Temperaturni grafikon toplovodne mreže 110 70. Tabela grejanja za kontrolu kvaliteta snabdevanja toplotom na osnovu prosečne dnevne spoljne temperature

Temperaturni graf predstavlja zavisnost stepena zagrevanja vode u sistemu od temperature hladnog spoljašnjeg vazduha. Nakon potrebnih proračuna, rezultat se prikazuje u obliku dva broja. Prvi znači temperaturu vode na ulazu u sistem grijanja, a drugi na izlazu.

Na primjer, unos 90-70ᵒS znači da će u datim klimatskim uslovima, za grijanje određene zgrade, biti potrebno da rashladna tekućina na ulazu u cijevi ima temperaturu od 90ᵒS, a na izlazu 70ᵒS.

Sve vrijednosti su prikazane za temperaturu vanjskog zraka za najhladniji petodnevni period. Ova projektna temperatura je prihvaćena prema Zajedničkom poduhvatu "Toplotna zaštita zgrada". Prema normama, unutrašnja temperatura za stambene prostorije je 20ᵒS. Raspored će osigurati ispravnu opskrbu rashladnom tekućinom u cijevima za grijanje. Ovo će izbjeći hipotermiju prostorija i rasipanje resursa.

Potreba za izvođenjem konstrukcija i proračuna

Temperaturni raspored se mora izraditi za svako naselje. Omogućava vam da osigurate najkompetentniji rad sistema grijanja, i to:

  1. Podesite toplotne gubitke tokom snabdijevanja tople vode kućama sa prosječnom dnevnom vanjskom temperaturom.
  2. Sprečite nedovoljno zagrevanje prostorija.
  3. Obavezati termoelektrane da potrošače snabdijevaju uslugama koje ispunjavaju tehnološke uslove.

Takvi proračuni su neophodni i za velike toplane i za kotlovnice u malim naseljima. U ovom slučaju, rezultat proračuna i konstrukcija će se zvati raspored kotlovnice.

Načini kontrole temperature u sistemu grijanja

Po završetku proračuna potrebno je postići izračunati stepen zagrijavanja rashladne tekućine. To možete postići na nekoliko načina:

  • kvantitativno;
  • kvaliteta;
  • privremeni.

U prvom slučaju se mijenja brzina protoka vode koja ulazi u mrežu grijanja, u drugom se reguliše stepen zagrijavanja rashladne tekućine. Privremena opcija uključuje diskretno dovod vruće tekućine u mrežu grijanja.

Za sistem centralnog grijanja najkarakterističniji je kvalitet, dok količina vode koja ulazi u krug grijanja ostaje nepromijenjena.

Tipovi grafikona

Ovisno o namjeni toplinske mreže razlikuju se načini izvođenja. Prva opcija je uobičajeni raspored grijanja. To je konstrukcija za mreže koje rade samo za grijanje prostora i centralno su regulirane.

Povećani raspored se obračunava za mreže grijanja koje obezbjeđuju grijanje i opskrbu toplom vodom. Napravljen je za zatvorene sisteme i prikazuje ukupno opterećenje sistema za snabdevanje toplom vodom.

Prilagođeni raspored je također namijenjen za mreže koje rade i za grijanje i za grijanje. Ovdje se uzimaju u obzir gubici topline kada rashladna tekućina prolazi kroz cijevi do potrošača.


Izrada temperaturnog grafikona

Konstruisana prava linija zavisi od sledećih vrednosti:

  • normalizirana temperatura zraka u prostoriji;
  • vanjska temperatura zraka;
  • stepen zagrijavanja rashladne tekućine kada uđe u sistem grijanja;
  • stepen zagrijavanja rashladne tekućine na izlazu iz mreže zgrade;
  • stepen prijenosa topline uređaja za grijanje;
  • toplinske provodljivosti vanjskih zidova i ukupnih toplinskih gubitaka zgrade.

Za kompetentan proračun potrebno je izračunati razliku između temperatura vode u direktnoj i povratnoj cijevi Δt. Što je veća vrijednost u pravoj cijevi, to je bolji prijenos topline sistema grijanja i veća je unutrašnja temperatura.

Da bi se rashladna tečnost racionalno i ekonomično trošila, potrebno je postići minimalnu moguću vrijednost Δt. To se može osigurati, na primjer, izvođenjem radova na dodatnoj izolaciji vanjskih konstrukcija kuće (zidovi, premazi, stropovi iznad hladnog podruma ili tehničkog podzemlja).

Proračun načina grijanja

Prije svega, morate dobiti sve početne podatke. Standardne vrijednosti temperatura vanjskog i unutrašnjeg zraka prihvaćene su prema zajedničkom poduhvatu "Toplotna zaštita zgrada". Da biste pronašli snagu uređaja za grijanje i gubitke topline, morat ćete koristiti sljedeće formule.

Toplotni gubitak zgrade

U ovom slučaju, ulazni podaci će biti:

  • debljina vanjskih zidova;
  • toplinska provodljivost materijala od kojeg su izrađene ogradne konstrukcije (u većini slučajeva to je naznačeno od strane proizvođača, označeno slovom λ);
  • površina vanjskog zida;
  • klimatsko područje izgradnje.

Prije svega, utvrđuje se stvarna otpornost zida na prijenos topline. U pojednostavljenoj verziji, možete ga pronaći kao količnik debljine zida i njegove toplotne provodljivosti. Ako se vanjska struktura sastoji od nekoliko slojeva, zasebno pronađite otpor svakog od njih i dodajte rezultirajuće vrijednosti.

Toplotni gubici zidova izračunavaju se po formuli:

Q = F*(1/R 0)*(t unutarnji zrak -t vanjski zrak)

Ovdje je Q gubitak topline u kilokalorijama, a F je površina vanjskih zidova. Za precizniju vrijednost potrebno je uzeti u obzir površinu zastakljivanja i njegov koeficijent prijenosa topline.


Proračun površinske snage baterija

Specifična (površinska) snaga se izračunava kao količnik maksimalne snage uređaja u W i površine prenosa toplote. Formula izgleda ovako:

R otkucaja \u003d R max / F akt

Proračun temperature rashladnog sredstva

Na osnovu dobijenih vrijednosti odabire se temperaturni režim grijanja i gradi direktan prijenos topline. Na jednoj osi su ucrtane vrijednosti stepena zagrijanosti vode koja se dovodi u sistem grijanja, a na drugoj temperatura vanjskog zraka. Sve vrijednosti su uzete u stepenima Celzijusa. Rezultati proračuna su sažeti u tabeli u kojoj su naznačene čvorne tačke cjevovoda.

Prilično je teško izvršiti proračune prema metodi. Za kompetentan izračun najbolje je koristiti posebne programe.

Za svaku zgradu, takav proračun pojedinačno provodi društvo za upravljanje. Za približnu definiciju vode na ulazu u sistem možete koristiti postojeće tabele.

  1. Za velike dobavljače toplotne energije koriste se parametri rashladne tečnosti 150-70ᵒS, 130-70ᵒS, 115-70ᵒS.
  2. Za male sisteme sa više jedinica važe postavke. 90-70ᵒS (do 10 spratova), 105-70ᵒS (preko 10 spratova). Može se usvojiti i raspored od 80-60ᵒS.
  3. Prilikom uređenja autonomnog sustava grijanja za individualnu kuću, dovoljno je kontrolirati stupanj grijanja pomoću senzora, ne možete napraviti grafikon.

Izvršene mjere omogućavaju određivanje parametara rashladnog sredstva u sistemu u određenom trenutku. Analizirajući podudarnost parametara sa rasporedom, možete provjeriti efikasnost sistema grijanja. Tablica temperaturnog grafikona također pokazuje stepen opterećenja sistema grijanja.

Pregledavajući statistiku posjete našem blogu, primijetio sam da se vrlo često pojavljuju fraze za pretraživanje kao što su, na primjer, "koja bi trebala biti temperatura rashladne tekućine na minus 5?". Odlučio sam da postavim stari raspored za kvalitetnu regulaciju opskrbe toplinom na osnovu prosječne dnevne vanjske temperature. Želim da upozorim one koji će na osnovu ovih brojki pokušati da srede odnose sa stambenim odeljenjem ili toplovodnim mrežama: rasporedi grejanja za svako pojedinačno naselje su različiti (o tome sam pisao u članku o regulisanju temperature rashladna tečnost). Termalne mreže u Ufi (Baškirija) rade po ovom rasporedu.

Takođe želim da skrenem pažnju da se regulacija odvija prema prosečnoj dnevnoj spoljnoj temperaturi, pa ako je, na primer, noću napolju minus 15 stepeni, a danju minus 5, tada će se temperatura rashladne tečnosti održavati u prema rasporedu na minus 10 °C.

U pravilu se koriste sljedeći temperaturni grafikoni: 150/70, 130/70, 115/70, 105/70, 95/70. Raspored se bira u zavisnosti od specifičnih lokalnih uslova. Sistemi grijanja kuća rade po rasporedu 105/70 i 95/70. Prema rasporedu 150, 130 i 115/70 rade glavne toplotne mreže.

Pogledajmo primjer kako koristiti grafikon. Pretpostavimo da je temperatura napolju minus 10 stepeni. Mreže grijanja rade prema temperaturnom rasporedu 130/70, što znači da na -10 °C temperatura rashladne tekućine u dovodnom cjevovodu toplinske mreže treba biti 85,6 stepeni, u dovodnom cjevovodu sistema grijanja - 70,8 ° C sa rasporedom 105/70 ili 65,3°C na grafikonu 95/70. Temperatura vode nakon sistema grijanja treba biti 51,7 °C.

U pravilu se vrijednosti temperature u dovodnom cjevovodu toplinskih mreža zaokružuju prilikom postavljanja izvora topline. Na primjer, prema rasporedu, trebalo bi da bude 85,6 ° C, a 87 stepeni je postavljeno u CHP ili kotlovnici.

Vanjska temperatura

Temperatura mrežne vode u dovodnom cevovodu T1, °S Temperatura vode u dovodnom cevovodu sistema grejanja T3, °S Temperatura vode posle sistema grejanja T2, °S

150 130 115 105 95 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35
53,2 50,2 46,4 43,4 41,2 35,8
55,7 52,3 48,2 45,0 42,7 36,8
58,1 54,4 50,0 46,6 44,1 37,7
60,5 56,5 51,8 48,2 45,5 38,7
62,9 58,5 53,5 49,8 46,9 39,6
65,3 60,5 55,3 51,4 48,3 40,6
67,7 62,6 57,0 52,9 49,7 41,5
70,0 64,5 58,8 54,5 51,0 42,4
72,4 66,5 60,5 56,0 52,4 43,3
74,7 68,5 62,2 57,5 53,7 44,2
77,0 70,4 63,8 59,0 55,0 45,0
79,3 72,4 65,5 60,5 56,3 45,9
81,6 74,3 67,2 62,0 57,6 46,7
83,9 76,2 68,8 63,5 58,9 47,6
86,2 78,1 70,4 65,0 60,2 48,4
88,5 80,0 72,1 66,4 61,5 49,2
90,8 81,9 73,7 67,9 62,8 50,1
93,0 83,8 75,3 69,3 64,0 50,9
95,3 85,6 76,9 70,8 65,3 51,7
97,6 87,5 78,5 72,2 66,6 52,5
99,8 89,3 80,1 73,6 67,8 53,3
102,0 91,2 81,7 75,0 69,0 54,0
104,3 93,0 83,3 76,4 70,3 54,8
106,5 94,8 84,8 77,9 71,5 55,6
108,7 96,6 86,4 79,3 72,7 56,3
110,9 98,4 87,9 80,7 73,9 57,1
113,1 100,2 89,5 82,0 75,1 57,9
115,3 102,0 91,0 83,4 76,3 58,6
117,5 103,8 92,6 84,8 77,5 59,4
119,7 105,6 94,1 86,2 78,7 60,1
121,9 107,4 95,6 87,6 79,9 60,8
124,1 109,2 97,1 88,9 81,1 61,6
126,3 110,9 98,6 90,3 82,3 62,3
128,5 112,7 100,2 91,6 83,5 63,0
130,6 114,4 101,7 93,0 84,6 63,7
132,8 116,2 103,2 94,3 85,8 64,4
135,0 117,9 104,7 95,7 87,0 65,1
137,1 119,7 106,1 97,0 88,1 65,8
139,3 121,4 107,6 98,4 89,3 66,5
141,4 123,1 109,1 99,7 90,4 67,2
143,6 124,9 110,6 101,0 94,6 67,9
145,7 126,6 112,1 102,4 92,7 68,6
147,9 128,3 113,5 103,7 93,9 69,3
150,0 130,0 115,0 105,0 95,0 70,0

Nemojte se fokusirati na dijagram na početku posta - ne odgovara podacima iz tabele.

Proračun temperaturnog grafa

Metoda za izračunavanje temperaturnog grafa opisana je u priručniku „Postavljanje i rad mreže za grijanje vode“ (poglavlje 4, str. 4.4, str. 153,).

Ovo je prilično naporan i dugotrajan proces, jer se za svaku vanjsku temperaturu mora očitati nekoliko vrijednosti: T1, T3, T2 itd.

Na našu radost, imamo kompjuter i MS Excel tabelu. Kolega na poslu mi je podijelio gotovu tabelu za izračunavanje temperaturnog grafikona. Svojevremeno ju je napravila njegova supruga, koja je radila kao inženjer za grupu režima u toplotnim mrežama.


Tabela za izračunavanje grafa temperature u MS Excel-u

Da bi Excel mogao izračunati i izgraditi grafikon, dovoljno je unijeti nekoliko početnih vrijednosti:

  • projektna temperatura u dovodnom cjevovodu toplinske mreže T1
  • projektna temperatura u povratnoj cijevi toplinske mreže T2
  • projektna temperatura u dovodnoj cijevi sistema grijanja T3
  • Vanjska temperatura zraka Tn.v.
  • Unutrašnja temperatura Tv.p.
  • koeficijent "n" (obično se ne mijenja i jednak je 0,25)
  • Minimalni i maksimalni rez na temperaturnom grafikonu Cut min, Cut max.

Unošenje početnih podataka u tabelu za izračunavanje temperaturnog grafa

Sve. ništa se više ne traži od tebe. Rezultati proračuna biće u prvoj tabeli tabele. Podebljano je.

Grafikoni će također biti obnovljeni za nove vrijednosti.


Grafički prikaz grafa temperature

Tabela također uzima u obzir temperaturu vode u direktnoj mreži, uzimajući u obzir brzinu vjetra.

