Что обеспечивает проницаемость клеточных мембран. Проницаемость и свойства клеточных мембран

А. Терминология. В настоящее время различные авторы по-разному трактуют термины «проницаемость» и «проводимость». Под проницаемостью клеточной мембраны мы понимаем ее спо­собность пропускать воду и частицы - заряженные (ионы) и неза­ряженные согласно законам диффузии и фильтрации. Проницае­мость клеточной мембраны определяется следующими факторами: 1) наличием в составе мембраны различных ионных каналов -управляемых (с воротным механизмом) и неуправляемых (каналы утечки); 2) размерами каналов и размерами частиц; 3) растворимо­стью частиц в мембране (клеточная мембрана проницаема для рас­творимых в ней липидов и непроницаема для пептидов).

Термин «проводимость» следует использовать только приме­нительно к заряженным частицам. Следовательно, под проводи­мостью мы понимаем способность заряженных частиц (ионов) проходить через клеточную мембрану согласно электрохимиче­скому градиенту (совокупность электрического и концентрацион­ного градиентов).

Как известно, ионы, подобно незаряженным частицам, перехо­дят через мембрану из области с высокой концентрацией в об­ласть с низкой концентрацией. При большом градиенте концен­трации и хорошей проницаемости мембраны, разделяющей соот­ветствующие растворы, проводимость ионов может быть высо­кая, при этом наблюдается односторонний ток ионов. Когда кон­центрация ионов по обе стороны мембраны уравняется, проводи­мость ионов уменьшится, односторонний ток ионов прекратится, хотя проницаемость сохранится прежней - высокой. Кроме того, проводимость иона при неизменной проницаемости мембраны зависит и от заряда иона; одноименные заряды отталкиваются, разноименные притягиваются, т.е. важную роль в проводимости иона играет его электрический заряд. Возможна ситуация, когда при хорошей проницаемости мембраны проводимость ионов че­рез мембрану оказывается низкой или нулевой, - в случае отсут­ствия движущей силы (концентрационного и /или электрического градиентов).

Таким образом, проводимость иона зависит от его электрохи­мического градиента и от проницаемости мембраны; чем они больше, тем лучше проводимость иона через мембрану. Перемеще­ния ионов в клетку и из клетки согласно концентрационному и электрическому градиентам в состоянии покоя клетки осуществля­ются преимущественно через неуправляемые (без воротного меха­низма) каналы (каналы утечки). Неуправляемые каналы всегда от­крыты, они практически не меняют своей пропускной способности при электрическом воздействии на клеточную мембрану и ее воз­буждении. Неуправляемые каналы подразделяются на ионоселективные каналы (например, калиевые медленные неуправляемые каналы) и иононеселективные каналы. Последние пропускают различные ионы; К+, Ка + , С1".



Б. Роль проницаемости клеточной мембраны и различных ионов в формировании ПП (рис. З.2.).

Сосуд разделен полупроницаемой мем­браной. Обе его половины заполнены раствором Кг5О4 различной концентрации (С| и Сг), причем С] < С2. Мембрана проницаема для иона К + и непроницаема для 8С>4 2 ~. Ионы К + перемещаются согласноконцентрационному градиенту из рас­твора Саврасгвор С|. Поскольку ионы 8О4 ~ не могут пройти в раствор С], где их концентрация тоже ниже, мембрана поляризуется и между двумя ее по­верхностями возникает разность элек­трических потенциалов, соответст­вующая равновесному калиевому по­тенциалу (Ек)- Ионы Йа* и К + в живой клетке, на­ходящейся в состоянии покоя, также перемещаются через мембрану соглас­но законам диффузии, при этом К + из клетки выходит в значительно боль­шем количестве, чем входит Ка + в клетку, поскольку проницаемость кле­точной мембраны для К* примерно в 25 раз больше проницаемости для Ка + . Органические анионыиз-за своих больших размеров не могут выхо­дить из клетки, поэтому внутри клет­ки в состоянии покоя отрицательных ионов оказывается больше, чем положительных. По этой причине клетка изнутри имеет отрица­тельный заряд. Интересно, что во всех точках клетки отрицатель­ный заряд практически одинаков. Об этом свидетельствует оди­наковая величина ПП при введении микроэлектрода на разную глубину внутрь клетки, как это имело место в опытах Ходжкина, Хаксли и Катца. Заряд

внутри клетки является отрицательным как абсолютно (в гиалоплазме клетки содержится больше анио­нов, чем катионов), так и относительно наружной поверхности клеточной мембраны.

Калий является главным ионом, обеспечивающим формирова­ние ПП. Об этом свидетельствуют результаты опыта с перфузией внутреннего содержимого гигантского аксона кальмара солевыми растворами. При уменьшении концентрации ионов К + в перфуза-те ПП снижается, при увеличении их концентрации ПП повыша­ется. В состоянии покоя клетки устанавливается динамическое равновесие между числом выходящих из клетки и входящих в клетку ионов К + . Электрический и концентрационный градиенты противодействуют друг другу: согласно концентрационному гра­диенту К + стремится выйти из клетки, отрицательный заряд внут­ри клетки и положительный заряд наружной поверхности клеточ­ной мембраны препятствуют этому. Когда концентрационный и электрический градиенты уравновесятся, число выходящих из клетки ионов К + сравнивается с числом входящих ионов К + в клетку. В этом случае на клеточной мембране устанавливается так называемый равновесный потенциал.

Равновесный потенциал для иона можно рассчитать по формуле Нернста. Концентрация положительно заряженного иона, находя­щегося снаружи, в формуле Нернста записывается в числителе, а иона, находящегося внутри клетки, - в знаменателе. Для отрица­тельно заряженных ионов расположение противоположное.

Вклад Na + и Cl - в создание ПП. Проницаемость клеточной мем­браны в покое для иона N3+ очень низкая, намного ниже, чем для иона К + , тем не менее она имеется, поэтому ионы Ка* согласно концентрационному и электрическому градиентам стремятся и в небольшом количестве проходят внутрь клетки. Это ведет к умень­шению ПП, так как на внешней поверхности клеточной мембраны суммарное число положительно заряженных ионов уменьшается, хотя и незначительно, а часть отрицательных ионов внутри клетки нейтрализуется входящими в клетку положительно заряженными ионами Nа + . Вход иона Na+ внутрь клетки снижает ПП. Влияние СГ на величину ПП противоположно и зависит от проницаемости кле­точной мембраны для ионов СГ. Дело в том, что ион СГ, согласно концентрационному градиенту, стремится и проходит в клетку. Препятствует входу иона СГ в клетку электрический градиент, по­скольку заряд внутри клетки отрицательный, как и заряд СГ. На­ступает равновесие сил концентрационного градиента, способст­вующего входу иона СГ в клетку, и электрического градиента, пре­пятствующего входу иона СГ в клетку. Поэтому внутриклеточная концентрация ионов СГ значительно меньше внеклеточной. При поступлении иона СГ внутрь клетки число отрицательных зарядов вне клетки несколько уменьшается, а внутри клетки увеличивается: ион СГ добавляется к крупным, белковой природы анионам, нахо­дящимся внутри клетки. Эти анионы из-за своих больших размеров не могут пройти через каналы клеточной мембраны наружу клетки - в интерстиций. Таким образом, ион СI - , проникая внутрьклетки, увеличивает ПП. Частично, как и вне клетки, ионы № + и С1" внутри клетки нейтрализуют друг друга. Вследствие этого со­вместное поступление ионов Ка + и С1~ внутрь клетки не сказывается существенно на величине ПП.

