§9 Силовые линии и эквипотенциали. Эквипотенциальные поверхности

Эквипотенциальные поверхности и силовые линии электростатического поля.

Хотелось бы иметь возможность наглядно представить себе электростатическое поле. Поле скалярного потенциала можно геометрически представить себе как совокупность эквипотенциальных поверхностей (в плоском случае - линий), или поверхностей уровня, как их называют математики:

Для каждой такой поверхности имеет место условие (в силу определения!):

(*)

Представим это условие в эквивалентной форме записи:

Здесь принадлежит рассматриваемой поверхности, вектор перпендикулярным элементу поверхности (скалярное произведение неравных нулю векторов равно нулю именно при этом условии). Мы имеем возможность определит единичный вектор нормали к рассматриваемому элементу поверхности:

Если вернуться к физике, заключаем, что вектор напряжённости электростатического поля перпендикулярен эквипотенциальной поверхности этого поля!

Математическое содержание понятия "градиент скалярного поля" :

Направление вектора - это направление, в котором функция возрастает наиболее быстро;

Это приращение функции на единице длины вдоль направления максимального возрастания.

Как построить эквипотенциальную поверхность?

Пусть эквипотенциальная поверхность, заданная уравнением (*), проходит через точку пространства с координатами (x,y,z ). Зададим произвольно малые смещения двух координат, например x=>x+dx и y=>y+dy. Из уравнения (*) определяем необходимое смещение dz , такое, чтобы конечная точка осталась на рассматриваемой эквипотенциальной поверхности. Таким способом можно "добраться" до нужной точки поверхности.

Силовая линия векторного поля .

Определение. Касательная к силовой линии совпадает по направлению с вектором, определяющим рассматриваемое векторное поле.

Вектор и вектор совпадают по направлению (т.е. параллельны друг другу), если

В координатной форме записи имеем:

Легко видеть, что справедливы соотношения:

К такому же результату можно придти, если записать условие параллельности двух векторов с помощью их векторного произведения:

Итак, имеем векторное поле . Рассмотрим элементарный вектор как элемент силовой линии векторного поля .

В соответствие с определением силовой линии должны выполняться соотношения:

(**)

Так выглядят дифференциальные уравнения силовой линии. Получить аналитическое решение этой системы уравнений удаётся в очень редких случаях (поле точечного заряда, постоянное поле и т.п.). Но построить графически семейство силовых линий несложно.

Пусть силовая линия проходит через точку с координатами (x,y,z ). Значения проекций вектора напряжённости на координатные направления в этой точке нам известны. Выберем произвольно малое смешение, например, х=>x+dx . По уравнениям (**) определяем требуемые смещения dy и dz . Так мы перешли в соседнюю точку силовой линии, Процесс построения можно продолжить.

NB! (Nota Bene!). Силовая линия не полностью определяет вектор напряжённости. Если на силовой линии задано положительное направление, вектор напряжённости может быть направлен либо в положительную, либо в отрицательную сторону (но по линии!). Силовая линия не определяет модуль вектора (т.е. его величину) рассматриваемого векторного поля.

Свойства введённых геометрических объектов:

Эквипотенциальная поверхность эквипотенциа́льная пове́рхность

поверхность, все точки которой имеют один и тот же потенциал. Эквипотенциальная поверхность ортогональна силовым линиям поля. Поверхность проводника в электростатике является эквипотенциальной поверхностью.