Preuzmite proračun temperaturnog grafikona

energoworld.com

Dodatak e Tabela temperature (95 – 70) °S

Projektna temperatura

outdoor

Temperatura vode u

server

cjevovod

Temperatura vode u

povratni cevovod

Procijenjena vanjska temperatura

Temperatura dovodne vode

Temperatura vode u

povratni cevovod

Dodatak e

ZATVORENI SISTEM GRIJANJA

TV1: G1 = 1V1; G2=G1; Q = G1(h2 –h3)

OTVORENI SISTEM GRIJANJA

SA REZERVOROM VODE U ćorsokak SISTEM PTV-a

TV1: G1 = 1V1; G2 = 1V2; G3 = G1 - G2;

Q1 \u003d G1 (h2 - h3) + G3 (h3 - hh)

Bibliografija

1. Gershunsky B.S. Osnove elektronike. Kijev, škola Vishcha, 1977.

2. Meyerson A.M. Radio-mjerna oprema. - Leningrad.: Energija, 1978. - 408s.

3. Murin G.A. Termotehnička mjerenja. -M.: Energy, 1979. -424 str.

4. Spector S.A. Električna mjerenja fizičkih veličina. Tutorial. - Lenjingrad.: Energoatomizdat, 1987. –320s.

5. Tartakovskii D.F., Yastrebov A.S. Metrologija, standardizacija i tehnički mjerni instrumenti. - M.: Viša škola, 2001.

6. Merila toplotne energije TSK7. Manual. - Sankt Peterburg.: CJSC TEPLOKOM, 2002.

7. Kalkulator količine toplote VKT-7. Manual. - Sankt Peterburg.: CJSC TEPLOKOM, 2002.

Zuev Aleksandar Vladimirovič

Susjedne datoteke u folderu Procesna mjerenja i instrumenti

studfiles.net

Tabela temperature grijanja

Zadatak organizacija koje opslužuju kuće i zgrade je održavanje standardne temperature. Temperaturna kriva grijanja direktno ovisi o vanjskoj temperaturi.

Postoje tri sistema grijanja

Grafikon vanjske i unutrašnje temperature
  1. Centralizovano snabdevanje toplotom velike kotlovnice (CHP), koja se nalazi na znatnoj udaljenosti od grada. U ovom slučaju, organizacija za opskrbu toplinom, uzimajući u obzir gubitke topline u mrežama, bira sistem s temperaturnom krivuljom: 150/70, 130/70 ili 105/70. Prva znamenka je temperatura vode u dovodnoj cijevi, druga cifra je temperatura vode u povratnoj cijevi.
  2. Male kotlovnice, koje se nalaze u blizini stambenih zgrada. U ovom slučaju se bira temperaturna kriva 105/70, 95/70.
  3. Individualni kotao instaliran u privatnoj kući. Najprihvatljiviji raspored je 95/70. Iako je moguće još više smanjiti dovodnu temperaturu, jer gubitka topline praktički neće biti. Moderni kotlovi rade u automatskom režimu i održavaju konstantnu temperaturu u dovodnoj toplotnoj cevi. Tabela temperature 95/70 govori sama za sebe. Temperatura na ulazu u kuću treba da bude 95°C, a na izlazu - 70°C.

U sovjetsko doba, kada je sve bilo u državnom vlasništvu, održavani su svi parametri temperaturnih grafikona. Ako prema rasporedu treba postojati temperatura dovoda od 100 stepeni, onda će to biti tako. Takva temperatura se ne može isporučiti stanarima, pa su projektovane liftovske jedinice. Voda iz povratnog cjevovoda, ohlađena, miješana je u dovodni sistem, čime je dovodna temperatura snižena na standardnu. U našem vremenu univerzalne ekonomije, potreba za čvorovima lifta više nije potrebna. Sve organizacije za opskrbu toplotom prešle su na temperaturni grafikon sistema grijanja 95/70. Prema ovom grafikonu, temperatura rashladnog sredstva će biti 95 °C kada je vanjska temperatura -35 °C. U pravilu, temperatura na ulazu u kuću više ne zahtijeva razrjeđivanje. Stoga se sve jedinice liftova moraju eliminisati ili rekonstruisati. Umjesto konusnih dijelova koji smanjuju i brzinu i volumen protoka, stavite ravne cijevi. Zapečatite dovodnu cijev iz povratnog cjevovoda čeličnim čepom. Ovo je jedna od mjera uštede topline. Također je potrebno izolirati fasade kuća, prozore. Zamijenite stare cijevi i baterije u nove - moderne. Ove mjere će povećati temperaturu zraka u stanovima, što znači da možete uštedjeti na temperaturi grijanja. Snižavanje temperature na ulici odmah se odražava na stanare na računima.


grafikon temperature grijanja

Većina sovjetskih gradova izgrađena je sa "otvorenim" sistemom grijanja. Tada voda iz kotlarnice dolazi direktno do potrošača u domovima i koristi se za lične potrebe građana i grijanje. Prilikom rekonstrukcije sistema i izgradnje novih sistema grijanja koristi se "zatvoreni" sistem. Voda iz kotlarnice dolazi do grejne tačke u mikrookrug, gde zagreva vodu na 95 °C, koja odlazi u kuće. Ispada dva zatvorena prstena. Ovaj sistem omogućava organizacijama za opskrbu toplinom da značajno uštede resurse za grijanje vode. Zaista, količina zagrijane vode koja izlazi iz kotlarnice bit će gotovo ista na ulazu u kotlarnicu. Nema potrebe za ubacivanjem hladne vode u sistem.

Temperaturni grafikoni su:

  • optimalno. Toplotni resurs kotlarnice koristi se isključivo za grijanje kuća. Regulacija temperature se vrši u kotlarnici. Temperatura dovoda je 95 °C.
  • povišen. Toplotni resursi kotlovnice se koriste za grijanje kuća i opskrbu toplom vodom. U kuću ulazi dvocevni sistem. Jedna cijev je grijanje, druga cijev za toplu vodu. Temperatura dovoda 80 - 95 °C.
  • prilagođeno. Toplotni resursi kotlovnice se koriste za grijanje kuća i opskrbu toplom vodom. Jednocevni sistem prilazi kući. Iz jedne cijevi u kući uzima se izvor topline za grijanje i toplu vodu za stanare. Temperatura dovoda - 95 - 105 °C.

Kako izvršiti temperaturni raspored grijanja. Moguće je na tri načina:

  1. kvaliteta (regulacija temperature rashladnog sredstva).
  2. kvantitativno (regulacija zapremine rashladne tečnosti uključivanjem dodatnih pumpi na povratnom cevovodu ili ugradnjom elevatora i perača).
  3. kvalitativno-kvantitativno (za regulaciju i temperature i zapremine rashladne tečnosti).

Prevladava kvantitativna metoda, koja nije uvijek u stanju izdržati grafikon temperature grijanja.

Borba protiv organizacija za snabdevanje toplotom. Ovu borbu vode kompanije za upravljanje. Po zakonu, društvo za upravljanje je dužno da zaključi ugovor sa organizacijom za snabdevanje toplotom. Da li će to biti ugovor o isporuci toplotnih resursa ili samo sporazum o interakciji, odlučuje kompanija za upravljanje. Aneks ovog sporazuma će biti temperaturni raspored za grijanje. Organizacija za snabdijevanje toplotom je dužna da odobri temperaturne šeme u gradskoj upravi. Organizacija za opskrbu toplinom opskrbljuje izvorom topline zid kuće, odnosno mjerne stanice. Inače, zakon propisuje da su termotehničari dužni da o svom trošku ugrađuju mjerne stanice u kuće uz obročnu otplatu troškova za stanare. Dakle, imajući mjerne uređaje na ulazu i izlazu iz kuće, možete svakodnevno kontrolirati temperaturu grijanja. Uzimamo temperaturnu tablicu, gledamo temperaturu zraka na meteorološkoj stranici i pronalazimo u tabeli indikatore koji bi trebali biti. Ako ima odstupanja, morate se žaliti. Čak i ako su odstupanja veća, stanovnici će plaćati više. Istovremeno će se otvoriti prozori i provetravati prostorije. Neophodno je žaliti se na nedovoljnu temperaturu organizaciji za opskrbu toplinom. Ako nema odgovora, pišemo gradskoj upravi i Rospotrebnadzoru.

Donedavno je postojao koeficijent množenja troškova grijanja za stanovnike kuća koje nisu bile opremljene uobičajenim kućnim brojilima. Zbog tromosti rukovodećih organizacija i termalnih radnika, patili su obični stanovnici.

Važan pokazatelj u grafikonu temperature grijanja je temperatura povrata mreže. Na svim grafikonima, ovo je pokazatelj od 70°C. U teškim mrazima, kada se gubici topline povećavaju, organizacije za opskrbu toplinom prisiljene su uključiti dodatne pumpe na povratnom cjevovodu. Ova mjera povećava brzinu kretanja vode kroz cijevi, a samim tim se povećava i prijenos topline, a temperatura u mreži se održava.

Opet, u periodu opće uštede, vrlo je problematično natjerati termalne radnike da uključe dodatne pumpe, što znači povećanje troškova električne energije.

Grafikon temperature grijanja izračunava se na osnovu sljedećih pokazatelja:

  • temperatura okoline;
  • temperatura dovodnog cjevovoda;
  • temperatura povratnog cjevovoda;
  • količina toplotne energije koja se troši kod kuće;
  • potrebna količina toplotne energije.

Za različite prostorije, temperaturni raspored je drugačiji. Za dečije ustanove (škole, bašte, palate umetnosti, bolnice), temperatura u prostoriji treba da bude između +18 i +23 stepena prema sanitarnim i epidemiološkim standardima.

  • Za sportske objekte - 18 °C.
  • Za stambene prostore - u stanovima ne nižim od +18 °C, u ugaonim prostorijama + 20 °C.
  • Za nestambene prostorije - 16-18 ° C. Na osnovu ovih parametara izrađuju se rasporedi grijanja.

Lakše je izračunati temperaturni raspored za privatnu kuću, jer je oprema montirana u kući. Revni vlasnik će obezbijediti grijanje garaže, kupatila i pomoćnih zgrada. Opterećenje kotla će se povećati. Toplotno opterećenje izračunavamo ovisno o najnižim mogućim temperaturama zraka u prošlim periodima. Opremu biramo po snazi ​​u kW. Najisplativiji i ekološki najprihvatljiviji kotao je prirodni plin. Ako vam se donese plin, ovo je već pola posla. Možete koristiti i plin u bocama. Kod kuće se ne morate pridržavati standardnih temperaturnih rasporeda od 105/70 ili 95/70, i nije važno što temperatura u povratnom cjevovodu nije 70 °C. Podesite temperaturu mreže po svom ukusu.

Inače, mnogi stanovnici grada željeli bi instalirati individualne mjerače topline i sami kontrolirati temperaturni raspored. Obratite se kompanijama za snabdevanje toplotom. I tamo čuju takve odgovore. Većina kuća u zemlji izgrađena je na vertikalnom sistemu grijanja. Voda se dovodi odozdo prema gore, rjeđe: odozgo prema dolje. Kod ovakvog sistema ugradnja mjerača toplotne energije je zakonom zabranjena. Čak i ako specijalizovana organizacija instalira ova brojila za vas, organizacija za snabdevanje toplotom jednostavno neće prihvatiti ova brojila za rad. Odnosno, štednja neće raditi. Ugradnja brojila je moguća samo uz horizontalnu distribuciju grijanja.

Drugim riječima, kada cijev za grijanje ulazi u vaš dom ne odozgo, ne odozdo, već iz ulaznog hodnika - horizontalno. Na mestu ulaska i izlaza toplovoda mogu se ugraditi individualni merili toplote. Ugradnja ovakvih brojača isplati se za dvije godine. Sve kuće se sada grade upravo sa takvim sistemom ožičenja. Aparati za grijanje su opremljeni kontrolnim dugmićima (slavinama). Ako je po vašem mišljenju temperatura u stanu visoka, tada možete uštedjeti novac i smanjiti opskrbu grijanjem. Samo sebe ćemo spasiti od smrzavanja.

myaquahouse.com

Temperaturni grafikon sistema grijanja: varijacije, primjena, nedostaci

Temperaturni grafikon sistema grejanja 95 -70 stepeni Celzijusa je najtraženiji temperaturni grafikon. Uglavnom, sa sigurnošću možemo reći da svi sistemi centralnog grijanja rade u ovom režimu. Jedini izuzetak su zgrade sa autonomnim grijanjem.

Ali čak iu autonomnim sistemima mogu postojati iznimke kada se koriste kondenzacijski kotlovi.

Kod korištenja kotlova koji rade na kondenzacijskom principu, temperaturne krive grijanja imaju tendenciju da budu niže.


Temperatura u cjevovodima u zavisnosti od temperature vanjskog zraka

Primjena kondenzacijskih kotlova

Na primjer, pri maksimalnom opterećenju za kondenzacijski kotao, postojat će način rada od 35-15 stupnjeva. To je zbog činjenice da kotao izvlači toplinu iz izduvnih plinova. Jednom riječju, s drugim parametrima, na primjer, istim 90-70, neće moći efikasno raditi.

Prepoznatljiva svojstva kondenzacijskih kotlova su:

  • visoka efikasnost;
  • profitabilnost;
  • optimalna efikasnost pri minimalnom opterećenju;
  • kvalitet materijala;
  • visoka cijena.

Mnogo puta ste čuli da je efikasnost kondenzacionog bojlera oko 108%. Zaista, priručnik kaže istu stvar.


Kondenzacijski kotao Valliant

Ali kako to može, jer su nas iz školske klupe učili da se više od 100% ne dešava.