В. Определенную роль в формировании ПП играют поверх­ностные заряды самой клеточной мембраны и ионы Са 2+ . На­ружная и внутренняя поверхности клеточной мембраны несут собственные электрические заряды, преимущественно с отрица­тельным знаком. Это полярные молекулы клеточной мембра­ны: гликолипиды, фосфолипиды, гликопротеиды. Фиксиро­ванные наружные отрицательные заряды, нейтрализуя поло­жительные заряды внешней поверхности мембраны, снижают ПП. Фиксированные внутренние отрицательные заряды кле­точной мембраны, напротив, суммируясь с анионами внутри клетки, увеличивают ПП.

Роль ионов Са 2+ в формировании ПП заключается в том, что они взаимодействуют с наружными отрицательными фиксиро­ванными зарядами мембраны клетки и нейтрализуют их, что ве­дет к увеличению и стабилизации ПП.

Таким образом, ПП - это алгебраическая сумма не только всех зарядов ионов вне и внутри клетки, но также алгебраическая сумма отрицательных внешних и внутренних поверхностных за­рядов самой мембраны.

При проведении измерений потенциал окружающей клетку среды принимают равным нулю. Относительно нулевого потен­циала внешней среды потенциал внутренней среды нейрона, как отмечалось, составляет величину порядка -60-80 мВ. Поврежде­ние клетки приводит к повышению проницаемости клеточных мембран, в результате чего различие проницаемости для ионов К + и N3+ уменьшается. ПП при этом снижается. Подобные из­менения встречаются при ишемии ткани. У сильно поврежден­ных клеток ПП может снизиться до уровня донанновского рав­новесия, когда концентрация внутри и вне клетки будет опреде­ляться только избирательной проницаемостью клеточной мембраны в состоянии покоя клетки, что может привести к на­рушению электрической активности нейронов. Однако и в нор­ме происходит перемещение ионов согласно электрохимическо­му градиенту, однако ПП не нарушается.

· 01.04.2012

Во множестве статей о воде упоминается отрицательные значения ОВП внутренних жидкостей организма и энергия клеточных мембран (жизненная энергия организма).

Попытаемся разобраться о чём собственно речь и понять смысл этих утверждений с научно-популярной точки зрения.

Многие понятия и описания будут даны в сокращённом виде, а более полную информацию можно получить в Википедии или по ссылкам указанным в конце статьи.

(Или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулируют обмен между клеткой и внешней средой.

Клеточная мембрана настолько избирательна, что без её разрешения ни одно вещество из внешней среды не сможет даже случайно проникнуть в клетку. В клетке нет ни единой бесполезной, ненужной молекулы. Выходы из клетки также тщательно контролируются. Работа клеточной мембраны является существенной и не допускает даже малейшей ошибки. Внедрение вредного химического вещества в клетку, снабжение или выделение веществ в избыточном количестве или сбой выделения отходов приводит к гибели клетки.

Свободные радикалы атакуют

Барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход.

Для элементов K , Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.

Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТ Фаза, которая активно вкачивает в клетку ионы калия (K + ) и выкачивают из неё ионы натрия (Na + ).

Осуществление генерации и проведения биопотенциалов . С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К + внутри клетки значительно выше, чем снаружи, а концентрация Na + значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

Маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.


Потенциал действия

Потенциал действия — волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала.

По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны.

Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

Потенциалы действия могут различаться по своим параметрам в зависимости от типа клетки и даже на различных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов.

Тем не менее, в основе любого потенциала действия лежат следующие явления:

  1. Мембрана живой клетки поляризована - её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности - бо́льшее количество отрицательно заряженных частиц (анионов).
  2. Мембрана обладает избирательной проницаемостью - её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.
  3. Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю.

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны.

Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемую потенциалом покоя. Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка -70..-90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы, и анионы.

Снаружи — на порядок больше ионов натрия, кальция и хлора, внутри — ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов, сульфатов.

Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Активные свойства мембраны, обеспечивающие возникновение потенциала действия, основываются главным образом на поведении потенциалзависимых натриевых (Na + ) и калиевых (K + ) каналов. Начальная фаза ПД формируется входящим натриевым током, позже открываются калиевые каналы и выходящий K + — ток возвращает потенциал мембраны к исходному уровню. Исходную концентрацию ионов затем восстанавливает натрий-калиевый насос.

По ходу ПД каналы переходят из состояния в состояние: у Na + каналов основных состояний три - закрытое, открытое и инактивированное (в реальности дело сложнее, но этих трёх достаточно для описания), у K + каналов два - закрытое и открытое.

Выводы

1. ОВП внутриклеточной жидкости действительно имеет отрицательный заряд

2. Энергия клеточных мембран имеет отношение к скорости передаче нервного сигнала и мнение о «подзарядке» внутриклеточной жидкости водой с ещё более отрицательным ОВП кажется мне сомнительным. Однако, если предположить что по пути до клетки вода изрядно потеряет ОВП-потенциал, то у сего утверждения появляется вполне практический смысл.

3. Нарушение работы мембраны вследствие неблагоприятной среды приводит к гибели клетки

Мембранные методы очистки основаны на различной проницаемости мембран для компонентов очищаемой газовой смеси.[ ...]

Селективную проницаемость мембран в процессе ультрафильтрации объясняет чисто ситовой механизм разделения - частицы примесей, имеющие больший размер, чем размеры пор мембраны, через мембрану не проходят, через нее профильтровывается только вода.[ ...]

Селективность и проницаемость мембран должны рассматриваться во взаимосвязи с затратами на получение воздуха, обогащенного кислородом. Расходы на разделение воздуха зависят от проницаемости, селективности, геометрических параметров мембран, производительности модуля, стоимости электроэнергии и других факторов. Стоимость обогащенного кислородом воздуха оценивается по отношению к эквивалентно чистому кислороду, определяемому как количество чистого кислорода, необходимого для смешения с воздухом (21% кислорода) при получении того же количества и процентного содержания кислорода, которое получается в рассматриваемом газоразделительном процессе.[ ...]

Ультрафильтрация - мембранный процесс разделения растворов, осмотическое давление которых мало. Этот метод используется при отделении сравнительно высокомолекулярных веществ, взвешенных частиц, коллоидов. Ультрафильтрация по сравнению с обратным осмосом - более высокопроизводительный процесс, так как высокая проницаемость мембран достигается при давлении 0,2-1 МПа.[ ...]

Промывка твердых отходов 434, 425 Проницаемость мембран 273 Процеживание 197 сл.[ ...]

Ионы кальция оказывают большое влияние на мембранные структуры. На необходимость ионов Са2+ для стабилизации мембран указывалось достаточно давно. Было показано, что для образования поверхностной мембраны на эндоплазматической капле, изолированной из интерно-дальных клеток харовых водорослей, необходимо присутствие в окружающем растворе ионов Са2+. Присутствие Са2+ в концентрации 10 4 М способствовало образованию поверхностной мембраны на капле, хотя и недостаточно прочной; более прочная мембрана образовывалась при концентрации 10"3 М и особенно 10 2 М. При удалении ионов кальция (например, при обработке хелатами или при отсутствии Са2+ в среде) отмечается ослизнение корневых волосков, а также повышается проницаемость мембран к другим веществам. Ионы Са2+ изменяют и электрические свойства как искусственных, так и естественных мембран, умень-шая плотность заряда на мембранной поверхности. Недостаток Са приводит к возрастанию вакуолизации, изменению хромосом, разрыву мембран ЭПР и других внутриклеточных компартментов.[ ...]