ЭКВИПОТЕНЦИАЛЬНАЯ ПОВЕРХНОСТЬ

ЭКВИПОТЕНЦИА́ЛЬНАЯ ПОВЕ́РХНОСТЬ, поверхность, во всех точках которой потенциал (см. ПОТЕНЦИАЛ (в физике)) электрического поля имеет одинаковое значение j= const. На плоскости эти поверхности представляют собой эквипотенциальные линии поля. Используются для графического изображения распределения потенциала.
Эквипотенциальные поверхности замкнуты и не пересекаются. Изображение эквипотенциальных поверхностей осуществляют таким образом, чтобы разности потенциалов между соседними эквипотенциальными поверхностями были одинаковы. В этом случае в тех участках, где линии эквипотенциальных поверхностей расположены гуще, больше напряженность поля.
Между двумя любыми точками на эквипотенциальной поверхности разность потенциалов равна нулю. Это означает, что вектор силы в любой точке траектории движения заряда по эквипотенциальной поверхности перпендикулярен вектору скорости. Следовательно, линии напряженности (см. НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ) электростатического поля перпендикулярны эквипотенциальной поверхности. Другими словами: эквипотенциальная поверхность ортогональна к силовым линиям (см. СИЛОВЫЕ ЛИНИИ) поля, а вектор напряженности электрического поля Е всегда перпендикулярен эквипотенциальным поверхностям и всегда направлен в сторону убывания потенциала. Работа сил электрического поля при любом перемещении заряда по эквипотенциальной поверхности равна нулю, так как?j = 0.
Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд. Эквипотенциальные поверхности однородного электрического поля представляют собой плоскости, перпендикулярные линиям напряженности. Поверхность проводника в электростатическом поле является эквипотенциальной поверхностью.


Энциклопедический словарь . 2009 .

Смотреть что такое "эквипотенциальная поверхность" в других словарях:

    Поверхность, все точки которой имеют один и тот же потенциал. Эквипотенциальная Поверхность ортогональна к силовым линиям поля. Поверхность проводника в электростатике является эквипотенциальной поверхностью … Большой Энциклопедический словарь

    Поверхность, все точки к рой имеют один и тот же потенциал. Напр., поверхность проводника в электростатике Э. п. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    эквипотенциальная поверхность - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN surface of equal potentialsequal energy surfaceequipotential… … Справочник технического переводчика

    Эквипотенциальные поверхности электрического диполя (изображены тёмным их сечения плоскостью рисунка; цветом условно передано значение потенциала в разных точках наиболее высокие значения пурпурным и красным, н … Википедия

    эквипотенциальная поверхность - vienodo potencialo paviršius statusas T sritis fizika atitikmenys: angl. equipotential surface vok. Äquipotentialfläche, f rus. эквипотенциальная поверхность, f pranc. surface de potentiel constant, f; surface d’égal potentiel, f; surface… … Fizikos terminų žodynas

    Поверхность равного потенциала, поверхность, все точки которой имеют один и тот же Потенциал. Например, поверхность проводника в электростатике Э. п. В силовом поле Силовые линии нормальны (перпендикулярны) к Э. п … Большая советская энциклопедия

    - (от лат. aequus равный и потенциал) геом. место точек в поле, к рым соответствует одно и то же значение потенциала. Э. п. перпендикулярны силовым линиям. Эквипотенциальной является, напр., поверхность проводника, находящегося в электростатич.… … Большой энциклопедический политехнический словарь

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ.

Между напряженностью электрического доля и электрическим потенциалом существует интегральная и дифференциальная связь:

j 1 - j 2 = ∫ Е dl (1)

E = -grad j (2)

Электрическое поле может быть представлено графически двумя способами, дополняющими друг друга: с помощью эквипотенциальных поверхностей и ли­ний напряженности (силовых линий).

Поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью. Линия пересечения ее с плоскостью чертежа называется эквипотенциалью. Силовые линии - линии, касательные к которым в каждой точке совпадают с направлением вектора Е . На рисунке 1 пунктирными линиями показаны эквипотенциали, сплошными - силовые линии электрического поля.


Рис.1

Разность потенциалов между точками 1 и 2 равна 0, так как они находятся на одной эквипотенциали. В этом случае из (1):

∫Е dl = 0 или ∫Е dlcos ( Edl ) = 0 (3)

Поскольку Е и dl в выражении (3) не равны 0, то cos ( Edl ) = 0 . Следовательно, угол между эквипотенциалью и силовой линией составляет p/2.