  1. Stvar je u tome što se pri izračunavanju efikasnosti konvencionalnih kotlova 100% uzima kao maksimum. Ali obični plinski kotlovi za grijanje privatne kuće jednostavno izbacuju dimne plinove u atmosferu, a kondenzacijski kotlovi koriste dio izlazne topline. Potonji će u budućnosti ići na grijanje.
  2. Toplota koja će se iskoristiti i iskoristiti u drugom krugu dodaje se efikasnosti kotla. Tipično, kondenzacijski kotao koristi do 15% dimnih plinova, ova brojka se prilagođava efikasnosti kotla (približno 93%). Rezultat je broj od 108%.
  3. Bez sumnje, povrat topline je neophodna stvar, ali sam kotao košta puno novca za takav rad. Visoka cijena kotla je zbog opreme za izmjenu topline od nehrđajućeg čelika koja koristi toplinu u zadnjem putu dimnjaka.
  4. Ako umjesto takve opreme od nehrđajućeg čelika stavimo običnu željeznu opremu, ona će nakon vrlo kratkog vremena postati neupotrebljiva. Budući da vlaga sadržana u dimnim plinovima ima agresivna svojstva.
  5. Glavna karakteristika kondenzacijskih kotlova je da postižu maksimalnu efikasnost uz minimalna opterećenja. Obični kotlovi (plinski grijači), naprotiv, dostižu vrhunac ekonomičnosti pri maksimalnom opterećenju.
  6. Ljepota ove korisne osobine je u tome što tokom cijelog perioda grijanja opterećenje grijanja nije uvijek maksimalno. Na snazi ​​od 5-6 dana, običan bojler radi maksimalno. Stoga konvencionalni kotao ne može parirati performansama kondenzacijskog kotla, koji ima maksimalne performanse pri minimalnim opterećenjima.

Fotografiju takvog kotla možete vidjeti malo više, a video s njegovim radom lako se može pronaći na Internetu.


Princip rada

konvencionalni sistem grijanja

Može se reći da je najtraženiji raspored temperature grijanja od 95 - 70.

To se objašnjava činjenicom da su sve kuće koje primaju toplinu iz centralnih izvora topline dizajnirane da rade u ovom načinu rada. A takvih kuća imamo više od 90%.

Područna kotlarnica

Princip rada takve proizvodnje topline odvija se u nekoliko faza:

  • izvor topline (područna kotlarnica), proizvodi grijanje vode;
  • zagrijana voda, kroz magistralnu i distributivnu mrežu, kreće do potrošača;
  • u kući potrošača, najčešće u podrumu, preko liftovske jedinice, topla voda se meša sa vodom iz sistema grejanja, tzv. povratnim tokom, čija temperatura nije veća od 70 stepeni, a zatim se zagreva do temperatura od 95 stepeni;
  • dalje zagrijana voda (ona koja ima 95 stepeni) prolazi kroz grijače sistema grijanja, grije prostorije i ponovo se vraća u lift.

Savjet. Ako imate zadružnu kuću ili društvo suvlasnika kuća, onda možete vlastitim rukama postaviti lift, ali to zahtijeva da se striktno pridržavate uputa i pravilno izračunate perač gasa.

Loš sistem grijanja

Vrlo često čujemo da ljudima grijanje ne radi dobro i da su im sobe hladne.

Razloga za to može biti mnogo, a najčešći su:

  • ne poštuje se temperaturni raspored sistema grijanja, lift može biti pogrešno izračunat;
  • sistem grijanja kuće je jako zagađen, što uvelike otežava prolaz vode kroz uspone;
  • fuzzy radijatori grijanja;
  • neovlaštena promjena sistema grijanja;
  • loša toplotna izolacija zidova i prozora.

Česta greška je neispravno dimenzionisana mlaznica lifta. Kao rezultat toga, funkcija miješanja vode i rad cijelog lifta u cjelini je poremećena.

Ovo se može dogoditi iz nekoliko razloga:

  • nemar i nedostatak obuke operativnog osoblja;
  • pogrešno obavljeni proračuni u tehničkoj službi.

Tokom višegodišnjeg rada sistema grijanja, ljudi rijetko razmišljaju o potrebi čišćenja svojih sistema grijanja. Uglavnom, ovo se odnosi na zgrade koje su izgrađene za vrijeme Sovjetskog Saveza.

Svi sistemi grijanja moraju biti podvrgnuti hidropneumatskom ispiranju prije svake sezone grijanja. Ali to se promatra samo na papiru, jer ZhEK-ovi i druge organizacije izvode ove radove samo na papiru.

Kao rezultat toga, zidovi uspona se začepljuju, a potonji postaju manjeg promjera, što narušava hidrauliku cijelog sustava grijanja u cjelini. Količina prenesene toplote se smanjuje, odnosno neko je jednostavno nema dovoljno.

Hidropneumatsko čišćenje možete napraviti vlastitim rukama, dovoljno je imati kompresor i želju.

Isto važi i za čišćenje radijatora. Tokom mnogo godina rada, radijatori unutra nakupljaju mnogo prljavštine, mulja i drugih nedostataka. Povremeno, najmanje jednom u tri godine, potrebno ih je isključiti i oprati.

Prljavi radijatori uvelike smanjuju izlaz topline u vašoj prostoriji.

Najčešći trenutak je neovlaštena promjena i rekonstrukcija sistema grijanja. Prilikom zamjene starih metalnih cijevi metalno-plastičnim, promjeri se ne poštuju. A ponekad se dodaju i razni zavoji, što povećava lokalni otpor i pogoršava kvalitetu grijanja.


Metalno-plastična cijev

Vrlo često se takvom neovlaštenom rekonstrukcijom i zamjenom baterija za grijanje plinskim zavarivanjem mijenja i broj sekcija radijatora. I zaista, zašto sebi ne date više sekcija? Ali na kraju će vaš ukućanin, koji živi nakon vas, dobiti manje toplote koja mu je potrebna za grijanje. A najviše će stradati zadnji komšija, koji će najviše dobiti manje toplote.

Važnu ulogu igra toplotna otpornost omotača zgrade, prozora i vrata. Kako statistika pokazuje, do 60% topline može izaći kroz njih.

Elevator node

Kao što smo već rekli, svi vodeni elevatori su dizajnirani da miješaju vodu iz dovodne linije grijanja u povratni vod sistema grijanja. Zahvaljujući ovom procesu stvaraju se cirkulacija sistema i pritisak.

Što se tiče materijala koji se koristi za njihovu proizvodnju, koriste se i lijevano željezo i čelik.

Razmotrite princip rada lifta na fotografiji ispod.


Princip rada lifta

Kroz ogranak 1 voda iz toplovodnih mreža prolazi kroz ejektorsku mlaznicu i velikom brzinom ulazi u komoru za miješanje 3. Tamo se s njom miješa voda iz povratnog sistema grijanja zgrade, koja se dovodi kroz ogranak 5.

Dobivena voda se šalje u sistem grijanja kroz difuzor 4.

Da bi lift ispravno funkcionisao, potrebno je da njegov vrat bude pravilno odabran. Da biste to učinili, izračuni se vrše pomoću formule u nastavku:

Gde je ΔRnas - projektovani cirkulacioni pritisak u sistemu grejanja, Pa;

Gcm - potrošnja vode u sistemu grijanja kg/h.

Bilješka! Istina, za takav izračun potrebna vam je shema grijanja zgrade.

Izgled jedinice lifta

Želimo vam toplu zimu!

Stranica 2

U članku ćemo saznati kako se izračunava prosječna dnevna temperatura pri projektovanju sistema grijanja, kako temperatura rashladne tekućine na izlazu iz jedinice lifta ovisi o vanjskoj temperaturi i kolika može biti temperatura grijaćih baterija. zima.

Dotaknućemo se i teme samosuzbijanja hladnoće u stanu.


Hladnoća zimi bolna je tema za mnoge stanovnike gradskih stanova.

opće informacije

Ovdje predstavljamo glavne odredbe i izvode iz trenutnog SNiP-a.

Vanjska temperatura

Projektna temperatura grejnog perioda, koja je uključena u projektovanje sistema grejanja, nije ništa manja od prosečne temperature najhladnijih petodnevnih perioda za osam najhladnijih zima u poslednjih 50 godina.

Ovakav pristup omogućava, s jedne strane, da budemo spremni na jake mrazeve koji se dešavaju samo jednom u nekoliko godina, a s druge strane da se ne ulažu prevelika sredstva u projekat. U razmerama masovne gradnje, reč je o veoma značajnim količinama.

Ciljana sobna temperatura

Odmah treba napomenuti da na temperaturu u prostoriji ne utiče samo temperatura rashladnog sredstva u sistemu grijanja.

Nekoliko faktora djeluje paralelno:

  • Temperatura vazduha napolju. Što je niža, to je veće curenje toplote kroz zidove, prozore i krovove.
  • Prisustvo ili odsustvo vjetra. Jak vjetar povećava toplinske gubitke zgrada, duva trijemove, podrume i stanove kroz nezatvorena vrata i prozore.
  • Stepen izolacije fasade, prozora i vrata u prostoriji. Jasno je da će u slučaju hermetički zatvorenog metalno-plastičnog prozora s dvostrukim staklom gubici topline biti mnogo manji nego kod napuklog drvenog prozora i prozora s dvostrukim staklom.

Zanimljivo je: sada postoji trend izgradnje stambenih zgrada sa maksimalnim stepenom toplotne izolacije. Na Krimu, gdje autor živi, ​​odmah se grade nove kuće sa fasadom izolovanom mineralnom vunom ili pjenastom plastikom i sa hermetički zatvarajućim vratima ulaza i stanova.


Fasada je sa vanjske strane obložena pločama od bazaltnih vlakana.

  • I na kraju stvarna temperatura radijatora grijanja u stanu.

Dakle, koji su trenutni temperaturni standardi u prostorijama različite namjene?

  • U stanu: ugaone sobe - ne niže od 20C, ostale dnevne sobe - ne niže od 18C, kupatilo - ne niže od 25C. Nijansa: kada je projektovana temperatura vazduha ispod -31C za ugaone i druge dnevne sobe, uzimaju se veće vrednosti, +22 i +20C (izvor - Uredba Vlade Ruske Federacije od 23.05.2006. „Pravila za pružanje javnih usluga građanima").
  • U vrtiću: 18-23 stepena, zavisno od namjene prostorija za toalete, spavaće sobe i igraonice; 12 stepeni za šetnu verandu; 30 stepeni za zatvorene bazene.
  • U obrazovnim ustanovama: od 16C za sobe internata do +21 u učionicama.
  • U pozorištima, klubovima, drugim mestima za zabavu: 16-20 stepeni za gledalište i + 22C za scenu.
  • Za biblioteke (čitaonice i knjižare) norma je 18 stepeni.
  • U trgovinama je normalna zimska temperatura 12, au neprehrambenim prodavnicama 15 stepeni.
  • Temperatura u salama se održava na 15-18 stepeni.

Iz očiglednih razloga, vrućina u teretani je beskorisna.

  • U bolnicama održavana temperatura zavisi od namjene prostorije. Na primjer, preporučena temperatura nakon otoplastike ili porođaja je +22 stepena, na odjelima za prijevremeno rođenu djecu održava se na +25, a za pacijente sa tireotoksikozom (prekomerno lučenje hormona štitnjače) - 15C. Na hirurškim odjeljenjima norma je +26C.

temperaturni graf

Kolika bi trebala biti temperatura vode u cijevima za grijanje?

Određuju ga četiri faktora:

  1. Temperatura vazduha napolju.
  2. Vrsta sistema grijanja. Za jednocevni sistem maksimalna temperatura vode u sistemu grejanja u skladu sa važećim standardima je 105 stepeni, za dvocevni sistem - 95. Maksimalna temperaturna razlika između dovoda i povrata je 105/70 i 95/70C, respektivno.
  3. Smjer dovoda vode do radijatora. Za kuće gornjeg punjenja (sa dovodom u potkrovlju) i donjeg (sa parnim petljanjem uspona i položajem oba navoja u podrumu), temperature se razlikuju za 2 - 3 stepena.
  4. Vrsta uređaja za grijanje u kući. Radijatori i konvektori plinskog grijanja imaju različit prijenos topline; shodno tome, da bi se osigurala ista temperatura u prostoriji, temperaturni režim grijanja mora biti različit.

Konvektor donekle gubi u odnosu na radijator u pogledu termičke efikasnosti.

Dakle, koja bi trebala biti temperatura grijanja - vode u dovodnim i povratnim cijevima - pri različitim vanjskim temperaturama?

Dajemo samo mali dio temperaturne tabele za procijenjenu temperaturu okoline od -40 stepeni.

  • Na nula stepeni, temperatura dovodnog cjevovoda za radijatore s različitim ožičenjem je 40-45C, povratna je 35-38. Za konvektore 41-49 dovod i 36-40 povrat.
  • Na -20 za radijatore, dovod i povrat moraju imati temperaturu od 67-77 / 53-55C. Za konvektore 68-79/55-57.
  • Na -40C spolja, za sve grejače, temperatura dostiže maksimalno dozvoljenu temperaturu: 95/105, u zavisnosti od tipa sistema grejanja, na dovodnoj i 70C na povratnoj cevi.

Korisni dodaci

Da biste razumjeli princip rada sistema grijanja stambene zgrade, podjelu područja odgovornosti, morate znati još nekoliko činjenica.

Temperatura toplovoda na izlazu iz CHP i temperatura sistema grijanja u vašem domu su potpuno različite stvari. Pri istih -40, CHP ili kotlarnica će proizvoditi oko 140 stepeni na dovodu. Voda ne isparava samo zbog pritiska.

U liftovskoj jedinici vaše kuće, dio vode iz povratnog cjevovoda, koja se vraća iz sistema grijanja, miješa se u dovod. Mlaznica ubrizgava mlaz tople vode pod visokim pritiskom u takozvani lift i recirkuliše mase ohlađene vode.

Šematski dijagram lifta.

Zašto je ovo potrebno?

Za pružanje:

  1. Razumna temperatura mešavine. Podsjetimo: temperatura grijanja u stanu ne može biti veća od 95-105 stepeni.

Pažnja: za vrtiće važi drugačija temperaturna norma: ne više od 37C. Niska temperatura uređaja za grijanje mora biti nadoknađena velikom površinom za razmjenu topline. Zato su u vrtićima zidovi ukrašeni radijatorima tako velike dužine.

  1. Velika količina vode uključena u cirkulaciju. Ako uklonite mlaznicu i pustite vodu da teče direktno iz dovoda, povratna temperatura neće se mnogo razlikovati od dovodne, što će dramatično povećati gubitak topline na trasi i poremetiti rad CHP.

Ako zaustavite usis vode iz povrata, cirkulacija će postati toliko spora da se povratni cevovod može jednostavno zamrznuti zimi.

Oblasti odgovornosti su podijeljene na sljedeći način:

  • Za temperaturu vode koja se ubrizgava u toplovod odgovoran je proizvođač toplote - lokalna CHP ili kotlarnica;
  • Za transport rashladnog sredstva uz minimalne gubitke - organizacija koja opslužuje mreže grijanja (KTS - komunalne mreže grijanja).