С ростом концентрации разделяемого раствора проницаемость мембран уменьшается, с ростом давления - увеличивается. После процесса очистки получается фильтрат, обедненный на 90-99,5 °/о исходными соединениями, и концентрат, направляемый на дальнейшую переработку.[ ...]

Реакция на ацетилхолин и биогенные амины состоит в изменении проницаемости мембран к ионам и/или индукции синтеза вторичных посредников. Присутствие в растительной клетке и ее органеллах цАМФ, цГМФ, Са2+, а также ферментов синтеза и катаболизма подтверждает возможность локальной медиации.[ ...]

Так, под действием СВЧ ЭМИ (2,45 ГГц) обнаружено увеличение катионной проницаемости мембран эритроцитов при комнатной температуре, в то время как в отсутствие СВЧ ЭМИ подобный эффект наблюдается только при температуре 37 °С.[ ...]

Фонды метаболитов не равномерно распределены по клетке, а разделены мембранами и локализованы в отдельных отсеках (камерах, компартментах). Компартменты метаболических фондов клетки связаны между собой транспортными потоками. В соответствии с избирательной проницаемостью мембран происходит пространственное перераспределение интермедиатов и продуктов обмена. Например, в клетке запас АТФ поддерживается за счет "горизонтальных" связей процессов фотосинтетического и окислительного фосфоршшрования.[ ...]

Концентрация раствора. С ростом концентрации разделяемого раствора проницаемость мембран уменьшается вследствие увеличения осмотического давления растворителя и влияния концентрационной поляризации. При значении критерия Рейнольдса 2000-3000 концентрационная поляризация практически отсутствует, однако турбулизация раствора связана с его многократной рециркуляцией, т. е. с затратами энергии, и приводит к накоплению взвешенг ных частиц в растворе и появлению биологических обрастаний.[ ...]

Понижение температуры воды, ведущее к охлаждению рыб, ведет и к увеличению проницаемости мембран, которые теряют способность поддерживать ионные градиенты. При этом нарушается сопряженность ферментативных реакций, перестают работать ионные насосы, нарушается работа центральной и периферической нервной системы, угнетается работа кардиореспираторного аппарата, что в конечном счете может привести к развитию гипоксии. При перегреве или охлаждении рыб, возникающих в результате резкого изменения температуры в ограниченное время, определенная роль принадлежит осмотическим стрессам вследствие нарушения способности организма поддерживать определенную концентрацию ионов и белков в крови . Так, например, снижение температуры с 25 до 11°С вызывает у тиляпии, содержавшейся в пресной воде, развитие коматозного состояния, сопровождающегося снижением концентрации ионов натрия и хлора и общего белка крови . По мнению авторов, гибель рыб наступает из-за развития осморегуляторного коллапса и угнетения функции почёк. Косвенным подтверждением этого предположения может служить предотвращение температурной комы у рыб, содержащихся в разбавленной морской воде, что согласуется с более ранними наблюдениями повышения терморезистентности рыб вследствие добавления в воду ионов натрия, кальция и магния . Следует, однако, иметь в виду, что причины гибели рыб при повышенных или пониженных температурах различны и зависят от продолжительности и интенсивности температурного воздействия.[ ...]

Величина pH. Изменение первоначального значения pH обычно приводит к понижению проницаемости мембран . Влияние pH на селективность мембран невелико. Летучие кислоты плохо задерживаются мембранами, поэтому предварительная нейтрализация летучих кислот повышает селективность процесса разделения.[ ...]

При высоких концентрациях солей в трехкамерном электродиализаторе с инертными мембранами максимальный выход по току не превышает 20%.[ ...]

Получены положительные результаты очистки сточных вод от ОП-7 обратным осмосом при давлении 5 МПа. Проницаемость мембран составляла 5-20,8 л/(м2-ч) при концентрации ОП-7 в фильтрате 1-18 мг/л .[ ...]

ПАВ (алкилсульфаты) стимулируют размножение бактерий в наибольшей степени. Кроме того, ПАВ, изменяя проницаемость мембран живых клеток (С. С. Строев, 1965 и др.), возможно, способствуют лучшей усвояемости микробами пищевых веществ, содержащихся в воде.[ ...]

Природа растворенного вещества оказывает определенное влияние на селективность и в меньшей степени на проницаемость мембран. Это влияние заключается в том, что неорганические вещества задерживаются мембранами лучше, чем органические с той же молекулярной массой; среди родственных соединений, например, гомологов, лучше задерживаются вещества с большей молекулярной массой; вещества, образующие связи с мембраной, например, водородную, задерживаются мембраной тем лучше, чем менее прочна эта связь; селективность задержания высокомолекулярных соединений ультрафильтрацией тем больше, чем больше молекулярная масса растворенного вещества.[ ...]

Мембраны из ацетата целлюлозы могут работать в интервале pH 4,5-7, а из химически стойких полимеров - при pH 1 -14. Проницаемость мембран выбирается такой, чтобы обеспечивать проход воды, растворимых солей и задерживать масла. Размер пор в мембранах обычно составляет в пределах 2,5-10 нм. Установка оборудована вспомогательными трубопроводами для промывки мембран фильтратом или деминерализованной водой, снабжена контрольно-измерительными приборами и автоматическими устройствами.[ ...]

При значительном снижении внутриклеточной разности потенциалов до определенного порогового уровня наблюдается резкое изменение проницаемости мембран и обращение (реверсия) ионных потоков. Ионы кальция из наружной среды, окружающей клетку, поступают в нее, а ионы хлора и ионы калия выходят из клетки в омывающий раствор.[ ...]

Толерантность связана с внутренними факторами и включает такие метаболические процессы, как селективное поглощение ионов, пониженная проницаемость мембран, иммобилизация ионов в отдельных частях растений, удаление ионов из метаболических процессов с помощью образования запаса в нерастворимых формах в различных органах, адаптацию к замещению физиологического элемента токсичным в энзиме, удаление ионов из растений при вымывании через листья, соковыделении, сбрасывании листьев, выделении через корни. Толерантные растения могут стимулироваться при повышенных концентрациях металлов, что свидетельствует об их физиологической потребности в избытке. Отдельные виды растений способны-накапливать значительное количество тяжелых металлов без видимых признаков угнетения. Другие растения не имеют такой способности (см. табл.[ ...]

Давление является одним из основных факторов, определяющих производительность установок обратного осмоса. Производительность мембран увеличивается с повышением избыточного давления. Однако, начиная с некоторого давления, проницаемость мембран снижается вследствие уплотнения полимерного материала мембраны.[ ...]

Установлено также, что низкие ([ ...]

Поскольку полисахариды гемицеллюлоз имеют среднечисловой молекулярный вес не выше 30 000, применение обычной осмометрии затруднено вследствие проницаемости мембран для низкомолекулярных фракций. Предложенный Хиллом метод осмометрии в паровой фазе имеет ряд преимуществ перед другими методами. Этот метод основан на измерении разности давления паров раствора и растворителя и заключается в следующем . Каплю раствора и каплю растворителя помещают на два спая термопары и выдерживают в атмосфере, насыщенной парами чистого растворителя. Вследствие пониженного давления пара раствора часть пара сконденсируется на капле раствора, повышая температуру капли и термопары. Возникающая электродвижущая сила измеряется гальванометром. Верхний предел измеряемой величины молекулярного веса около 20 000, точность измерения 1 %.[ ...]

