то он будет греться и в конце концов - сгорит. Как подсказывает, exdeniz , для наших целей отлично подойдет ППБ-3А 3Вт 220 Ом . У такого как у меня переменного резистора, 3 контакта. Не буду вдаваться в подробности, просто припаяйте 1 провод к среднему контакту и одному крайнему, а второй к оставшемуся крайнему(Подробности можете узнать при помощи мультиметра\омметра. Спасибо guessss_who за комментарий).

Теперь монтируем вентилятор в корпус и находим подходящее местечко для крепления резистора.

Я решил его вставить вот так:

У резистора есть гаечка для крепления к плоскости. Обратите внимание, что корпус металлический и может замкнуть контакты резистора и он не будет работать, так что вырежьте из пластика или картона прокладку-изолятор. У меня контакты не замыкаются, к счастью, так что на фото нет прокладок.

Теперь самое главное - полевое испытание.

Я включил систему, вскрыл корпус БП и пирометром нашел самый горячий участок(это элемент, похоже транзистор, который охлаждается радиатором). Затем закрыл, выкрутил резистор на максимальные обороты и подождал 20-30 минут… Элемент нагрелся до 26.3 °C.

Затем выставил резистор на половину, шума уже не слышно, снова подождал 30 минут… Элемент нагрелся до 26,7 °C.

Опять понижаю обороты до минимума(~100 Ом), жду 30 минут, не слышу вообще никакого шума от кулера… Элемент нагрелся до 28,1 °C.

Я не знаю, что это за элемент и какая у него рабочая температура, но думаю, что он выдержит еще градусов 5-10. Но если учитывать, что на «половине» резистора шума уже не было, то больше нам ничего и не нужно! =)

Теперь Вы можете сделать такую панель, как я привел в начале статьи и это Вам обойдется в копейки.

Спасибо.

UPD: Спасибо господам из комментариев, за напоминание о ваттах.
UPD: Если Вас заинтересовала тема и Вы знаете, что такое паяльник, то Вы можете запросто собрать аналоговый реобас. Как подсказывает нам fleshy , в статье Аналоговый реобас , описывается это чудное устройство. Даже если Вы никогда не паяли платы, Вы можете собрать реобас. В статье много текста, который и я не понимаю, но главное: Состав, Схема, Мотаж(в этом параграфе есть ссылки на все необходимые статьи по пайке ).

Основной проблемой вентиляторов, которые охлаждают ту или иную часть компьютера, является повышенный уровень шума . Основы электроники и имеющиеся материалы помогут нам решить эту проблему своими силами. В этой статье предоставлена схема подключения для регулировки оборотов вентилятора и фотографии как выглядит самодельный регулятор скорости вращения.

Нужно отметить, что количество оборотов в первую очередь зависит от уровня подаваемого на него напряжения. Уменьшая уровень подаваемого напряжения, уменьшается как шум, так и число оборотов.

Схема подключения:

Вот какие детали нам пригодятся: один транзистор и два резистора.

Что касается транзистора, то берите КТ815 или КТ817, также можно использовать мощнее КТ819.

Выбор транзистора зависит от мощности вентилятора. В основном используются простые вентиляторы постоянного тока с напряжением 12 Вольт.

Резисторы нужно брать с такими параметрами: первый постоянный (1кОм), а второй переменный (от 1кОм до 5кОм) для регулировки скорости оборотов вентилятора.

Имея входное напряжение (12 Вольт), выходное напряжение можно регулировать, вращая движковую часть резистора R2. Как правило, при напряжении 5 Вольт или ниже, вентилятор перестает шуметь.

При использовании регулятора с мощным вентилятором советую установить транзистор на небольшой теплоотвод.

Вот и все, теперь вы можете собрать регулятор скорости вентилятора своими руками, без шумной вам работы.

С уважением, Эдгар.