Takvo stanje grijanja, kao na fotografiji, znači ogromne gubitke topline. Ovo je oblast odgovornosti KTS-a.

  • Za održavanje i podešavanje liftovske jedinice - stambeni odjel. U ovom slučaju, međutim, promjer mlaznice dizala - nešto o čemu ovisi temperatura radijatora - usklađen je s CTC-om.

Ako vam je kuća hladna i svi uređaji za grijanje su oni koji su postavili građevinari, riješit ćete to pitanje sa stanarima. Od njih se traži da obezbede temperature preporučene sanitarnim standardima.

Ako preduzmete bilo kakvu modifikaciju sistema grijanja, na primjer, zamjenu baterija za grijanje plinskim zavarivanjem, time preuzimate punu odgovornost za temperaturu u vašem domu.

Kako se nositi sa prehladom

Budimo, međutim, realni: problem hladnoće u stanu najčešće moramo rješavati sami, vlastitim rukama. Nije uvijek moguće da vam stambena organizacija obezbijedi grijanje u razumnom roku, a neće svi biti zadovoljni sanitarnim standardima: želite da vaš dom bude topao.

Kako će izgledati upute za postupanje sa prehladom u stambenoj zgradi?

Džamperi ispred radijatora

Ispred grijača u većini stanova nalaze se kratkospojnici koji su dizajnirani da osiguraju cirkulaciju vode u usponu u bilo kojem stanju radijatora. Dugo su bili snabdjeveni trosmjernim ventilima, a zatim su se počeli ugrađivati ​​bez ikakvih zapornih ventila.

Džamper u svakom slučaju smanjuje cirkulaciju rashladne tekućine kroz grijač. U slučaju kada je njegov prečnik jednak prečniku ajlajnera, efekat je posebno izražen.

Najjednostavniji način da svoj stan učinite toplijim je da ubacite prigušnice u sam kratkospojnik i spoj između njega i radijatora.


Ovdje kuglasti ventili obavljaju istu funkciju. Nije sasvim tačno, ali će raditi.

Uz njihovu pomoć moguće je povoljno podesiti temperaturu grijaćih baterija: kada je kratkospojnik zatvoren, a gas do radijatora potpuno otvoren, temperatura je maksimalna, vrijedi otvoriti kratkospojnik i pokriti drugi gas - i toplina u prostoriji nestaje.

Velika prednost takve dorade je minimalna cijena rješenja. Cijena gasa ne prelazi 250 rubalja; ostruge, spojnice i kontramatice uopće koštaju peni.

Važno: ako je gas koji vodi do hladnjaka barem malo prekriven, gas na kratkospojniku se potpuno otvara. U suprotnom, podešavanje temperature grijanja će dovesti do toga da su se baterije i konvektori ohladili kod susjeda.


Još jedna korisna promjena. S takvim pričvršćivanjem radijator će uvijek biti ravnomjerno vruć po cijeloj dužini.

Topli pod

Čak i ako radijator u prostoriji visi na povratnom usponu s temperaturom od oko 40 stepeni, modifikacijom sistema grijanja možete ugrijati prostoriju.

Izlaz - niskotemperaturni sistemi grijanja.

U gradskom stanu teško je koristiti konvektore za podno grijanje zbog ograničene visine prostorije: podizanje poda za 15-20 centimetara značit će potpuno niske stropove.

Mnogo realnija opcija je podno grijanje. Zbog mnogo veće površine prijenosa topline i racionalnije raspodjele topline u volumenu prostorije, niskotemperaturno grijanje će zagrijati prostoriju bolje od usijanog radijatora.

Kako izgleda implementacija?

  1. Čokovi se postavljaju na džemper i olovku za oči na isti način kao u prethodnom slučaju.
  2. Izlaz od uspona do grijača spojen je na metalno-plastičnu cijev, koja je položena u košuljicu na podu.

Kako komunikacije ne bi pokvarile izgled prostorije, odlažu se u kutiju. Kao opcija, veza za uspon se pomiče bliže nivou poda.


Uopšte nije problem prebaciti ventile i gasove na bilo koje pogodno mjesto.

Zaključak

Više informacija o radu centraliziranih sustava grijanja možete pronaći u videu na kraju članka. Tople zime!

Stranica 3

Sistem grijanja zgrade je srce svih inženjerskih i tehničkih mehanizama cijele kuće. Koja će od njegovih komponenti biti odabrana ovisit će o:

  • Efikasnost;
  • Profitabilnost;
  • Kvaliteta.

Izbor sekcija za prostoriju

Sve gore navedene kvalitete direktno zavise od:

  • kotao za grijanje;
  • cjevovodi;
  • Način povezivanja sistema grijanja na kotao;
  • radijatori za grijanje;
  • rashladna tečnost;
  • Mehanizmi za podešavanje (senzori, ventili i druge komponente).

Jedna od glavnih točaka je odabir i proračun sekcija radijatora za grijanje. U većini slučajeva, broj sekcija izračunavaju projektantske organizacije koje razvijaju kompletan projekat za izgradnju kuće.

Na ovu kalkulaciju utiču:

  • Materijali za ograđivanje;
  • Prisutnost prozora, vrata, balkona;
  • Dimenzije sobe;
  • Vrsta prostorije (dnevni boravak, magacin, hodnik);
  • Lokacija;
  • Orijentacija na kardinalne tačke;
  • Lokacija u zgradi proračunate prostorije (ugao ili u sredini, na prvom spratu ili zadnji).

Podaci za proračun preuzeti su iz SNiP-a "Građevinska klimatologija". Izračun broja sekcija radijatora grijanja prema SNiP-u je vrlo precizan, zahvaljujući čemu možete savršeno izračunati sistem grijanja.

Dovod topline u prostoriju povezan je s najjednostavnijim temperaturnim grafikonom. Vrijednosti temperature vode dovedene iz kotlarnice se ne mijenjaju u zatvorenom prostoru. Imaju standardne vrijednosti i kreću se od +70ºS do +95ºS. Ovaj temperaturni grafikon sistema grijanja je najpopularniji.

Podešavanje temperature vazduha u kući

Ne postoji svugdje u zemlji centralizirano grijanje, pa mnogi stanovnici instaliraju nezavisne sisteme. Njihov temperaturni grafikon se razlikuje od prve opcije. U ovom slučaju, indikatori temperature su značajno smanjeni. Oni zavise od efikasnosti modernih kotlova za grijanje.

Ako temperatura dostigne +35ºS, kotao će raditi maksimalnom snagom. Zavisi od grijaćeg elementa, gdje toplinsku energiju mogu preuzeti dimni plinovi. Ako su vrijednosti temperature veće od + 70 ºS, tada učinak kotla opada. U ovom slučaju, njegove tehničke karakteristike ukazuju na efikasnost od 100%.

Temperatura grafikon i proračun

Kako će grafikon izgledati ovisi o vanjskoj temperaturi. Što je veća negativna vrijednost vanjske temperature, veći je gubitak topline. Mnogi ne znaju gdje uzeti ovaj indikator. Ova temperatura je navedena u regulatornim dokumentima. Za izračunatu vrijednost uzima se temperatura najhladnijeg petodnevnog perioda, a uzima se najniža vrijednost u posljednjih 50 godina.


Grafikon vanjske i unutrašnje temperature

Grafikon prikazuje odnos između vanjske i unutrašnje temperature. Recimo da je vanjska temperatura -17ºS. Crtajući liniju do raskrsnice sa t2, dobijamo tačku koja karakteriše temperaturu vode u sistemu grejanja.

Zahvaljujući temperaturnom rasporedu moguće je pripremiti sistem grijanja i pod najtežim uvjetima. Takođe smanjuje materijalne troškove ugradnje sistema grijanja. Ako posmatramo ovaj faktor sa stanovišta masovne gradnje, uštede su značajne.

unutra prostorije zavisi od temperaturu rashladna tečnost, a takođe drugi faktori:

  • Spoljna temperatura vazduha. Što je manji, to negativnije utječe na grijanje;
  • Vjetar. Kada se pojavi jak vjetar, gubici topline se povećavaju;
  • Unutarnja temperatura ovisi o toplinskoj izolaciji konstruktivnih elemenata zgrade.

U proteklih 5 godina principi gradnje su se promijenili. Graditelji povećavaju vrijednost kuće izolacijskim elementima. U pravilu se to odnosi na podrume, krovove, temelje. Ove skupe mjere naknadno omogućavaju stanovnicima da uštede na sistemu grijanja.


Tabela temperature grijanja

Grafikon prikazuje ovisnost temperature vanjskog i unutrašnjeg zraka. Što je vanjska temperatura niža, to je viša temperatura medija za grijanje u sistemu.

Temperaturni raspored se izrađuje za svaki grad tokom perioda grijanja. U malim naseljima izrađuje se temperaturni grafikon kotlovnice, koji potrošaču osigurava potrebnu količinu rashladne tekućine.

Promjena temperaturu raspored mogu nekoliko načine:

  • kvantitativna - karakterizirana promjenom protoka rashladne tekućine koja se dovodi u sustav grijanja;
  • visokokvalitetan - sastoji se u regulaciji temperature rashladne tekućine prije isporuke u prostorije;
  • privremeni - diskretna metoda dovoda vode u sistem.

Raspored temperature je raspored toplovoda koji raspoređuje toplotno opterećenje i reguliše se centralizovanim sistemima. Postoji i povećan raspored, kreiran je za zatvoreni sistem grijanja, odnosno da osigura dovod vruće rashladne tekućine do povezanih objekata. Kada koristite otvoreni sistem, potrebno je prilagoditi temperaturni grafikon, jer se rashladna tekućina troši ne samo za grijanje, već i za potrošnju vode u domaćinstvu.

Proračun temperaturnog grafa se vrši jednostavnom metodom. Hda ga izgradi potrebno početna temperatura podaci o zraku:

  • outdoor;
  • u sobi;
  • u dovodnim i povratnim cjevovodima;
  • na izlazu iz zgrade.

Osim toga, trebali biste znati nazivno toplinsko opterećenje. Svi ostali koeficijenti su normalizovani referentnom dokumentacijom. Proračun sistema se vrši za bilo koji temperaturni grafikon, ovisno o namjeni prostorije. Na primjer, za velike industrijske i civilne objekte izrađuje se raspored 150/70, 130/70, 115/70. Za stambene zgrade ova brojka je 105/70 i 95/70. Prvi indikator pokazuje temperaturu na dovodu, a drugi - na povratku. Rezultati proračuna unose se u posebnu tabelu, koja prikazuje temperaturu na pojedinim tačkama sistema grijanja u zavisnosti od temperature vanjskog zraka.

Glavni faktor pri izračunavanju temperaturnog grafikona je temperatura vanjske temperature. Tablica proračuna mora biti sastavljena tako da maksimalne vrijednosti temperature rashladnog sredstva u sistemu grijanja (raspored 95/70) obezbjeđuju grijanje prostorije. Temperature u prostoriji su predviđene regulatornim dokumentima.

grijanje aparati


Temperatura uređaja za grijanje

Glavni indikator je temperatura uređaja za grijanje. Idealna temperaturna kriva za grijanje je 90/70ºS. Nemoguće je postići takav pokazatelj, jer temperatura u prostoriji ne bi trebala biti ista. Određuje se ovisno o namjeni prostorije.

U skladu sa standardima, temperatura u uglu dnevnog boravka je +20ºS, u ostatku - +18ºS; u kupatilu - + 25ºS. Ako je vanjska temperatura zraka -30ºS, tada se indikatori povećavaju za 2ºS.

Osim Ići, postoje normama za drugi vrste prostorije:

  • u prostorijama u kojima se nalaze deca - + 18ºS do + 23ºS;
  • dječje obrazovne ustanove - + 21ºS;
  • u ustanovama kulture sa masovnim prisustvom - +16ºS do +21ºS.

Ovo područje temperaturnih vrijednosti je sastavljeno za sve vrste prostorija. Ovisi o pokretima koji se izvode unutar prostorije: što ih je više, niža je temperatura zraka. Na primjer, u sportskim objektima ljudi se mnogo kreću, pa je temperatura samo +18ºS.


Temperatura vazduha u prostoriji

Postoji siguran faktori, od koji zavisi temperaturu grijanje aparati:

  • Vanjska temperatura zraka;
  • Vrsta sistema grijanja i temperaturna razlika: za jednocijevni sistem - + 105ºS, a za jednocevni sistem - + 95ºS. Shodno tome, razlike u za prvi region su 105/70ºS, a za drugi - 95/70ºS;
  • Smjer dovoda rashladnog sredstva do uređaja za grijanje. Na gornjem dijelu, razlika bi trebala biti 2 ºS, na dnu - 3 ºS;
  • Tip grijaćih uređaja: prijenosi topline su različiti, pa će i grafikon temperature biti drugačiji.

Prije svega, temperatura rashladnog sredstva ovisi o vanjskom zraku. Na primjer, vanjska temperatura je 0°C. Istovremeno, temperaturni režim u radijatorima treba da bude jednak 40-45ºS na dovodu i 38ºS na povratku. Kada je temperatura zraka ispod nule, na primjer, -20ºS, ovi indikatori se mijenjaju. U tom slučaju temperatura polaza postaje 77/55ºC. Ako indikator temperature dostigne -40ºS, tada indikatori postaju standardni, odnosno na dovodu + 95/105ºS, a na povratku - + 70ºS.

Dodatno opcije

Da bi određena temperatura rashladnog sredstva stigla do potrošača, potrebno je pratiti stanje vanjskog zraka. Na primjer, ako je -40ºS, kotlarnica bi trebala opskrbljivati ​​toplu vodu s indikatorom od + 130ºS. Usput, rashladna tekućina gubi toplinu, ali i dalje temperatura ostaje visoka kada uđe u stanove. Optimalna vrijednost je + 95ºS. Da bi se to postiglo, u podrumima je ugrađen sklop lifta koji služi za miješanje tople vode iz kotlarnice i rashladne tekućine iz povratnog cjevovoda.

Nekoliko institucija je odgovorno za toplovod. Kotlarnica prati dovod toplog rashladnog sredstva u sistem grijanja, a stanje cjevovoda prati gradske toplovodne mreže. ZHEK je odgovoran za element lifta. Stoga, kako bi se riješio problem opskrbe rashladnom tekućinom u novu kuću, potrebno je kontaktirati različite urede.

Instalacija uređaja za grijanje vrši se u skladu sa regulatornim dokumentima. Ako sam vlasnik zamijeni bateriju, tada je odgovoran za funkcioniranje sustava grijanja i promjenu temperaturnog režima.