Наконец, мембраны эндоплазматического ретикулума - это те поверхности, по которым распространяются биотоки, являющиеся сигналами, меняющими избирательную проницаемость мембран и тем самым активность ферментов. Благодаря этому одни химические реакции пускаются в ход, другие тормозятся - обмен веществ подчиняется регуляции и протекает координированно.[ ...]

Нлазмалемма регулирует вход веществ в клетку и выход их из нее, обеспечивает избирательное проникновение веществ в клетку и из клетки. Скорость проннкновепия сквозь мембрану разных веществ различна. Хорошо проникают через нее вода и газообразные вещества. Легко проникают также жирорастворимые вещества,- вероятно, благодаря тому, что она имеет липидный слой. Предполагается, что липидный слой мембраны пронизан порами. Это позволяет проникать сквозь мембрану веществам, нерастворимым в жирах. Поры несут электрический заряд, поэтому проникновение через них ионов не вполне свободно. При некоторых условиях заряд пор меняется, и этим регулируется проницаемость мембран для ионов. Однако мембрана неодинаково проницаема и для разных ионов с одинаковым зарядом, и для разпых незаряжепных молекул близких размеров. В этом проявляется важнейшее свойство мембраны - избирательность ее проницаемости: для одних молекул и ионов она про-пицаема лучше, для других хуже.[ ...]

В настоящее время общепризнанным является механизм действия медиаторов в животных и растительных клетках, который основывается на регуляции ионных потоков. Изменения мембранных потенциалов обусловлены сдвигами ионной проницаемости мембран путем открытия или закрытия ионных каналов. С этим явлением и связаны механизмы возникновения и распространения ПД в животных и растительных клетках. В животных клетках - это №7К+-каналы, контролируемые ацетил-холином, и Са2+-каналы, чаще зависимые от биогенных аминов. В растительных клетках возникновение и распространение ПД связывается с кальциевыми, калиевыми и хлорными каналами.[ ...]

С большей воспроизводимостью и устойчивостью стабильный поток газов и паров может быть получен способами, основанными на диффузии газов или паров жидкости через капилляр (рис. 10) или проницаемую мембрану (рис. 11) в поток газа-разбавителя. В таких методах наблюдается равновесие между газовой фазой и адсорбирующими поверхностями аппаратуры, что обеспечивает стабильность микропотока.[ ...]

Увеличение температуры приводит к уменьшению вязкости и плотности раствора и одновременно к возрастанию его осмотического давления. Уменьшение вязкости и плотности раствора усиливает проницаемость мембран, а увеличение осмотического давления снижает движущую силу процесса и уменьшает проницаемость.[ ...]

В любой живой системе существует РЭП, и было бы удивительно, если бы не было. Это означало бы абсолютное равенство концентраций электролита во всех клетках, органах, наружных растворах либо полное совпадение величин проницаемости мембран ко всем катионам и анионам.[ ...]

В опыте 6, аналогичном опыту 1, определяли количество выделившегося калия и воднорастворимого органического вещества при разных концентрациях атразина. Судя по полученным результатам, можно сказать, что атразин не увеличивает проницаемость мембран для низкомолекулярных органических веществ и увеличивает для калия. Этот эффект был пропорционален концентрации атразина.[ ...]

При обследовании лиц, подвергавшихся во время работы действию радиации малого уровня (например, радиологи и техники, работающие с рентгеновским излучением, дозы которого измерялись индивидуальными дозиметрами) с помощью метода меченых атомов , проводились анализы крови на проницаемость мембран эритроцитов при прохождении одновалентных катионов. Было обнаружено, что проницаемость мембран эритроцитов у лиц, подвергавшихся облучению, значительно выше, чем у тех, кто не облучался. Кроме того, график зависимости позволил установить быстрое возрастание проницаемости при малом облучении; при больших дозах кривая становится пологой, аналогично наблюдению Стокке при изучении животных (см. рис. Х1У-3). Эти данные согласуются с результатами, полученными Петкау .[ ...]

При обессоливании минерализованных сточных вод гиперфильтрацией через полупроницаемые мембраны основные параметры - концентрацию растворенных веществ в концентрате и фильтрате необходимо определять на единицу ширины мембраны при заданной ее длине, разделяющей способности, коэффициенте проницаемости мембран, давлении, расходах исходной воды, фильтрата и концентрата.[ ...]

Возможность подобной адаптации обусловлена зависимостью термодинамических, .химических, кинетических констант от температуры. Эта зависимость, в общем, определяет направление и скорость химических реакций, конформационных переходов биологических маодомолекул,фазовых переходов липидов, изменение проницаемости мембран и других процессов, функционирование которых обеспечивает жизнедеятельность организмов при повышенной температуре.[ ...]

Все это пока лишь первые шаги в области применения омагниченной воды в медицине. Однако уже имеющиеся сведения свидетельствуют о перспективности применения омагничивания водных систем в этой области. Ряд медицинских проявлений возможно (гипотетически) связан с тем, что омагничивание водных систем повышает проницаемость мембран.[ ...]

Установлено, что полимерные пленки, выпускаемые промышленностью для ультрафильтрации, ионного обмена , а также мембраны из коллодия, желатины, целлюлозы и других материалов , имеют хорошую селективность, но малую проницаемость (0,4 л/м ч при давлении 40 am). Мембраны, приготовляемые по специальной прописи из смеси ацетатцеллюлозы, ацетона, воды, перхлората магния и соляной кислоты (соответственно 22,2; 66,7; 10,0; 1,1 и 0,1 весовых процента), позволяют опреснять воду с 5,25 до 0,05% NaCl и имеют проницаемость 8,5-18,7 л!м2 ■ ч при рабочем давлении 100-140 am , срок их службы не менее 6 месяцев . Электронно-микроскопические исследования этих мембран , так как, по предварительным расчетам 1192], обратный осмос может стать конкурентноспособным с другими способами опреснения воды при повышении проницаемости мембран до 5 м31мг в сутки.[ ...]

Потенциал покоя клеточной стенки. Клеточная стенка (оболочка) имеет отрицательный поверхностный заряд. Наличие этого заряда придает клеточной стенке отчетливо выраженные катионообменные свойства. Клеточная стенка характеризуется преимущественной избирательностью к ионам Са2+, который играет важную роль в регуляции проницаемости мембран по отношению к ионам К и №+.[ ...]

Таким образом, отмеченные эффекты указывают на то, что в культуральной жидкости микромицета Fusarium oxysporum помимо фузариевой кислоты содержатся и иные компоненты, обладающие высокой биологической активностью. Оценку степени патогенности различных изолятов фитопатогенных грибов можно производить на основе определения изменения проницаемости мембран растительных клеток к аммиаку.[ ...]

В результате снижается или прекращается новообразование АТФ, что ведет к подавлению процессов, зависящих от энергии дыхания. Нарушается также структура и избирательная проницаемость мембран, для поддержания которой необходима затрата энергии дыхания. Эти изменения приводят к снижению способности клеток поглощать и удерживать воду.[ ...]