Из дифференциальной связи (2) следует, что силовые линии всегда направлены в сторону убывания потенциала.

Величина напряженности электрического поля определяется «густотой» сило­вых линий. Чем гуще силовые линии, тем меньше расстояние между эквипотенциалями, так что силовые линии и эквипотенциали образуют "криволинейные квадраты". Исходя из этих принципов, можно построить картину силовых линий, располагая картиной эквипотенциалей, и наоборот.

Достаточно полная картина эквипотенциалей поля позволяет рассчитать в раз­ных точках значение проекции вектора напряженности Е на выбранное направ­ление х , усредненное по некоторому интервалу координаты ∆х :

Е ср. ∆х = - ∆ j /∆х,

где ∆х - приращение координаты при переходе с одной эквипотенциали на дру­гую,

j - соответствующее ему приращение потенциала,

Е ср. ∆х - среднее значение Е х между двумя потенциалами.

ОПИСАНИЕ УСТАНОВКИ И МЕТОДИКА ИЗМЕРЕНИЙ.

Для моделирования электрического поля удобно использовать аналогию, су­ществующую между электрическим полем, созданным заряженными телами и электрическим полем постоянного тока, текущего по проводящей пленке с одно­родной проводимостью. При этом расположение силовых линий электрического поля оказывается аналогично расположению линий электрических токов.

То же утверждение справедливо для потенциалов. Распределение потенциалов поля в проводящей пленке такое же, как в электрическом поле в вакууме.

В качестве проводящей пленки в работе используется электропроводная бума­га с одинаковой во всех направлениях проводимостью.

На бумаге устанавливаются электроды так, чтобы обеспечивался хороший кон­такт между каждым электродом и проводящей бумагой.

Рабочая схема установки приведена на рисунке 2. Установка состоит из модуля II, выносного элемента I, индикатора III, источника питания IV. Модуль служит для подключения всех используемых приборов. Выносной элемент представляет собой диэлектрическую панель 1, на которую помещают лист белой бумаги 2, по­верх нее - лист копировальной бумаги 3, затем - лист электропроводящей бумаги 4, на котором крепятся электроды 5. Напряжение на электроды подается от моду­ля II с помощью соединительных проводов. Индикатор III и зонд 6 используются для определения потенциалов точек на поверхности электропроводящей бумаги.

В качестве зонда применяется провод со штекером на конце. Потенциал j зонда равен потенциалу той точки поверхности электропроводящей бумаги, которой он касается. Совокупность точек поля с одинаковым потенциалом и есть изображе­ние эквипотенциали поля. В качестве источника питания IV используется блок питания ТЕС – 42, который подключается к модулю с помощью штепсельного разъема на задней стенке модуля. В качестве индикатора Ш используется вольт­метр В7 – 38.



ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.

1. Установить на панели 1 лист белой бумаги 2. На него положить копироваль­ную бумагу 3 и лист электропроводящей бумаги 4 (рис.2).

2. Установить на электропроводящей бумаге электроды 5 и закрепить гайками.

3. Подключить к модулю блок питания IV (ТЕС – 42) с помощью штепсельного разъема на задней стенке модуля.

4. С помощью двух проводников подключить индикатор III (вольтметр В7 – 38) к гнездам "PV" на лицевой панели модуля. Нажать соответствующую кнопку на вольтметре для измерения постоянного напряжения (рис.2).

5. С помощью двух проводников подключить электроды 5 к модулю П.

6. Подключить зонд (провод с двумя штекерами) к гнезду на лицевой панели модуля.

7. Подключить стенд к сети 220 В. Включить общее питание стенда.