Metode podešavanja


Demontaža sklopa lifta

Ako je kotlovnica odgovorna za parametre rashladne tekućine koja napušta toplu tačku, tada bi zaposlenici stambenog ureda trebali biti odgovorni za temperaturu unutar prostorije. Mnogi stanari se žale na hladnoću u stanovima. To je zbog odstupanja temperaturnog grafikona. U rijetkim slučajevima se dešava da temperatura poraste za određenu vrijednost.

Parametri grijanja mogu se podesiti na tri načina:

  • Razvrtanje mlaznice.

Ako je temperatura rashladnog sredstva na dovodu i povratku značajno podcijenjena, tada je potrebno povećati promjer mlaznice dizala. Tako će više tečnosti proći kroz njega.

Kako uraditi? Za početak se zatvaraju zaporni ventili (kućni ventili i dizalice na jedinici lifta). Zatim se uklanjaju dizalo i mlaznica. Zatim se izbuši za 0,5-2 mm, ovisno o tome koliko je potrebno povećati temperaturu rashladne tekućine. Nakon ovih postupaka, lift se montira na prvobitno mjesto i pušta u rad.

Da bi se osigurala dovoljna nepropusnost prirubničkog spoja, potrebno je paronitne brtve zamijeniti gumenim.

  • Prigušenje usisavanja.

U teškim hladnoćama, kada postoji problem smrzavanja sistema grijanja u stanu, mlaznica se može potpuno ukloniti. U tom slučaju, usis može postati kratkospojnik. Da biste to učinili, potrebno ga je prigušiti čeličnom palačinkom, debljine 1 mm. Takav proces se provodi samo u kritičnim situacijama, jer će temperatura u cjevovodima i grijačima dostići 130ºS.

  • Podešavanje pada.

Usred perioda grijanja može doći do značajnog povećanja temperature. Stoga ga je potrebno regulirati posebnim ventilom na liftu. Da biste to učinili, dovod vruće rashladne tekućine se prebacuje na dovodni cjevovod. Manometar je montiran na povratku. Podešavanje se vrši zatvaranjem ventila na dovodnom cjevovodu. Zatim se ventil lagano otvara, a tlak treba pratiti pomoću manometra. Ako ga samo otvorite, onda će doći do spuštanja obraza. Odnosno, u povratnom cjevovodu dolazi do povećanja pada tlaka. Svaki dan indikator se povećava za 0,2 atmosfere, a temperatura u sistemu grijanja mora se stalno pratiti.

Opskrba toplinom. Video

Kako je uređeno opskrba toplinom privatnih i stambenih zgrada pogledajte u videu ispod.

Prilikom izrade temperaturnog rasporeda za grijanje, moraju se uzeti u obzir različiti faktori. Ova lista uključuje ne samo strukturne elemente zgrade, već i vanjsku temperaturu, kao i vrstu sistema grijanja.

U kontaktu sa

dr.sc. Petrushchenkov V.A., Istraživačka laboratorija „Industrijska toplotna energija“, Državni politehnički univerzitet Petra Velikog u Sankt Peterburgu, Sankt Peterburg

1. Problem smanjenja projektnog temperaturnog rasporeda za regulaciju sistema za opskrbu toplinom u cijeloj zemlji

Tokom proteklih decenija, u gotovo svim gradovima Ruske Federacije, došlo je do veoma značajnog jaza između stvarnih i projektovanih temperaturnih krivulja za regulaciju sistema za snabdevanje toplotom. Kao što je poznato, zatvoreni i otvoreni sistemi daljinskog grijanja u gradovima SSSR-a dizajnirani su korištenjem visokokvalitetne regulacije sa temperaturnim rasporedom za sezonsku regulaciju opterećenja od 150-70 °C. Takav temperaturni raspored bio je naširoko korišten i za termoelektrane i za kotlarnice. Ali, počevši od kraja 1970-ih, u stvarnim kontrolnim rasporedima pojavila su se značajna odstupanja temperatura vode u mreži od njihovih projektnih vrijednosti pri niskim temperaturama vanjskog zraka. U projektnim uslovima za temperaturu spoljašnjeg vazduha, temperatura vode u dovodnim toplovodima se smanjila sa 150 °S na 85…115 °S. Snižavanje temperaturnog rasporeda od strane vlasnika izvora toplote obično je bilo formalizovano kao rad na projektnom rasporedu od 150-70°C sa „prekidanjem” na niskoj temperaturi od 110…130°S. Pri nižim temperaturama rashladnog sredstva, sistem za opskrbu toplinom je trebao raditi prema rasporedu otpreme. Proračunska opravdanja za takav prelaz nisu poznata autoru članka.

Prelazak na niži temperaturni raspored, na primjer, 110-70 °C sa projektnog rasporeda od 150-70 °C, trebao bi povući niz ozbiljnih posljedica, koje su diktirane balansnim energetskim odnosima. U vezi sa smanjenjem procijenjene temperaturne razlike mrežne vode za 2 puta, uz održavanje toplinskog opterećenja grijanja, ventilacije, potrebno je osigurati povećanje potrošnje mrežne vode za ove potrošače također za 2 puta. Odgovarajući gubici tlaka u mrežnoj vodi u mreži grijanja i u opremi za izmjenu topline izvora topline i toplinskih tačaka s kvadratnim zakonom otpora će se povećati za 4 puta. Potrebno povećanje snage mrežnih pumpi trebalo bi se dogoditi 8 puta. Očigledno je da ni propusnost toplotnih mreža projektovanih za raspored od 150-70°C, niti instalirane mrežne pumpe neće omogućiti isporuku rashladne tečnosti potrošačima sa dvostrukim protokom u odnosu na projektovanu vrednost.

S tim u vezi, sasvim je jasno da će, kako bi se osigurao temperaturni raspored od 110-70 °C, ne na papiru, već u stvarnosti, biti potrebna radikalna rekonstrukcija i izvora topline i toplinske mreže sa toplinskim točkama, čiji su troškovi nepodnošljivi za vlasnike sistema za snabdevanje toplotom.

Zabrana upotrebe za toplotne mreže rasporeda regulacije opskrbe toplinom s „ograničenjem“ po temperaturi, data u klauzuli 7.11 SNiP 41-02-2003 „Toplotne mreže“, nije mogla utjecati na raširenu praksu njegove primjene. U ažuriranoj verziji ovog dokumenta, SP 124.13330.2012, režim sa „isključenjem“ temperature uopšte se ne pominje, odnosno ne postoji direktna zabrana ovog načina regulacije. To znači da treba izabrati takve metode sezonske regulacije opterećenja u kojima će se riješiti glavni zadatak - osiguranje normalizirane temperature u prostorijama i normalizirane temperature vode za potrebe opskrbe toplom vodom.

U odobrenoj Listi nacionalnih standarda i kodeksa prakse (dijelovi takvih standarda i kodeksa), kao rezultat toga, na obaveznoj osnovi, usklađenost sa zahtjevima Federalnog zakona od 30. decembra 2009. br. 26, 2014. br. 1521) uključio je revizije SNiP-a nakon ažuriranja. To znači da je korištenje "odsjecanja" temperatura danas potpuno legalna mjera, kako sa stanovišta Liste nacionalnih standarda i kodeksa prakse, tako i sa stanovišta ažuriranog izdanja profila SNiP " Toplotne mreže”.

Federalni zakon br. 190-FZ od 27. jula 2010. „O snabdijevanju toplotom“, „Pravila i norme za tehnički rad stambenog fonda“ (odobren Uredbom Gosstroja Ruske Federacije od 27. septembra 2003. br. 170 ), SO 153-34.20.501-2003 "Pravila za tehnički rad elektroenergetskih postrojenja i mreža Ruske Federacije" također ne zabranjuju regulaciju sezonskog toplinskog opterećenja s "ograničenjem" temperature.

U 90-im godinama, dobrim razlozima koji su objasnili radikalno smanjenje projektnog temperaturnog rasporeda smatrali su se propadanje toplinskih mreža, armatura, kompenzatora, kao i nemogućnost obezbjeđivanja potrebnih parametara na izvorima topline zbog stanja razmjene topline. oprema. Unatoč velikom broju popravki koje se kontinuirano izvode u mrežama grijanja i izvorima topline posljednjih desetljeća, ovaj razlog i danas ostaje relevantan za značajan dio gotovo svakog sustava opskrbe toplinom.

Treba napomenuti da je u tehničkim specifikacijama za priključenje na toplinske mreže većine izvora topline još uvijek dat raspored projektne temperature od 150-70 ° C ili blizu njega. Prilikom usaglašavanja projekata centralnih i individualnih toplotnih tačaka, neizostavan zahtev vlasnika toplovodne mreže je ograničenje protoka mrežne vode iz dovodnog toplovoda toplotne mreže tokom čitavog grejnog perioda u strogom skladu sa projektom, a ne stvarni raspored kontrole temperature.

Trenutno, zemlja masovno razvija sheme opskrbe toplinom za gradove i naselja, u kojima se i projektni rasporedi za regulaciju 150-70 ° C, 130-70 ° C smatraju ne samo relevantnim, već i važećim za 15 godina unaprijed. Istovremeno, nema objašnjenja kako u praksi osigurati ovakve grafikone, ne postoji jasno opravdanje za mogućnost obezbjeđivanja priključnog toplotnog opterećenja pri niskim spoljnim temperaturama u uslovima realne regulacije sezonskog toplotnog opterećenja.

Takav jaz između deklariranih i stvarnih temperatura nosača topline mreže grijanja je nenormalan i nema nikakve veze s teorijom rada sustava za opskrbu toplinom, datoj, na primjer, u.

U ovim uslovima izuzetno je važno analizirati stvarno stanje sa hidrauličkim režimom rada toplovodnih mreža i sa mikroklimom zagrejanih prostorija pri izračunatoj temperaturi spoljašnjeg vazduha. Stvarna situacija je takva da, i pored značajnog smanjenja temperaturnog rasporeda, uz obezbeđivanje projektovanog protoka mrežne vode u toplovodnim sistemima gradova, po pravilu ne dolazi do značajnog smanjenja projektnih temperatura u prostorijama, što bi dovode do rezonantnih optužbi vlasnika izvora toplote da ne ispunjavaju svoj glavni zadatak: obezbeđivanje standardnih temperatura u prostorijama. S tim u vezi nameću se sljedeća prirodna pitanja:

1. Šta objašnjava takav skup činjenica?

2. Da li je moguće ne samo objasniti trenutno stanje, već i potkrijepiti, na osnovu zahtjeva savremene regulatorne dokumentacije, ili „presijecanje“ temperaturnog grafikona na 115 °C, ili novo temperaturni graf od 115-70 (60) °C sa kvalitativnom regulacijom sezonskog opterećenja?

Ovaj problem, naravno, stalno privlači svačiju pažnju. Stoga se u periodičnoj štampi pojavljuju publikacije koje daju odgovore na postavljena pitanja i daju preporuke za otklanjanje jaza između projektnih i stvarnih parametara sistema za kontrolu toplinskog opterećenja. U pojedinim gradovima već su poduzete mjere za smanjenje temperaturnog rasporeda i pokušavaju se generalizirati rezultati takvog prijelaza.

Sa naše tačke gledišta, ovaj problem je najistaknutije i najjasnije razmatran u članku Gershkovich V.F. .

Napominje nekoliko izuzetno važnih odredbi, koje su, između ostalog, generalizacija praktičnih radnji za normalizaciju rada sistema za opskrbu toplinom u uvjetima niskotemperaturnog „prekidanja“. Napominje se da praktični pokušaji povećanja potrošnje u mreži kako bi se uskladila sa sniženim temperaturnim rasporedom nisu bili uspješni. Oni su, prije, doprinijeli hidrauličkom neusklađenosti toplinske mreže, uslijed čega su troškovi mrežne vode između potrošača preraspodijeljeni nesrazmjerno njihovim toplinskim opterećenjima.

Istovremeno, uz održavanje projektnog protoka u mreži i smanjenje temperature vode u dovodnoj liniji, čak i pri niskim vanjskim temperaturama, u nekim slučajevima je bilo moguće osigurati temperaturu zraka u prostorijama na prihvatljivom nivou. . Ovu činjenicu autor objašnjava činjenicom da u opterećenju grijanja vrlo značajan dio snage otpada na grijanje svježeg zraka, čime se osigurava normativna izmjena zraka u prostoriji. Prava izmjena zraka u hladnim danima daleko je od normativne vrijednosti, jer se ne može osigurati samo otvaranjem ventilacijskih otvora i krila prozorskih blokova ili prozora s dvostrukim staklima. U članku se naglašava da su ruski standardi za razmjenu zraka nekoliko puta veći od onih u Njemačkoj, Finskoj, Švedskoj i SAD. Napominje se da je u Kijevu sprovedeno smanjenje temperaturnog rasporeda zbog „prekidanja“ sa 150 °C na 115 °C i nije imalo negativnih posljedica. Sličan posao obavljen je u toplovodnim mrežama Kazana i Minska.

Ovaj članak govori o trenutnom stanju ruskih zahtjeva za regulatornu dokumentaciju za razmjenu zraka u zatvorenom prostoru. Na primjeru modelskih zadataka sa usrednjenim parametrima sistema za opskrbu toplinom prikazan je utjecaj različitih faktora na njegovo ponašanje pri temperaturi vode u dovodnom vodu od 115 °C u projektnim uvjetima za vanjsku temperaturu, uključujući:

Smanjenje temperature zraka u prostorijama uz održavanje projektovanog protoka vode u mreži;

Povećanje protoka vode u mreži radi održavanja temperature zraka u prostorijama;

Smanjenje snage sistema grijanja smanjenjem izmjene zraka za projektovani protok vode u mreži uz osiguranje izračunate temperature zraka u prostorijama;

Procjena kapaciteta sistema grijanja smanjenjem razmjene zraka za stvarno ostvarivu povećanu potrošnju vode u mreži uz osiguranje izračunate temperature zraka u prostorijama.