С другой стороны, стабилизация пространственной структуры белка и других биополимеров осуществляется в значительной мере за счет взаимодействия: биополимер - вода. Основой функционирования живых систем считается водно-белково-нуклеиновый комплекс, поскольку только при наличии этих трех составляющих возможна нормальная жизнедеятельность мембран. Избирательная проницаемость мембран зависит от состояния воды. Экстраполируя кластерную модель воды на биологические системы, можно показать, что при разрушении кластера на определенны участках мембраны открывается путь для предпочтительного транспорта. Бесструктурная вода, например, препятствует повеДе нию протонов вблизи мембраны, тогда как по структурированно му каркасу протоны распространяются быстро.[ ...]

Описана схема непрерывного анализа газа с использованием ионоселективного электрода, которая может быть применена для определения содержания в газах НгЗ, НСЫ и НР. В обзоре работ НБС США среди других методов аттестации эталонных газов (смесей) указан также метод аттестации с помощью ионоселективных электродов для газов НСИ и НР. Из всех конструкций ионоселективных электродов обычно используют следующую: ионоселективная мембрана разделяет два раствора - внутренний и внешний (исследуемый). Для электрического контакта во внутренний раствор помещен вспомогательный электрод, обратимый к ионам внутреннего раствора, активность которых постоянна, вследствие чего постоянен и потенциал. На внутренней и внешней поверхностях мембраны возникает разность потенциалов, зависящая от разности активности ионов во внешнем и внутреннем растворах. Теория возникновения мембранного потенциала изложена в работе . В основном возникновение потенциала объясняется проницаемостью мембран либо только для катионов (катионоселективные), либо только для анионов (анионоселективные).

Способность веществ преодолевать мембранный барьер зависит прежде всего от их химической природы. Еще на заре ХХ в. английский ученый Дж. Овергон показал, что вещества, имеющие сродство к жирам (липофильные), легко проходят в клетку. Это объясняется их сродством к мембран­ному матриксу, состоящему из липидов. Гидрофильные веще­ства, в первую очередь вода, по-видимому, «протискиваются» через мембранные поры. Поэтому для их проникновения суще­ственное значение имеют размеры молекулы. Само понятие «поры» скорее всего является не структурным, а функциональным. Иными словами, пора - это не отверстие в мембране , а участок, обладающий гидрофильными свойствами и способный проводить гидрофильные вещества . В среднем размер такой поры 0,3-0,5 им. Лабильность структуры мембраны, обуслов­ленная слабыми связями между ее компонентами, приводит к тому, что поры могут менять расположение и размеры . Это объясняет изменчивость пропускной способности мембраны.

Все известные механизмы, обеспечивающие передвижение атомов, ионов или молекул между клеткой и средой, можно разделить на 2 категории: пассивный и активный транспорт .

К первой относятся процессы, про­исходящие по законам физики и химии . Направление движения молекул и ионов в этом случае определяется градиентами, существующими между клеткой и окружающей ее средой. Живая клетка не затра­чивает на транспорт веществ собственной энергии. Такой тип транспорта называется пассивным. Пассивный транспорт - это движение веществ по физико-химическим градиентам без затраты клеткой метаболической энергии - происходит как в живой, так и в неживой природе.

Одним из механизмов пассивного транспорта является диффузия . В газах и жидкостях молекулы и ионы находятся в постоянном движении благодаря кинетической энергии, которой обладают эти частицы. По второму закону термодинамики каждая система стремится уменьшить свою внут­реннюю энергию и увеличить энтропию. Поэтому в сообщаю­щихся растворах разных концентраций частицы растворенного вещества будут перемещаться из более концентрированного рас­твора в менее концентрированный. Одновременно из второго сосуда в первый на том же основании будут передвигать­ся молекулы растворителя. Процесс направленного передвижения молекул продолжится до тех пор, пока концентрация раство­ренного вещества в обеих частях системы не станет одинаковой. При этом энергия движущихся частиц в любой единице объема данной системы уравнивается - химический потенциал будет одинаков. Таким образом, движущей силой диффузии , происхо­дящей за счет тепловой энергии, является градиент концентра­ции (D с) или градиент химического потенциала (Dm ) данного вещества, который зависит от природы диффундирующего вещества (коэффициента диффузии). Это выражается уравнением Фика:где - число частиц, диффундирующих за единица времени (скорость диффу­зии). Д - коэффициент диффузии, - площадь поверхности диффузии, - ­градиент концентрации между двумя системами.

Пассивно вещества могут диффундировать:

через липидную фазу (растворимые в жирах),

по промежуткам между липидами,

с помощью липофильных переносчиков,

по специальным каналам (гидрофильные вещества)

под влиянием МП (электрофорез).

Если объемы с различными концентрациями не сообщаются, а разделены перегородкой, проницаемой для растворителя, но непроницаемой для растворенного вещества, то выравнивание концентраций будет происходить лишь за счет перемещения молекул растворителя. Такие перегородки называют полупроницае­мыми , а движение частиц через них - осмосом . Т.о., осмос - это одностороннее движение раство­рителя через полупроницаемую мембрану по градиенту концент­рации (химического потенциала) . Поскольку почвенный раствор всегда сильнее разбавлен (химический потенциал воды выше), чем раствор веществ в клетке, то вода поступает в клетку по законам осмоса.

Одной из форм пассивного транспорта является электрофорез - движение заряженных частиц за счет электрической энергии по градиенту электрического потенциала . Предположим, что две системы, (содержащие раствор электролита разделены мембраной, проницаемой для ионов. Поверхность мембраны, обращенная к первой системе, заряжена отрицательно по отношению к противоположной ее стороне, которая заряжена положительно. В результате этого под действием электродвижущей силы в обеих системах возникает направленный ток заряженных частиц - из первой системы во вторую будут перемещать анионы, из второй в первую - катионы.

Известно, что на клеточных мембранах генерируется и поддерживается электрический потенциал определенной величины - мембранный потенциал (МП). Внешняя мембрана растительной клетки - плазмалемма - имеет потенциал, равный в среднем -120...-150 мВ, МП тонопласта составляет -90..-120 мВ, хлоропластов -50...-70, митохондрий -120..-170 мВ, клеточная оболочка -50...-70 мВ. Знак «минус» перед цифрой, выражающей значение МП означает, что внутреннее содержимое нормально функционирующей клекки заряжено отрицательно по отношению к внешней среде. Составляющими электрического градиента на мембране являются диффузионный потенциал (обеспечивает 30-40 % значения МП), доннановский потенциал (10...-15 %) и активность электрогенных насосов в клетке (достигается 45-50 %).

Диффузионный потенциал возникает в результате различной проницаемости ионов через мембрана и, как следствие, градиента их активности между клеткой и средой.

Доннановский потенциал образуется за счет фиксированных зарядов , присущих находящимся в клетке молекулам белков, нуклеиновых кислот, пектиновых и других веществ.

Итак, реальной движу­щей силой ионов является градиент электрохимического потен­циала, который выражается в джоулях на моль.

Другая категория процессов транспорта веществ - активный транспорт - присуща только живым организмам, которые спо­собны осуществлять передвижение молекул и ионов против физико-химических градиентов . Для этого клетке необходимо затратить часть выработанной ею энергии, запасенной чаще всего в молекулах АТФ. Энергетические затраты клетки на активный транспорт веществ очень велики - они могут достигать 40 % всей энергии дыхания.

По современным данным, диффузия воды через липидный матрикс может осуществляться также с помощью кинкизомеров . Это длинные углеводородные цепочки остатков высших карбоновых кислот в жидком матриксе мембраны, которые находятся в постоянном тепловом движении. Если вокруг какой-либо С-С-связи в прямой углеводородной цепи произойдет поворот на 120°, то соседняя с ней С-С-связь также повернется на 120°, но в противоположном направлении. При этом образуется « излом », ограничивающий небольшой пустой объем, который не остается на месте, а перемещается вдоль цепи. В этом объеме, как в пакете, через мембрану могут проходить молекулы воды и некоторые растворенные вещества.