Для наглядного представления векторных полей используют картину силовых линий. Силовая линия есть воображаемая математическая кривая в пространстве, направление касательной к которой в каждой точке, через которую она проходит, совпадает с направлением вектора поля в той же точке (рис. 1.17).
Рис. 1.17 :
Условие параллельности вектора E → и касательной можно записать в виде равенства нулю векторного произведения E → и элемента дуги d r → силовой линии:

Эквипотенциалью называют поверхность, на которой постоянна величина электрического потенциала ϕ . В поле точечного заряда, как показано на рис. , эквипотенциальными являются сферические поверхности с центров в месте расположения заряда; это видно из уравнения ϕ = q ∕ r = const .

Анализируя геометрию электрических силовых линий и эквипотенциальных поверхностей, можно указать ряд общих свойств геометрии электростатического поля.

Во-первых, силовые линии начинаются на зарядах. Они либо уходят на бесконечность, либо заканчиваются на других зарядах, как на рис. .


Рис. 1.19:

Во-вторых, в потенциальном поле силовые линии не могут быть замкнуты. В противном случае можно было бы указать такой замкнутый контур, что работа электрического поля при перемещении заряда по этому контуру не равна нулю.

В-третьих, силовые линии пересекают любую эквипотенциаль по нормали к ней. Действительно, электрическое поле всюду направлено в сторону скорейшего уменьшения потенциала, а на эквипотенциальной поверхности потенциал постоянен по определению (рис. ).
Рис. 1.20 :
И наконец, силовые линии нигде не пересекаются за исключением точек, где E → = 0 . Пересечение силовых линий означает, что поле в точке пересечения есть неоднозначная функция координат, а вектор E → не имеет определенного направления. Единственным вектором, который обладает таким свойством, является нулевой вектор. Структура электрического поля вблизи точки нуля будет проанализирована в задачах к ?? .

Метод силовых линий, конечно, применим для графического представления любых векторных полей. Так, в главе ?? мы встретим понятие магнитных силовых линий. Однако геометрия магнитного поля совершенно отлична от геометрии электрического поля.


Рис. 1.21 :
Представление о силовых линиях тесно связано с понятием силовой трубки. Возьмем какой-либо произвольный замкнутый контур L и через каждую точку его проведём электрическую силовую линию (рис. ). Эти линии и образуют силовую трубку. Рассмотрим произвольное сечение трубки поверхностью S . Положительную нормаль проведём в ту же сторону, в какую направлены силовые линии. Пусть N — поток вектора E → через сечение S . Нетрудно видеть, что если внутри трубки нет электрических зарядов, то поток N остаётся одним и тем же по всей длине трубки. Для доказательства нужно взять другое поперечное сечение S ′ . По теореме Гаусса, поток электрического поля через замкнутую поверхность, ограниченную боковой поверхностью трубки и сечениями S , S ′ , равен нулю, так как внутри силовой трубки нет электрических зарядов. Поток через боковую поверхность равен нулю, так как вектор E → касается этой поверхности. Следовательно, поток через сечение S ′ численно равен N , но противоположен по знаку. Внешняя нормаль к замкнутой поверхности на этом сечении направлена противоположно n → . Если же направить нормаль в ту же сторону, то потоки через сечения S и S ′ совпадут и повеличине, и по знаку. В частности, если трубка бесконечно тонкая, а сечения S и S ′ нормальны к ней, то

E S = E ′ S ′ .

Получается полная аналогия с течением несжимаемой жидкости. В тех местах, где трубка тоньше, поле E → сильнее. В тех местах, где она шире, поле E → сильнее. Следовательно, по густоте силовых линий можно судить о напряженности электрического поля.

До изобретения компьютеров для экспериментального воспроизведения силовых линий брали стеклянный сосуд с плоским дном и наливали в него жидкость, не проводящую электрически ток, например, касторовое масло или глицерин. В жидкости равномерно размешивали истертые в порошок кристаллики гипса, асбеста или какие-либо другие продолговатые частицы. В жидкость погружали металлические электроды. При соединении с источниками электричества, электроды возбуждали электрическое поле. В этом поле частицы электризуются и, притягиваясь друг к другу разноименно наэлектризованными концами, располагаются в виде цепочек вдоль силовых линий. Картина силовых линий искажается течениями жидкости, вызываемыми силами, действующими на неё в неоднородном электрическом поле.