2. Početni podaci za analizu

Kao početni podaci, pretpostavlja se da postoji izvor opskrbe toplinom sa dominantnim opterećenjem grijanja i ventilacije, dvocijevna toplovodna mreža, centralno grijanje i ITP, grijači, grijalice, slavine. Vrsta sistema grijanja nije od suštinskog značaja. Pretpostavlja se da projektni parametri svih karika sistema za snabdevanje toplotom obezbeđuju normalan rad sistema za snabdevanje toplotom, odnosno da se u prostorijama svih potrošača postavlja projektovana temperatura t w.r = 18 °C, u zavisnosti od temperaturni raspored toplovodne mreže 150-70°C, projektna vrijednost protoka vode mreže, standardna razmjena zraka i regulacija kvaliteta sezonskog opterećenja. Izračunata spoljna temperatura vazduha jednaka je prosečnoj temperaturi hladnog petodnevnog perioda sa faktorom sigurnosti 0,92 u trenutku izrade sistema za snabdevanje toplotom. Omjer miješanja elevatorskih jedinica određen je općeprihvaćenom temperaturnom krivom za regulaciju sistema grijanja 95-70 °C i jednak je 2,2.

Treba napomenuti da je u ažuriranoj verziji SNiP-a „Građevinska klimatologija“ SP 131.13330.2012 za mnoge gradove došlo do povećanja projektne temperature hladnog petodnevnog perioda za nekoliko stepeni u poređenju sa verzijom dokumenta SNiP 23- 01-99.

3. Proračuni režima rada sistema za opskrbu toplinom pri temperaturi vode direktne mreže od 115 °C

Razmatra se rad u novim uslovima sistema za snabdevanje toplotom, nastajao decenijama po savremenim standardima za period izgradnje. Projektni temperaturni raspored za kvalitativnu regulaciju sezonskog opterećenja je 150-70 °S. Smatra se da je u trenutku puštanja u rad sistem za opskrbu toplinom tačno obavljao svoje funkcije.

Kao rezultat analize sistema jednadžbi koje opisuju procese u svim dijelovima sistema za opskrbu toplinom, utvrđeno je njegovo ponašanje pri maksimalnoj temperaturi vode u dovodnom vodu od 115°C pri projektnoj vanjskoj temperaturi, odnosima miješanja elevatora. jedinice 2.2.

Jedan od definirajućih parametara analitičke studije je potrošnja mrežne vode za grijanje i ventilaciju. Njegova vrijednost se uzima u sljedećim opcijama:

Projektna vrijednost protoka u skladu s rasporedom 150-70 ° C i deklarirano opterećenje grijanja, ventilacije;

Vrijednost protoka, koji obezbjeđuje projektnu temperaturu zraka u prostorijama prema projektnim uvjetima za temperaturu vanjskog zraka;

Stvarna maksimalna moguća vrijednost protoka vode u mreži, uzimajući u obzir instalirane mrežne pumpe.

3.1. Smanjenje temperature zraka u prostorijama uz održavanje povezanih toplinskih opterećenja

Odredimo kako će se promijeniti prosječna temperatura u prostorijama pri temperaturi mrežne vode u dovodnoj liniji t o 1 = 115 ° C, projektnoj potrošnji mrežne vode za grijanje (pretpostavit ćemo da je cijelo opterećenje grijanje, budući da je ventilacijsko opterećenje istog tipa), na osnovu projektnog rasporeda 150-70 °S, pri temperaturi vanjskog zraka t n.o = -25 °S. Smatramo da su na svim čvorovima elevatora koeficijenti miješanja u izračunati i jednaki

Za projektovane uslove rada sistema za snabdevanje toplotom ( , , , ) važi sledeći sistem jednačina:

gdje je - prosječna vrijednost koeficijenta prijenosa topline svih uređaja za grijanje sa ukupnom površinom izmjene topline F, - prosječna temperaturna razlika između rashladne tekućine grijaćih uređaja i temperature zraka u prostorijama, G o - procijenjena brzina protoka Mrežna voda koja ulazi u elevatorske jedinice, G p - procijenjeni protok vode koja ulazi u uređaje za grijanje, G p = (1 + u) G o , s - specifična masa izobarični toplinski kapacitet vode, - prosječna projektna vrijednost koeficijent prolaza toplote zgrade, uzimajući u obzir transport toplotne energije kroz spoljne ograde ukupne površine A i cenu toplotne energije za zagrevanje standardnog protoka spoljašnjeg vazduha.

Pri niskoj temperaturi mrežne vode u dovodnom vodu t o 1 =115 ° C, uz održavanje projektovane izmjene zraka, prosječna temperatura zraka u prostorijama opada na vrijednost t in. Odgovarajući sistem jednačina za projektovane uslove za spoljašnji vazduh imaće oblik

, (3)

gdje je n eksponent u ovisnosti kriterija koeficijenta prijenosa topline uređaja za grijanje na prosječnu temperaturnu razliku, vidi tabelu. 9.2, str.44. Za najčešće grijaće uređaje u obliku radijatora od livenog gvožđa i čeličnih panelnih konvektora tipa RSV i RSG, kada se rashladno sredstvo kreće odozgo prema dole, n=0,3.

Hajde da uvedemo notaciju , , .

Iz (1)-(3) slijedi sistem jednačina

,

,

čija rješenja izgledaju ovako:

, (4)

(5)

. (6)

Za date projektne vrijednosti parametara sistema za opskrbu toplinom

,

Jednadžba (5), uzimajući u obzir (3) za datu temperaturu direktne vode u projektnim uslovima, omogućava nam da dobijemo omjer za određivanje temperature zraka u prostorijama:

Rješenje ove jednačine je t in =8,7°C.

Relativna toplotna snaga sistema grejanja je jednaka

Dakle, kada se temperatura vode u direktnoj mreži promijeni sa 150 °C na 115 °C, prosječna temperatura zraka u prostorijama opada sa 18 °C na 8,7 °C, toplinska snaga sistema grijanja opada za 21,6%.

Izračunate vrijednosti temperatura vode u sistemu grijanja za prihvaćeno odstupanje od temperaturnog rasporeda jednake su °C, °S.

Izvršeni proračun odgovara slučaju kada protok spoljašnjeg vazduha tokom rada sistema za ventilaciju i infiltraciju odgovara projektovanim standardnim vrednostima do temperature spoljašnjeg vazduha t n.o = -25°C. Budući da se u stambenim zgradama po pravilu koristi prirodna ventilacija koju stanovnici organiziraju kada ventiliraju pomoću ventilacijskih otvora, prozorskih krila i mikro-ventilacijskih sistema za prozore s dvostrukim staklom, može se tvrditi da pri niskim vanjskim temperaturama protok hladnog zraka koji ulazi u prostorije, posebno nakon gotovo potpune zamjene prozorskih blokova sa dvostrukim staklima, daleko je od normativne vrijednosti. Stoga je temperatura zraka u stambenim prostorijama zapravo mnogo viša od određene vrijednosti t in = 8,7 °C.

3.2 Određivanje snage sistema grijanja smanjenjem ventilacije unutrašnjeg zraka pri procijenjenom protoku vode iz mreže

Utvrdimo koliko je potrebno smanjiti troškove toplinske energije za ventilaciju u razmatranom neprojektom režimu niske temperature mrežne vode toplinske mreže kako bi prosječna temperatura zraka u prostorijama ostala na standardnoj nivo, odnosno t in = t w.r = 18 °C.

Sistem jednačina koje opisuju proces rada sistema za snabdevanje toplotom u ovim uslovima će imati oblik

Zajedničko rješenje (2') sa sistemima (1) i (3) slično kao u prethodnom slučaju daje sljedeće relacije za temperature različitih protoka vode:

,

,

.

Jednadžba za datu temperaturu direktne vode u projektnim uvjetima za vanjsku temperaturu omogućava da se pronađe smanjeno relativno opterećenje sistema grijanja (smanjena je samo snaga ventilacionog sistema, prijenos topline kroz vanjske ograde je tačno očuvan ):

Rješenje ove jednačine je =0,706.

Dakle, kada se temperatura vode u direktnoj mreži promeni sa 150°C na 115°C, moguće je održavanje temperature vazduha u prostorijama na nivou od 18°C ​​smanjenjem ukupne toplotne snage sistema grejanja na 0,706 projektne vrijednosti smanjenjem troškova grijanja vanjskog zraka. Toplotna snaga sistema grijanja opada za 29,4%.

Izračunate vrijednosti temperatura vode za prihvaćeno odstupanje od temperaturnog grafikona jednake su °C, °S.

3.4 Povećanje potrošnje vode u mreži kako bi se osigurala standardna temperatura zraka u prostorijama

Odredimo kako bi se potrošnja mrežne vode u toplinskoj mreži za potrebe grijanja trebala povećati kada temperatura vode u mreži u dovodnom vodu padne na t o 1 = 115 ° C u projektnim uvjetima za vanjsku temperaturu t n.o \u003d -25 ° C, tako da je prosječna temperatura zraka u prostorijama ostala na normativnom nivou, odnosno t u \u003d t w.r \u003d 18 °C. Ventilacija prostorija odgovara projektnoj vrijednosti.

Sistem jednadžbi koje opisuju proces rada sistema za snabdevanje toplotom, u ovom slučaju će imati oblik, uzimajući u obzir povećanje vrednosti protoka vode mreže do G o y i protoka vode kroz sistem grijanja G pu =G oh (1 + u) sa konstantnom vrijednošću koeficijenta miješanja čvorova lifta u= 2,2. Radi jasnoće, reprodukujemo u ovom sistemu jednačine (1)

.

Iz (1), (2”), (3’) slijedi sistem jednadžbi srednjeg oblika

Rješenje datog sistema ima oblik:

° C, t o 2 \u003d 76,5 ° C,

Dakle, kada se temperatura vode u direktnoj mreži promeni sa 150 °C na 115 °C, održavanje prosečne temperature vazduha u prostorijama na nivou od 18 °C moguće je povećanjem potrošnje vode iz mreže u dovodu (povratu) linija toplovodne mreže za potrebe sistema grijanja i ventilacije u 2 ,08 puta.

Očigledno, ne postoji takva rezerva u pogledu potrošnje vode u mreži kako na izvorima toplote tako i na crpnim stanicama, ako ih ima. Osim toga, ovako visok porast potrošnje vode u mreži dovest će do povećanja gubitaka tlaka uslijed trenja u cjevovodima toplinske mreže i u opremi toplinskih mjesta i izvora topline za više od 4 puta, što se ne može ostvariti zbog na nedostatak snabdijevanja mrežnih pumpi u smislu pritiska i snage motora. Posljedično, povećanje potrošnje vode u mreži za 2,08 puta samo zbog povećanja broja instaliranih mrežnih pumpi, uz održavanje njihovog pritiska, neminovno će dovesti do nezadovoljavajućeg rada elevatorskih jedinica i izmjenjivača topline na većini grijnih mjesta toplinske energije. sistem snabdevanja.

3.5 Smanjenje snage sistema grejanja smanjenjem ventilacije unutrašnjeg vazduha u uslovima povećane potrošnje vode iz mreže

Za neke izvore topline može se obezbijediti potrošnja mrežne vode u mreži za desetine posto veća od projektne vrijednosti. To je zbog smanjenja toplinskih opterećenja koje se dogodilo posljednjih desetljeća, kao i zbog prisutnosti određene rezerve performansi instaliranih mrežnih pumpi. Uzmimo maksimalnu relativnu vrijednost potrošnje vode u mreži jednaku =1,35 projektne vrijednosti. Uzimamo u obzir i moguće povećanje izračunate vanjske temperature zraka prema SP 131.13330.2012.

Utvrdimo koliko je potrebno smanjiti prosječnu potrošnju vanjskog zraka za ventilaciju prostorija u režimu snižene temperature mrežne vode toplinske mreže kako bi prosječna temperatura zraka u prostorijama ostala na standardnom nivou, tj. , tw = 18 °C.

Za nisku temperaturu mrežne vode u dovodnom vodu t o 1 = 115 °C smanjuje se protok zraka u prostorijama kako bi se održala izračunata vrijednost t na = 18 °C u uslovima povećanja protoka mreže. vode za 1,35 puta i povećanje izračunate temperature hladnog petodnevnog perioda. Odgovarajući sistem jednačina za nove uslove imaće oblik

Relativno smanjenje toplotne snage sistema grijanja je jednako

. (3’’)

Iz (1), (2''), (3'') slijedi rješenje

,

,

.

Za date vrijednosti parametara sistema za opskrbu toplinom i = 1,35:

; =115 °S; =66 °S; \u003d 81,3 ° C.

Uzimamo u obzir i povećanje temperature hladnog petodnevnog perioda na vrijednost t n.o_ = -22 °C. Relativna toplotna snaga sistema grejanja je jednaka

Relativna promjena ukupnih koeficijenata prijenosa topline jednaka je i zbog smanjenja brzine protoka zraka ventilacionog sistema.

Za kuće izgrađene prije 2000. godine, udio potrošnje toplinske energije za ventilaciju prostorija u centralnim regijama Ruske Federacije iznosi 40 ... .

Za kuće izgrađene nakon 2000. godine, udio troškova ventilacije povećava se na 50 ... 55%, pad brzine protoka zraka ventilacijskog sistema za približno 1,3 puta će održati izračunatu temperaturu zraka u prostorijama.

Iznad u 3.2 prikazano je da sa projektnim vrijednostima protoka vode u mreži, temperature unutrašnjeg zraka i projektne vanjske temperature zraka, smanjenje temperature vode u mreži na 115°C odgovara relativnoj snazi ​​sistema grijanja od 0,709 . Ako se ovo smanjenje snage pripiše smanjenju grijanja ventilacionog zraka, onda bi za kuće izgrađene prije 2000. godine protok zraka ventilacionog sistema prostorija trebao pasti za približno 3,2 puta, za kuće izgrađene nakon 2000. godine - za 2,3 puta.

Analiza mjernih podataka sa mjernih jedinica toplinske energije pojedinačnih stambenih zgrada pokazuje da smanjenje potrošnje toplinske energije u hladnim danima odgovara smanjenju standardne izmjene zraka za faktor 2,5 ili više.

4. Potreba za pojašnjavanjem izračunatog toplotnog opterećenja sistema za snabdevanje toplotom

Neka deklarisano opterećenje sistema grijanja stvorenog posljednjih decenija bude . Ovo opterećenje odgovara projektnoj temperaturi vanjskog zraka, relevantnoj u periodu izgradnje, uzetoj za određenost t n.o = -25 °C.

U nastavku slijedi procjena stvarnog smanjenja deklariranog projektnog grijnog opterećenja uslijed utjecaja različitih faktora.

Povećanje izračunate vanjske temperature na -22 °C smanjuje izračunato opterećenje grijanja na (18+22)/(18+25)x100%=93%.

Osim toga, sljedeći faktori dovode do smanjenja izračunatog opterećenja grijanja.