Минеральные элементы, находящиеся в окружающей среде (почве) в растворенном состоя­нии (в виде ионов), преодолевают мембрану в виде гидратированных в различной степени частиц. Молекулы воды, как известно, являются диполями и вследствие этого ориентируются вокруг положительно или отрицательно за­ряженных ионов соответствующими полюсами. Размеры гидратируемых частиц сильно увеличиваются, что препятствует их проникновению через поры мембраны. Чем более гидратирован ион, тем труднее ему преодолеть мембрану . Степень гидратации ионов зависит от их заряда и размеров атомного ядра . Гидрата­ционное число увеличивается в ряду катионов таким образом: калий - 4, натрий - 5, кальций - 10, магний - 13, алюминий - 21.

Движение ионов через мембраны связывают со специфическими молекулами-переносчиками - ионофорами . Действие ионофоров можно представить на примере функционирования антибиотиков - веществ, вырабатываемые некоторыми грибами и бакте­риями и действующих в очень низких концентрациях (10 -11 ...-10- 6 М). Антибиотик, продуцируемый бактериями Streptomices fulvissimus, - валиномицин - представляет собой циклический полипептид , почти не растворимый в воде. Сродство валиномицина к мембранному матриксу обеспечивается гидрофобными радикалами, расположенными на поверхности молекулы, в то время как на внутренней ее части имеются карбоксильные груп­пы, с атомами кислорода которых ион К + образует координа­ционные связи (рис.). Благодаря неполярному «чехлу» он благополучно преодолевает мембрану . Переносчик при этом может быть уподоблен челноку , курсирующему от одной поверх­ности мембраны к другой. Внутренний размер « молекулярного мешка » обеспечивает высокую избирательность к определенному иону . Так, валиномицин связывает и транспортирует ион К + в 1000 раз эффективнее, чем ион Na + .

Другой антибиотик - грамицидин - представляет собой ли­нейный полипептид, 2 молекулы которого образуют спирале­видный канал , в котором гидрофильные группы обращены внутрь, а гидрофобные - к мембранному матриксу. По гидро­фильному каналу происходит передвижение через мембрану ионов (рис.).

Способность антибиотиков наводить каналы ионной проводимости обусловливает их медицинское значение , так как является мощным средством ионного опустошения клеток патогенных микроорганизмов. Вследствие сильного повышения проницае­мости («продырявливания») клеточных мембран под действием антибиотиков происходит быстрая утечка K + и других важных элементов из клеток возбудителей болезней, в связи с чем наступает их гибель. На этом основан терапевтический эффект анти­биотиков в борьбе с инфекционными заболеваниями.

Фитопатогенные грибы способны вырабатывать весьма специфические вещества , с помощью которых они воздействуют на поражаемые растения , увеличивая проницаемость клеточных мембран, чем причиняют растительному организму вред. Идентификация мембранных переносчиков растений и изучение их действия для ученых-биологов - важная задача, решение которой может иметь практическое зна­чение.

Активный транспорт. Известно, что основные макро- и мик­роэлементы в нормальных условиях жизнедеятельности находятся в клетке в концентрациях, значительно превышающих их содержание в окружающей среде. Так как со стороны цитоплаз­мы мембраны заряжены отрицательно , анионы не могут поступать в клетку пассивно, поскольку и концентрационный и электрохимический компоненты движущей силы направлены не в клетку, а из нее. Тем не менее клетка поглощает NO 3 - , Н 3 РО 4 - и др. анионы. Следова­тельно, их транспорт в клетку представляет собой активный процесс, требующий затрат энергии.

Что касается катионов , то, хотя концентрационный градиент , как правило, направляет их движение из клетки в окружающую среду, электрическая составляющая движущей силы действует в противоположном направлении . В каждом конкретном случае направление пассивного тока катио­нов будет определяться соотношением двух сил - химической и электрической .

Для того чтобы решить, активно или пассивно движется ион и каково направление его движения - в клетку или из нее при конкретном соотношении концентраций иона в клетке и окружающей среде, используют упрощенное уравнение Нернста:

где - потенциал Нерста (МП), абсолютное значение; - ­валентность н заряд иона. с_- внутренняя концентрация иона: с - внешняя концентрация иона.

Зная величину МП, можно рассчитать каким должно быть соотношение внутренней н внешней концентрации данного иона при пассивное его перемещении за счет электрохимического градиента. Если реально найденное соотношение внутренней и внешней концентрации отличается от рас­четного, значит, клетка затрачивает метаболическую энергию на поглощение или на выделение данного иона, то есть осуществляет его активный транспорт.

На практике МП клетки измеряют с подошью электродов , представляющих собой тончайшие ка­пилляры, заполненные 3М КСl и открытые на концах. Один из капилляров погружен в окружающий раствор, а другой вводят в цитоплазму клетки с помощью микроманипулятора под микроскопом. С другой стороны эти электроды через хлорсеребряный или каломельный электрод присоединяют к высокоомному вольтметру, который и показывает величину МП. Концентрацию иона в окружающей среде измеряют стандартными методами. Для определения внутриклеточной концентрации либо получают экстракт из убитых тканей, либо при помощи центрифугирования выделяют из крупные клеток тонопласты с вакуолярным соком. В экстрактах или выделенных вакуолях концентрацию исследуемого иона измеряют обычными метода­ми.

В качестве критерия активности и пассивности ионного транспорта может быть использована его зависимость от уровня метаболизма клетки. Первые представления об активном транс­порте веществ связаны с именами американского ученого Д. Хогланда и выдающегося отечественного физиолога Л. А. Саби­нина.

Доказано, что движение ионов против электрохимического градиента стимулируется теми факторами , которые положитель­но влияют на дыхание и фотосинтез . Последние, как известно, являются источниками АТФ в живом клетке. К числу активаторов транспорта ионов относятся свет, температура, содержа­ние в среде кислорода , а в растении - углеводов (субстратов дыхания). С другой стороны, воздействие на растение дыха­тельных ядов сильно тормозит поглощение минеральных ве­ществ.

Системы, отвечаю­щие за передвижение ионов против электрохимического градиента, по-видимому, должны иметь сродство к мембранному матриксу ; быть достаточно структурно ла­бильными , чтобы осущест­влять передвижение какого-либо вещества; иметь участки, ответственные за специфичес­кое присоединение какого-­либо иона (молекулы); обла­дать АТФ-азной активностью , то есть способностью гидролизовать молекулу АТФ до АДФ и неорганического фос­фата с высвобождением энер­гии макроэргической связи, которая и обеспечивает транспорт иона.

Современные исследования мембран, позволяют выявить в них крупные глобулярные образования , которые представляют собой белки, часто имеющие четвертичную структуру. АКТИВНЫЙ транспорт веществ через мембраны связывают именно с этими БЕЛКОВЫМИ МОЛЕКУЛАМИ. Так как ионы активно «накачиваются» или «выкачиваются» клеткой, механизмы активного транспорта принято называть ионными насосами, помпами. В живой клетке функционируют насосы двух типов - электронейтральные и электрогенные .