To Be Done Yet
Рис. 1.22 :
Лучшие результаты получаются по методу, применявшемуся Робертом В. Полем (1884-1976). На стеклянную пластинку наклеиваются электроды из станиоля, между которыми создается электрическое напряжение. Затем на пластинку насыпают, слегка постукивая по ней, продолговатые частички, например, кристаллики гипса. Они располагаются по ней вдоль силовых линий. На рис. ?? изображена полученная таким образом картина силовых линий между двумя разноименно заряженными кружками из станиоля.

▸ Задача 9.1

Записать уравнение силовых линий в произвольных ортогональных координатах.

▸ Задача 9.2

Записать уравнение силовых линий в сферических координатах.

Эквипотенциальные поверхности это такие поверхности каждая из точек, которых обладают одинаковым потенциалом. То есть на эквипотенциальной поверхности электрический потенциал имеет неизменное значение. Такой поверхностью является поверхности проводников, так как их потенциал одинаков.

Представим себе такую поверхность, для двух точек которой разность потенциалов будет равна нулю. Это и будет эквипотенциальная поверхность. Поскольку потенциал на ней одинаков. Если рассматривать эквипотенциальную поверхность в двухмерном пространстве, допустим на чертеже, то она будет иметь форму лини. Работа сил электрического поля по перемещению электрического заряда вдоль этой лини будет равна нулю.

Одним из свойств эквипотенциальных поверхностей является то, что они всегда перпендикулярны силовым линиям поля. Это свойство можно сформулировать и наоборот. Любая поверхность, которая перпендикулярна во всех точках к линиям электрического поля и называется эквипотенциальной.

Также такие поверхности никогда не пересекаются между собой. Так как это означало бы различие потенциала в пределах одной поверхности, что противоречит определению. Еще они всегда замкнуты. Поверхности равного потенциала не могут начаться и уйти в бесконечность, не имея при этом четких границ.

Как правило, на чертежах нет необходимости изображать поверхности целиком. Чаще изображают перпендикулярное сечение к эквипотенциальным поверхностям. Таким образом, они вырождаются в линии. Этого оказывается вполне достаточно для оценки распределения данного поля. При изображении графически поверхности располагают с одинаковым интервалом. То есть между двумя соседними поверхностям соблюдается одинаковый, шаг скажем в один вольт. Тогда по густоте линий образованных сечением эквипотенциальных поверхностей можно судить о напряжённости электрического поля.

Для примера рассмотрим поле, создаваемое точечным электрическим зарядом. Силовые линии такого поля радиальные. То есть они начинаются в центре заряда и направлены на бесконечность, если заряд положительный. Или направлены к заряду, если он отрицательный. Эквипотенциальные поверхности такого поля будут иметь форму сфер с центром в заряде и расходящихся от него. Если же изобразить двухмерное сечение, то тогда эквипотенциальные лини будут в виде концентрических окружностей, центр которых также расположен в заряде.

Рисунок 1 — эквипотенциальные лини точечного заряда

Для однородного поля такого как, например поле между обкладками электрического конденсатора поверхности равного потенциала будут иметь форму плоскостей. Эти плоскости расположены параллельно друг другу на одинаковом расстоянии. Правда на краях обкладок картина поля исказится вследствие краевого эффекта. Но мы представим себе, что обкладки бесконечно длинные.

Рисунок 2 — эквипотенциальные линии однородного поля

Чтобы изобразить эквипотенциальные лини для поля, создаваемого двумя равными по величине и противоположными по знаку зарядами не достаточно применить принцип суперпозиции. Так как в этом случае при наложении двух изображений точечных зарядов будут точки пересечения линий поля. А этого быть не может, так как поле не может быть направлено сразу в две разные стороны. В этом случае задачу необходимо решить аналитически.

Рисунок 3 — Картина поля двух электрических зарядов