1. Zamjena prozorskih blokova sa dvostrukim staklima, koja se odvijala skoro svuda. Udio prijenosnih gubitaka toplinske energije kroz prozore iznosi oko 20% ukupnog grijnog opterećenja. Zamjena prozorskih blokova s ​​dvostrukim staklima dovela je do povećanja toplinskog otpora sa 0,3 na 0,4 m 2 ∙K / W, odnosno, toplinska snaga gubitka topline smanjena je na vrijednost: x100% = 93,3%.

2. Za stambene zgrade, udio ventilacionog opterećenja u opterećenju grijanja u projektima završenim prije početka 2000-ih je oko 40...45%, kasnije - oko 50...55%. Uzmimo prosječan udio ventilacijske komponente u opterećenju grijanja u iznosu od 45% deklariranog grijnog opterećenja. To odgovara stopi razmjene zraka od 1,0. Prema savremenim standardima STO, maksimalna brzina izmjene zraka je na nivou od 0,5, prosječna dnevna brzina izmjene zraka za stambenu zgradu je na nivou od 0,35. Dakle, smanjenje brzine izmjene zraka sa 1,0 na 0,35 dovodi do pada opterećenja grijanja stambene zgrade na vrijednost:

x100%=70,75%.

3. Opterećenje ventilacije različitih potrošača zahtijeva se nasumično, pa se, kao i opterećenje PTV-a za izvor topline, njegova vrijednost ne sumira aditivno, već uzimajući u obzir koeficijente satne neravnomjernosti. Udio maksimalnog ventilacijskog opterećenja u deklariranom opterećenju grijanja je 0,45x0,5 / 1,0 = 0,225 (22,5%). Koeficijent satne neujednačenosti je procijenjen na isti kao i za snabdijevanje toplom vodom, jednak K sat.vent = 2,4. Dakle, ukupno opterećenje sistema grijanja za izvor topline, uzimajući u obzir smanjenje maksimalnog opterećenja ventilacije, zamjenu prozorskih blokova sa dvostrukim staklima i neistovremenu potražnju za ventilacijskim opterećenjem, bit će 0,933x( 0,55+0,225/2,4)x100%=60,1% deklarisanog opterećenja.

4. Uzimanje u obzir povećanja projektne vanjske temperature će dovesti do još većeg pada projektnog opterećenja grijanja.

5. Izvršene procjene pokazuju da pojašnjenje toplotnog opterećenja sistema grijanja može dovesti do njegovog smanjenja za 30 ... 40%. Ovakvo smanjenje toplotnog opterećenja omogućava nam da očekujemo da se, uz zadržavanje projektovanog protoka vode iz mreže, izračunata temperatura vazduha u prostorijama može obezbediti primenom „ograničenja“ direktne temperature vode na 115 °C za niske spoljašnje temperature vazduha (vidi rezultate 3.2). Ovo se može sa još većim razlogom tvrditi ako postoji rezerva u vrijednosti potrošnje vode u mreži na izvoru topline sistema za opskrbu toplinom (vidi rezultate 3.4).

Navedene procjene su ilustrativne, ali iz njih proizilazi da se, na osnovu savremenih zahtjeva regulatorne dokumentacije, može očekivati ​​kako značajno smanjenje ukupnog projektnog toplinskog opterećenja postojećih potrošača za izvor topline, tako i tehnički opravdan režim rada sa “urezati” u temperaturni raspored za regulaciju sezonskog opterećenja na 115°C. Potreban stepen stvarnog smanjenja deklarisanog opterećenja sistema grijanja treba odrediti tokom terenskih ispitivanja za potrošače određenog toplovoda. Izračunata temperatura vode povratne mreže također je predmet pojašnjenja tokom terenskih ispitivanja.

Treba imati na umu da kvalitativna regulacija sezonskog opterećenja nije održiva u smislu distribucije toplotne snage među uređajima za grijanje za vertikalne jednocijevne sisteme grijanja. Dakle, u svim gore datim proračunima, uz obezbjeđivanje prosječne projektne temperature zraka u prostorijama, doći će do promjene temperature zraka u prostorijama duž uspona tokom perioda grijanja pri različitim vanjskim temperaturama zraka.

5. Poteškoće u implementaciji normativne razmjene zraka u prostorijama

Razmotrite strukturu troškova toplotne snage sistema grijanja stambene zgrade. Glavne komponente toplotnih gubitaka kompenziranih protokom toplote iz uređaja za grijanje su gubici u prijenosu kroz vanjske ograde, kao i troškovi grijanja vanjskog zraka koji ulazi u prostorije. Potrošnja svježeg zraka za stambene zgrade određena je zahtjevima sanitarno-higijenskih standarda, koji su dati u odjeljku 6.

U stambenim zgradama sistem ventilacije je obično prirodan. Brzina protoka vazduha je obezbeđena periodičnim otvaranjem ventilacionih otvora i prozorskih krila. Istovremeno, treba imati na umu da su od 2000. godine zahtjevi za svojstva toplinske zaštite vanjskih ograda, prvenstveno zidova, značajno povećani (za 2-3 puta).

Iz prakse izrade energetskih pasoša za stambene zgrade proizilazi da je za zgrade građene od 50-ih do 80-ih godina prošlog stoljeća u centralnim i sjeverozapadnim regijama udio toplotne energije za standardnu ​​ventilaciju (infiltraciju) iznosio 40 ... 45%, za kasnije izgrađene zgrade 45…55%.

Prije pojave prozora s dvostrukim staklom, izmjena zraka je regulirana ventilacijskim otvorima i krmenicom, a u hladnim danima učestalost njihovog otvaranja se smanjivala. Uz široku upotrebu prozora s dvostrukim staklom, osiguranje standardne izmjene zraka postalo je još veći problem. To je zbog desetostrukog smanjenja nekontrolirane infiltracije kroz pukotine i činjenice da se često provjetravanje otvaranjem prozorskih krila, koje jedino može obezbijediti standardnu ​​razmjenu zraka, zapravo i ne događa.

Postoje publikacije na ovu temu, pogledajte, na primjer,. Čak i tokom periodične ventilacije, ne postoje kvantitativni pokazatelji koji ukazuju na razmjenu zraka u prostoriji i njeno poređenje sa standardnom vrijednošću. Kao rezultat toga, u stvari, razmjena zraka je daleko od norme i javljaju se brojni problemi: povećava se relativna vlažnost, stvara se kondenzacija na staklima, pojavljuje se plijesan, pojavljuju se postojani mirisi, povećava se sadržaj ugljičnog dioksida u zraku, što zajedno dovela je do pojave termina „sindrom bolesne zgrade“. U nekim slučajevima, zbog naglog smanjenja razmjene zraka, dolazi do razrjeđivanja u prostorijama, što dovodi do prevrtanja kretanja zraka u izduvnim kanalima i do ulaska hladnog zraka u prostorije, protoka prljavog zraka iz jednog stan u drugi, i smrzavanje zidova kanala. Kao rezultat toga, graditelji se suočavaju s problemom korištenja naprednijih ventilacijskih sistema koji mogu uštedjeti troškove grijanja. S tim u vezi, potrebno je koristiti ventilacione sisteme sa kontrolisanim dovodom i odvodom vazduha, sisteme grejanja sa automatskom regulacijom dovoda toplote u grejne uređaje (idealno, sisteme sa stambenim priključkom), zatvorene prozore i ulazna vrata u stanove.

Potvrda da ventilacioni sistem stambenih zgrada radi sa učinkom koji je znatno manji od projektovanog je niža, u poređenju sa izračunatom potrošnjom toplotne energije u toku grejnog perioda, koju registruju jedinice za merenje toplotne energije zgrada.

Proračun ventilacionog sistema stambene zgrade koji je izvršilo osoblje Državnog politehničkog univerziteta u Sankt Peterburgu pokazao je sljedeće. Prirodna ventilacija u režimu slobodnog protoka vazduha, u proseku za godinu dana, je skoro 50% manja od izračunate (presek izduvnog kanala je projektovan prema važećim standardima ventilacije za višestambene stambene zgrade za uslove St. vrijeme, ventilacija je više od 2 puta manja od izračunate, au 2% vremena nema ventilacije. U značajnom dijelu perioda grijanja, pri temperaturi vanjskog zraka nižoj od +5 °C, ventilacija prelazi standardnu ​​vrijednost. Odnosno, bez posebnog podešavanja na niskim vanjskim temperaturama nemoguće je osigurati standardnu ​​razmjenu zraka; pri vanjskim temperaturama većim od +5 ° C, razmjena zraka će biti niža od standardne ako se ventilator ne koristi.

6. Evolucija regulatornih zahtjeva za razmjenu zraka u zatvorenom prostoru

Troškovi grijanja vanjskog zraka određeni su zahtjevima datim u regulatornoj dokumentaciji, koja je tokom dužeg perioda izgradnje objekta pretrpjela niz promjena.

Razmotrite ove promjene na primjeru stambenih stambenih zgrada.

U SNiP II-L.1-62, dio II, odjeljak L, poglavlje 1, koji je bio na snazi ​​do aprila 1971. godine, stope izmjene zraka za dnevne sobe bile su 3 m 3 / h po 1 m 2 površine prostorije, za kuhinju sa električni štednjaci, brzina izmjene zraka 3, ali ne manje od 60 m 3 / h, za kuhinju sa plinskim štednjakom - 60 m 3 / h za peći sa dva plamenika, 75 m 3 / h - za peći sa tri plamenika, 90 m 3 / h - za peći sa četiri plamenika. Procijenjena temperatura dnevnih soba +18 °S, kuhinja +15 °S.

U SNiP II-L.1-71, dio II, odjeljak L, poglavlje 1, koji je bio na snazi ​​do jula 1986., navedeni su slični standardi, ali za kuhinju s električnim štednjacima isključena je brzina izmjene zraka od 3.

U SNiP 2.08.01-85, koji su bili na snazi ​​do januara 1990. godine, stope izmjene zraka za dnevne sobe bile su 3 m 3 / h po 1 m 2 površine prostorije, za kuhinju bez navođenja vrste ploča 60 m 3 / h. Uprkos različitoj standardnoj temperaturi u stambenim prostorijama iu kuhinji, za termičke proračune predlaže se uzimanje temperature unutrašnjeg vazduha +18°C.

U SNiP 2.08.01-89, koji su bili na snazi ​​do oktobra 2003. godine, stope izmjene zraka su iste kao u SNiP II-L.1-71, dio II, odjeljak L, poglavlje 1. Indikacija unutrašnje temperature zraka +18 ° SA.

U SNiP 31-01-2003 koji su još uvijek na snazi ​​pojavljuju se novi zahtjevi, dati u 9.2-9.4:

9.2 Projektne parametre vazduha u prostorijama stambene zgrade treba uzeti u skladu sa optimalnim standardima GOST 30494. Brzinu razmene vazduha u prostorijama treba uzeti u skladu sa tabelom 9.1.

Tabela 9.1

soba Višestrukost ili veličina

izmjena zraka, m 3 na sat, ne manje

u neradnom u modu

usluga

Spavaća soba, zajednička, dječja soba 0,2 1,0
Biblioteka, kancelarija 0,2 0,5
Ostava, posteljina, garderoba 0,2 0,2
Teretana, sala za bilijar 0,2 80 m 3
Pranje, peglanje, sušenje 0,5 90 m 3
Kuhinja sa električnim štednjakom 0,5 60 m 3
Soba sa opremom na plin 1,0 1,0 + 100 m 3
Soba sa generatorima toplote i pećima na čvrsto gorivo 0,5 1,0 + 100 m 3
Kupatilo, tuš kabina, wc, zajedničko kupatilo 0,5 25 m 3
Sauna 0,5 10 m 3

za 1 osobu

Strojarnica lifta - Po proračunu
Parking 1,0 Po proračunu
Komora za smeće 1,0 1,0

Brzina izmjene zraka u svim ventiliranim prostorijama koje nisu navedene u tabeli u neradnom režimu treba biti najmanje 0,2 zapremine prostorije na sat.

9.3 U toku termotehničkog proračuna ogradnih konstrukcija stambenih zgrada, temperaturu unutrašnjeg vazduha grijanih prostorija treba uzeti kao najmanje 20 °S.

9.4 Sistem grejanja i ventilacije zgrade treba da bude projektovan tako da obezbedi da temperatura unutrašnjeg vazduha tokom perioda grejanja bude unutar optimalnih parametara utvrđenih GOST 30494, sa projektnim parametrima spoljašnjeg vazduha za odgovarajuća građevinska područja.

Iz ovoga se vidi da se, prvo, pojavljuju koncepti režima održavanja prostorija i neradnog režima, tokom kojih se, po pravilu, nameću vrlo različiti kvantitativni zahtjevi za razmjenu zraka. Za stambene prostore (spavaće sobe, zajedničke sobe, dječje sobe), koje čine značajan dio površine stana, brzine izmjene zraka u različitim režimima razlikuju se 5 puta. Temperaturu vazduha u prostorijama pri proračunu toplotnih gubitaka projektovane zgrade treba uzeti najmanje 20°C. U stambenim prostorijama, frekvencija izmjene zraka je normalizirana, bez obzira na površinu i broj stanovnika.

Ažurirana verzija SP 54.13330.2011 djelimično reproducira informacije SNiP 31-01-2003 u originalnoj verziji. Cijene razmjene zraka za spavaće sobe, zajedničke sobe, dječje sobe ukupne površine apartmana po osobi manje od 20 m 2 - 3 m 3 / h po 1 m 2 površine sobe; isto kada je ukupna površina stana po osobi veća od 20 m 2 - 30 m 3 / h po osobi, ali ne manja od 0,35 h -1; za kuhinju sa električnim štednjacima 60 m 3 / h, za kuhinju sa plinskim štednjakom 100 m 3 / h.

Stoga je za određivanje prosječne dnevne satne razmjene zraka potrebno zadati trajanje svakog od modova, odrediti protok zraka u različitim prostorijama tokom svakog režima, a zatim izračunati prosječnu satnu potrebu za svježim zrakom u stanu i zatim kuća u cjelini. Višestruke promjene izmjene zraka u određenom stanu tokom dana, na primjer, u odsustvu ljudi u stanu tokom radnog vremena ili vikendom, dovešće do značajne neravnomjernosti izmjene zraka tokom dana. Istovremeno, očigledno je da će neistovremeni rad ovih režima u različitim stanovima dovesti do izjednačavanja opterećenja kuće za potrebe ventilacije i do neaditivnog dodavanja ovog opterećenja za različite potrošače.