Принцип работы электронейтрального насоса заключается в том, что он переносит через мембрану 2 иона одинакового заряда в противоположных направлениях . Поэтому в результате действия такого насоса заряд на мембране не изменяется . Механизмом подобного типа является натриево-калиевый насос . Одна из схем работы этого насоса выглядит следующим образом (рис.). Белок, отвечающий за транспорт Na + н K + , состоит из двух структурных компонентов. Первая субъединица пронизывает матрикс мембраны, образуя в ней ионный канал, по которому могут передвигаться ионы из клетки в среду и обратно. Во 2-й субъединице, находящейся на внутренней поверхности мембраны имеются участки, способные связывать Na + , K + и АТФ.

В результате гидролиза АТФ высвобождается энергия, за счет которой происходит поворот глобулы таким образом, что она оказывается в канале, сообщающемся с окружающей средой. В этот момент переносчик теряет способность связывать какие-либо ионы. Na + выходит наружу, а К + поступает в клетку. Далее белок возвращается в исходное, наиболее термо­динамически выгодное состояние. В этом положении к ион­ному каналу оказывается обращенным участок глобулы, спе­цифически связывающий K + , поступающий из окружающее среды. Исходное конформационное состояние глобулы обеспе­чивает присоединение к ней новых молекулы АТФ и иона Na + в соответствующих центрах. Начинается следующий цикл работы ионного насоса. Элект­рический заряд на мембране при этом не меняется.

Na/K АТФ-аза обнаружена в мембранах клеток многих жи­вотных организмов. Что касается растений, то все более очевидно присутствие в их мембранах подобных насосов. Профессором Д. Б. Вахмистровым достоверно показана работа Na+/K+ помпы у растений , приспособленных к жизни в условиях засоления , связана с необходимостью выкачивать избыток натрия. Возможно, Na + /K + АТФ-аза акти­вируется растительными клетками и в других крайних условиях, когда подавляется деятельность активных механизмов другого рода.

Работа электрогенного насоса заключается в том, что он переносит ион определенного заряда только в одну сторону, поэтому за счет его работы происходит генерация электричес­кого потенциала на мембране. Образующаяся таким образом электродвижущая сила обеспечивает перемещение ионов путем электрофореза . Универсальным для всех клеток механизмом подобного рода является протонная помпа (рис. 2). Встроен­ный в плазмалемму (и другие мембраны) белок, состоящий из нескольких субъединиц, осуществляет выброс протонов водо­рода за счет энергии гидролизуемой АТФ - первично активный транспорт . В результате этого на мембране генерируется электрохимический потенциал (Dm Н+ ), компонентами которого являются гра­диент электрического ( Dy ) и концентрационного ( D рН) по­тенциалов: (Dm Н+ = Dy + D рН). Электрический градиент обеспечивает движение в клетку катионов . Концентрационный градиент протонов опре­деляет их осмотический отток в клетку с помощью переносчиков. Этот обратный ток протонов может быть сопряжен с однонаправленным транспортом ионов (симпорт ), противоположно направленным таком катионов (антипорт ), а также совместным движением органических молекул (котранспорт ). Таким образом, потоки ионов и молекул в клетке опосредованы деятельностью протонной помпы и поэтому могут считаться вторично активным транспортом (рис.!).

Протонная помпа участвует: 1) в регуляции внутриклеточного рН; 2) создании МП; запасании и трансформации энергии; 3) мембранном и дальнем транспорте вв.; 4) поглощении МВ корнями; 5) росте и двигательной активности.

Живые клетки, как и организм в целом - открытая система с постоянным обменом вещества и энергии. В процессе этого обмена происходит проникновение веществ в клетке и из клетки.

С образованием в клетках электрических потенциалов, нарушение клеточной проницаемость приводит к патологическим изменениям, лечебное действие врача с назначением препарата связано с проникновением этих веществ в клетку и воздействие на ее функциональные свойства.

Задачи

  1. Изучение механизма проникновения веществ через мембрану
  2. Определение распределения веществ между внутриклеточной и внеклеточной средой.

Методы изучения проницаемости

  1. Объемный метод. Основан на явлении осмоса. Определение массы клеток до и после помещения их в гипертонический раствор изучаемого вещества. Вещество проникает в клетку и увеличивается объем(из-за воды). Метод центрифугирования - определение эритроцитарной массы с помощью него. При фотометрии изменяется показатель проникновения веществ в клетку.
  2. Индикаторный метод. Он сводится к определению прижизненной окраски. Качественный метод, т.к. поступление вещества определяется по изменению окраски индикатора, который предварительно вводится в клетку. Используется для кислот и щелочей. Метод колориметрии может дать не только качественную, но и количественную оценку. Недостаток - малые концентрации плохо улавливаются, а большие - губительны для клетки.
  3. Химический метод - исследует качественное и количественное определение веществ в клетках и окружающей среде.
  4. Изотопный метод изучения проницаемости. Он позволяет изучить потоки любых веществ поступающих как в клетку, так и из нее. Метод позволяет работать на живых объектах и использовать малые концентрации изучаемых веществ. Позволяет изучать проникновение не только чужеродных веществ, но и веществ - компонентов данной клетки.
  5. Метод измерения электропроводности. Применяется для измерения ионов. По изменению низкочастотного тока позволяет судить о проницаемости.

Физические факторы, обусловливающие пассивное проникновение веществ через мембрану.

  1. Концентрационный(химический) градиент
  2. Электрохимический градиент
  3. Электростатический градиент(для процессов фильтрации)
  4. Осмотический градиент
  5. Градиент растворимости на границе двух несмешивающихся фаз, например липидной и водной

Они обеспечивают пассивное движение веществ.

Активная проницаемость, идет с затратами энергии, перенос осуществляется против градиента концентрации.

Основным видом пассивного транспорта будет являться диффузия - простая(через поры в липидном бислое, через белковую пору, либо через поры в липидном бислое) и облегченная с (фиксированным или подвижным переносчиком). К пассивному транспорту относится осмос и фильтрация - перемещения вещества и растворителя.

Диффузия является основным путем переноса веществ. Диффузия - самопроизвольный процесс проникновения веществ из области большей в область с меньшей концентрацией в результате теплового хаотического движения атомов и молекул. Кинетическая энергия - mV2 / 2.

Если частица имеет заряд включается еще электрохимический градиент.

Уравнение Нернста-Планка

Jm = URT dC/dx - UCZF dф/dx

U - подвижность частиц

С - концентрация

R - газовая постоянная

T- температура

Z - заряд иона

F - число Фарадея

Dx - толщина мембраны

dC/dx - градиент концентрации

dф/dx - градиент электрохимического потенциала

Закон Фика

Jm = -D dC/dx Jm = P(C1-C2)

Если нет заряда.

P - коэффициент проницаемости мембраны

K - коэффициент распределения

Вещества в процессе диффузии проходят через поры мембраны - водорастворимые, полярные соединения и электролиты. Органические вещества проходят за счет растворения в липидах. Зависимость растворения веществ в липидах исследовалось Овертоном. Он показал если есть карбоксильные, гидроксильные и аминогруппы, то это ухудшает проникновение через мембрану. Присутствие же метиловых, этиловых и фенильных групп наоборот облегчает проникновение веществ в клетку. Они не полярные и это увеличивает растворения этих веществ в липидах.

Коэффициент распределения показывает отношение растворимости веществ в жирах к растворимости этих веществ в воде. Чем выше этот коэффициент, тем легче проникают вещества в клетку, вне зависимости от размеров молекулы. Если вещества имеют одинаковый коэффициент распределения, то более мелкие молекулы будут проникать легче чем крупные.

Водорасстворимые вещества проходят через поры мембран. Для того чтобы пройти через пору, вещество должно преодолеть определенные силы, которые препятствуют этому. Вещество должно освободится от водной или сольватной оболочки, раздвинуть поверхностный молекулярный слой на границе клетки и омывающего раствора, преодолеть взаимодействие своих полярных групп и полярных групп поры мембран, преодолеть энергетический барьер, создаваемый на поверхности цитоплазмы ионами и коллоидами.

Проницаемость ионов через мембрану .

Она зависит от следующих факторов.

  1. Размер кристаллического радиуса
  2. Размер гидратной оболочки и ее прочности
  3. От валентности иона, которая определяется величиной заряда
  4. От фазовых переходов мембраны из жидкокристаллического состояния в гель и обратно. Радиус гидратирвоанного иона будет определяться кристаллическим радиусом и наличием одной или нескольких гидратных оболочек. Водная оболочка у анионов на 18% компактнее чем у катионов. Анионы лучше проходят через мембрану. При прохождении через пору ион сохраняет одну гидратную оболочку, а остальные замещаются стенками поры. Легче это происходит, если меньше энергия гидратации.

На проникновение в клетку будет влиять заряд, т.к. происходит взаимодейтсвие с порой. Одновалентные ионы лучше чем 2х и чем 3х. Натрий, калий лучше, кальций, магний - лучше, совсем плохо - железо.

Состояние мембраны. Поры жидкого кристалла и геля. Кристалл(занимает большую плотность, за счет раздвижения жирных хвостов - 0,58 и 3,9). Гель - жирные хвосты параллельно расположены и площадь уменьшается до 0,48, но увеличивается толщина увеличивается до 4,7. Транс конфигурация - вытянуты и отклонения хвостов в Гош-транс-гош конфигурации.

В жидкокрситалическом состоянии в мембране есть микрополости - kink петля. эти микрополости захватываются ионы, вода и они могут перемещаться вдоль мембраны и мембрана осуществляет перенос.

Процесс диффузии может облегчаться за счет наличия переносчиков. Особенность облегченной диффузии, также как по градиенту концентрации, только быстрее. Обладает свойством транспортного максимума - нарастания скорости проницаемости вещества зависит от свободных переносчиков, но когда все переносчики заняты, скорость уменьшается. Увеличение скорости облегченной диффузии идет до определенного момента. Возможна конкуренция переносимых веществ, когда к переносчику присоединяются разные вещества.

Процесс фильтрации - видение раствора через пору в мембране под действием градиента давления.

Подчиняется уравеннию Пуазейля

dV/dt = пи R4(p1-p2) / 8lή

dV/dt=(p1-p2)/ w W=8lή/пи R4

r4 - радиус поры

l- длина поры

ή - вязкость жидкости

V - объем фильтрованной жидкости

W - гидлравлическое сопротивление

В капиллярах клубочков почек - булки не могут пройти через фильтр, они остаются в плазме и создают осмотическое давлении. Фильтрованная жидкость - создает гидростатическое давление, препядствующее фильтрации.

Большое значение в организме имеет осмос. Вода по законам осмоса из раствора с меньшей концентрацией веществ в раствор с большей концентрацией. Осмос - это диффузия молекул воды. Идее по градиенту осмотического давления (пи)

Пи=iRCT i-изотонический коэффициент диссоциации молекул.

Осмоляльность. Осмоль.

При определении концентрации раствора в показателях чатсиц вместо гарммов - осмоль.

Один осмоль является 1 грамм-молекулой растворенного вещества.

Раствор, который содержит 1 / 1000 осмоля на 1 кг воды, имеет осмоляльность 1 милиосмоль(мосм) на 1 кг. Нормальная осмоляльность внеклеточной и внутриклеточной жидкости равна примерно 300 мосм на 1 кг

Осмолярность

В связи со сложностью измерения воды в растворе в килограммах, что необходимо для определения осмоляльности, вместо этого использую осмолярность - концентрацию выражаемую числом осмолей на 1 л раствора, а не на 1 кг.

Различия в покащателях осмоляльности и осмолярности составляют менее 1%

Проницаемость мембран для воды

  1. Осмотический градиент
  2. Гидрсотатический градиент
  3. Электрический градиент
  4. Онкотическое давление белков. Обеспечивает аномальный осмос.

Неодинаковая скорость проникновения катионов и анионов создает диффузионную разность потенциалов. Эта разность потенциалов может влиять на проникновение воды. Аномальный осмос может быть положительным и отрицательным. При положительном осмосе - вода движется по осмотическому градиенту, но с дополнительным ускорением, а при отрицательном аномальном осмосе вода переносится против осмотического градиента, но по градиенту электрической разности потенциала.

Теории транспорта воды

Теория Вант-Гофа - проникновение воды через поры тепловым движением ее молекул.

Проникновение воды в виде пары.

Мембраны хорошо проницаемы для газов независимо от их природы. Газы не имеют заряд. Газы могут растворяться в липидах.

Проницаемость для кислот и щелочей зависит от степени их диссоциации. Проницаемость алкалоидов тоже. Не диссоциируемые - хорошо проходят через мембрану, т.к. растворяются в липидах, а диссоциируемые не могут пройти через поры мембран из за большой величины.

Активный транспорт - связан с затратой энергии, и против градиента.

Первично активный и вторично активный транспорт.

Первично активный транспорт - насосные механизмы для переноса ионов мембран.

Фермент может находитcя в 2х конформационных состояниях - E1/E2. Может присоединится к альфа суб единице в состоянии Е1 три единицы. Происходит распад АТФ до АДФ и неорганического фосфата. Фосфатная группа переносится на аспарагин в 376 положении. Белок при фосфолилировании осуществляет поворот и три иона изнутри оказываются снаружи. Альфа суб единица после поворота приобретает сродство к калию. И захватывает 2 иона калия. Алее дефосфолилирование и новое конформационное изменение переход в Е2 и 2 калия возвращается внутрь.

Этот транспорт поддерживает нормальное распределение натрия и калия во внутриклеточной и вне жидкости. Также +заряд на наружной поверхности мембраны. С выносом 3х ионов натрия из клетки удаляется вода, т.е. поддерживается водный баланс клетки.

Вторчино активный транспорт используется для переноса органических соединений, необходимых для клетки и этот вторично активный транспорт осуществляется с помощью переносчиков = 2 натрий + глюкоза(например). Движется в клетке по градиенту натрия в клетку. Здесь энергия не расходуется, но глюкоза из клетки должна уйти в кровь - путем простой диффузии, а натрий из клетки удаляется натрий-калий АТФазой. Это нужно для поддержания концентрационного градиента.

Активные процессы транспорта вещества связаны также с эндоцитозом - фагоцито - перенос плотных частиц и пиноцитоз - если переносятся жидкости. Этот процесс может быть специфическим и не. Специфический - если мембрана сама отбирает с помощью специальных рецепторных белком мембраны. Мембрана образует складку, которая смыкается и переходит в пузырек, он создает первичную эндосому, в которую включены вещество, белок. Из первичной эндосомы удаляется белок(клатрин) и первичная эндосома переходит во вторичную эндосому, и она сливается с лизосомой.

Гормоны, которые не могут проходить через мембрану, взаимодействуют с рецепторами. А др. часть гормонов, растворимых в жирах, проникает внутрь клетки и взаимодействуют с цитозольными рецепторами.