Moguće je povući analogiju sa neistovremenom upotrebom PTV-a od strane potrošača, što obavezuje uvođenje koeficijenta satne neravnomjernosti prilikom određivanja opterećenja PTV-a za izvor topline. Kao što znate, njegova vrijednost za značajan broj potrošača u regulatornoj dokumentaciji uzeta je jednaka 2,4. Slična vrijednost za ventilacijsku komponentu opterećenja grijanja omogućava nam da pretpostavimo da će se odgovarajuće ukupno opterećenje također zapravo smanjiti za najmanje 2,4 puta zbog neistovremenog otvaranja ventilacijskih otvora i prozora u različitim stambenim zgradama. U javnim i industrijskim zgradama uočava se slična slika s tom razlikom što je u neradno vrijeme ventilacija minimalna i određena je samo infiltracijom kroz curenja u svjetlosne barijere i vanjska vrata.

Uzimanje u obzir toplinske inercije zgrada također omogućava fokusiranje na prosječne dnevne vrijednosti potrošnje toplinske energije za grijanje zraka. Štaviše, u većini sistema grijanja ne postoje termostati koji održavaju temperaturu zraka u prostorijama. Takođe je poznato da se centralna kontrola temperature mrežne vode u dovodu za sisteme grijanja vrši prema vanjskoj temperaturi, u prosjeku u periodu od oko 6-12 sati, a ponekad i duže.

Zbog toga je potrebno izvršiti proračune normativne prosječne izmjene zraka za stambene zgrade različitih serija kako bi se razjasnilo proračunsko opterećenje grijanja zgrada. Slične radove treba uraditi i za javne i industrijske zgrade.

Treba napomenuti da se ovi važeći regulatorni dokumenti odnose na novoprojektovane zgrade u smislu projektovanja sistema ventilacije prostorija, ali posredno ne samo da mogu, već bi trebali biti i vodič za postupanje prilikom razjašnjavanja toplotnih opterećenja svih zgrada, uključujući i one koje izgrađeni su prema drugim gore navedenim standardima.

Razvijeni su i objavljeni standardi organizacija kojima se uređuju norme razmjene zraka u prostorijama višestambenih zgrada. Na primjer, STO NPO AVOK 2.1-2008, STO SRO NP SPAS-05-2013, Ušteda energije u zgradama. Proračun i projektovanje ventilacionih sistema za stambene višestambene zgrade (Odobreno na skupštini SRO NP SPAS od 27.03.2014.).

U osnovi, u ovim dokumentima citirani standardi odgovaraju SP 54.13330.2011, uz određena smanjenja pojedinačnih zahtjeva (na primjer, za kuhinju sa plinskim štednjakom, jedna izmjena zraka se ne dodaje na 90 (100) m 3 / h , tokom neradnog vremena u kuhinji ovog tipa dozvoljena je izmjena vazduha 0,5 h -1, dok je u SP 54.13330.2011 - 1,0 h -1).

Referentni dodatak B STO SRO NP SPAS-05-2013 daje primjer izračunavanja potrebne izmjene zraka za trosobni stan.

Početni podaci:

Ukupna površina stana F ukupno \u003d 82,29 m 2;

Površina ​​stambenog prostora F je živjela = 43,42 m 2;

Kuhinjski prostor - F kx \u003d 12,33 m 2;

Površina kupatila - F ext = 2,82 m 2;

Površina toaleta - F ub \u003d 1,11 m 2;

Visina prostorije h = 2,6 m;

Kuhinja ima električni šporet.

Geometrijske karakteristike:

Zapremina grijanih prostorija V = 221,8 m 3;

Zapremina stambenih prostorija V je živjela = 112,9 m 3;

Zapremina kuhinje V kx \u003d 32,1 m 3;

Zapremina toaleta V ub \u003d 2,9 m 3;

Zapremina kupatila V ext = 7,3 m 3.

Iz gornjeg proračuna razmjene zraka proizilazi da ventilacijski sistem stana mora obezbijediti proračunsku razmjenu zraka u režimu održavanja (u projektnom režimu rada) - L tr rad = 110,0 m 3 / h; u stanju mirovanja - L tr slave \u003d 22,6 m 3 / h. Date brzine protoka vazduha odgovaraju stopi razmene vazduha od 110,0/221,8=0,5 h -1 za režim rada i 22,6/221,8=0,1 h -1 za režim isključenja.

Informacije date u ovom odeljku pokazuju da je u postojećim regulatornim dokumentima, sa različitom popunjenošću stanova, maksimalna brzina razmene vazduha u rasponu od 0,35 ... To znači da se pri određivanju snage sistema grijanja koja kompenzira prijenosne gubitke toplotne energije i troškove grijanja vanjskog zraka, kao i potrošnju vode u mreži za potrebe grijanja, može u prvom približnom smjeru fokusirati na na dnevnu prosječnu vrijednost protoka zraka stambenih višestambenih zgrada 0,35 h - jedan .

Analiza energetskih pasoša stambenih zgrada razvijenih u skladu sa SNiP 23-02-2003 „Toplotna zaštita zgrada“ pokazuje da pri izračunavanju toplotnog opterećenja kuće brzina izmjene zraka odgovara nivou od 0,7 h -1, što je 2 puta veće od gore navedene preporučene vrijednosti, što nije u suprotnosti sa zahtjevima savremenih servisa.

Neophodno je razjasniti toplotno opterećenje zgrada izgrađenih po standardnim projektima, na osnovu smanjene prosječne vrijednosti razmjene zraka, što će biti u skladu sa postojećim ruskim standardima i omogućiti nam da se približimo standardima niza zemalja EU i USA.

7. Obrazloženje za snižavanje grafika temperature

Odjeljak 1 pokazuje da temperaturni graf od 150-70 °C, zbog stvarne nemogućnosti njegove upotrebe u savremenim uslovima, treba sniziti ili modificirati opravdavanjem “granične vrijednosti” temperature.

Navedeni proračuni različitih načina rada sistema za snabdevanje toplotom u vanprojektantnim uslovima omogućavaju nam da predložimo sledeću strategiju za izmenu regulacije toplotnog opterećenja potrošača.

1. Za prelazni period, uvesti temperaturni grafikon od 150-70 °C sa „graničnom granicom“ od 115 °S. Kod ovakvog rasporeda potrošnju mrežne vode u toplovodnoj mreži za potrebe grijanja, ventilacije treba održavati na trenutnom nivou koji odgovara projektnoj vrijednosti, ili sa blagim viškom, na osnovu performansi ugrađenih mrežnih pumpi. U rasponu vanjskih temperatura zraka koji odgovara „graničnoj vrijednosti“, uzeti u obzir proračunsko opterećenje grijanja potrošača smanjeno u odnosu na projektnu vrijednost. Smanjenje toplotnog opterećenja pripisuje se smanjenju troškova toplotne energije za ventilaciju, na osnovu obezbeđivanja neophodne prosečne dnevne razmene vazduha stambenih višestambenih zgrada prema savremenim standardima na nivou od 0,35 h -1.

2. Organizovati rad na razjašnjavanju opterećenja sistema grejanja zgrada izradom energetskih pasoša za stambene zgrade, javne organizacije i preduzeća, obraćajući pažnju, pre svega, na ventilaciono opterećenje zgrada koje je uključeno u opterećenje sistema grejanja, uzimajući uzeti u obzir savremene regulatorne zahtjeve za razmjenu zraka u zatvorenom prostoru. U tu svrhu potrebno je za kuće različite visine, prvenstveno za standardne serije, izračunati gubitke topline, kako prijenosne tako i ventilacijske, u skladu sa savremenim zahtjevima regulatorne dokumentacije Ruske Federacije.

3. Na osnovu ispitivanja u punom obimu uzeti u obzir trajanje karakterističnih načina rada ventilacionih sistema i neistovremenost njihovog rada za različite potrošače.

4. Nakon razjašnjenja toplotnih opterećenja sistema za grijanje potrošača, izraditi raspored za regulaciju sezonskog opterećenja od 150-70 °C sa „graničnom“ za 115°S. Mogućnost prelaska na klasični raspored od 115-70 °C bez „prekidanja“ uz kvalitetnu regulaciju treba utvrditi nakon razjašnjenja smanjenih toplinskih opterećenja. Odredite temperaturu vode povratne mreže prilikom izrade smanjenog rasporeda.

5. Preporučiti projektantima, projektantima novih stambenih zgrada i remontnim organizacijama koje izvode velike popravke starog stambenog fonda, upotrebu savremenih ventilacionih sistema koji omogućavaju regulaciju razmjene vazduha, uključujući i mehaničke sa sistemima za povrat toplotne energije zagađenih zraka, kao i uvođenje termostata za podešavanje snage uređaja za grijanje.

Književnost

1. Sokolov E.Ya. Toplotne i toplotne mreže, 7. izdanje, M.: Izdavačka kuća MPEI, 2001.

2. Gershkovich V.F. „Sto pedeset... Norma ili bista? Refleksije na parametre rashladnog sredstva…” // Ušteda energije u zgradama. - 2004 - br. 3 (22), Kijev.

3. Unutrašnji sanitarni uređaji. U 15 sati 1. dio Grijanje / V.N. Bogoslovsky, B.A. Krupnov, A.N. Scanavi i drugi; Ed. I.G. Staroverov i Yu.I. Schiller, - 4. izdanje, revidirano. i dodatne - M.: Stroyizdat, 1990. -344 str.: ilustr. – (Priručnik za dizajnera).

4. Samarin O.D. Termofizika. Uštedu energije. Energetska efikasnost / Monografija. M.: Izdavačka kuća DIA, 2011.

6. A.D. Krivoshein, Ušteda energije u zgradama: prozirne strukture i ventilacija prostorija // Arhitektura i izgradnja Omske regije, br. 10 (61), 2008.

7. N.I. Vatin, T.V. Samoplyas “Ventilacijski sistemi za stambene prostore stambenih zgrada”, Sankt Peterburg, 2004.

Svaki sistem grijanja ima određene karakteristike. To uključuje snagu, prijenos topline i rad na temperaturi. Oni određuju efikasnost rada, direktno utičući na udobnost života u kući. Kako odabrati pravi temperaturni grafikon i način grijanja, njegov proračun?

Izrada temperaturnog grafikona

Temperaturni raspored sistema grijanja izračunava se prema nekoliko parametara. Od odabranog načina rada ovisi ne samo stupanj grijanja prostora, već i brzina protoka rashladne tekućine. To također utiče na tekuće troškove održavanja grijanja.

Sastavljeni raspored temperaturnog režima grijanja ovisi o nekoliko parametara. Glavni je nivo grijanja vode u mreži. On se pak sastoji od sljedećih karakteristika:

  • Temperatura u dovodnim i povratnim cjevovodima. Mjerenja se vrše u odgovarajućim mlaznicama kotla;
  • Karakteristike stepena zagrevanja vazduha u zatvorenom i na otvorenom.

Ispravan proračun grafika temperature grijanja počinje proračunom razlike između temperature tople vode u direktnoj i dovodnoj cijevi. Ova vrijednost ima sljedeću notaciju:

∆T=Tin-Tob

Gdje Tin- temperaturu vode u dovodnom vodu, Tob- stepen zagrijavanja vode u povratnoj cijevi.

Da biste povećali prijenos topline sistema grijanja, potrebno je povećati prvu vrijednost. Da bi se smanjio protok rashladne tečnosti, ∆t se mora svesti na minimum. Upravo je to glavna poteškoća, jer raspored temperature kotla za grijanje direktno ovisi o vanjskim faktorima - gubicima topline u zgradi, vanjskom zraku.

Za optimizaciju snage grijanja potrebno je napraviti toplinsku izolaciju vanjskih zidova kuće. To će smanjiti gubitke topline i potrošnju energije.

Proračun temperature

Za određivanje optimalnog temperaturnog režima potrebno je uzeti u obzir karakteristike komponenti grijanja - radijatora i baterija. Konkretno, specifična snaga (W / cm²). To će direktno utjecati na prijenos topline zagrijane vode na zrak u prostoriju.

Također je potrebno napraviti niz preliminarnih proračuna. Ovo uzima u obzir karakteristike kuće i uređaja za grijanje:

  • Koeficijent otpora prijenosa topline vanjskih zidova i prozorskih konstrukcija. Mora biti najmanje 3,35 m² * C / W. Zavisi od klimatskih karakteristika regije;
  • Površinska snaga radijatora.

Temperaturna kriva sistema grijanja direktno ovisi o ovim parametrima. Za proračun toplinskih gubitaka kuće potrebno je znati debljinu vanjskih zidova i građevinskog materijala. Proračun površinske snage baterija vrši se prema sljedećoj formuli:

Rud=P/Činjenica

Gdje R– maksimalna snaga, W, činjenica– površina radijatora, cm².

Prema dobijenim podacima sastavlja se temperaturni režim grijanja i raspored prijenosa topline u zavisnosti od vanjske temperature.

Za pravovremenu promjenu parametara grijanja instaliran je regulator temperature grijanja. Ovaj uređaj se povezuje na vanjske i unutrašnje termometre. U zavisnosti od trenutnih indikatora, prilagođava se rad kotla ili količina dotoka rashladne tečnosti u radijatore.

Sedmični programator je optimalni regulator temperature za grijanje. Uz njegovu pomoć možete maksimalno automatizirati rad cijelog sistema.

Centralno grijanje

Za daljinsko grijanje, temperaturni režim sistema grijanja ovisi o karakteristikama sistema. Trenutno postoji nekoliko vrsta parametara rashladne tekućine koja se isporučuje potrošačima:

  • 150°C/70°C. Za normalizaciju temperature vode uz pomoć elevatorske jedinice, miješa se s ohlađenim potokom. U ovom slučaju moguće je izraditi individualni temperaturni raspored za kotlovnicu za grijanje za određenu kuću;
  • 90°C/70°C. To je tipično za male privatne sisteme grijanja dizajnirane za opskrbu toplinom nekoliko stambenih zgrada. U tom slučaju ne možete instalirati jedinicu za miješanje.

Odgovornost je komunalnih preduzeća da izračunaju temperaturni raspored grijanja i kontrolišu njegove parametre. Istovremeno, stepen zagrijavanja zraka u stambenim prostorijama trebao bi biti na nivou od + 22 ° C. Za nestambene, ova brojka je nešto niža - + 16 ° S.

Za centralizirani sistem potrebno je napraviti ispravan temperaturni raspored za kotlarnicu za grijanje kako bi se osigurala optimalna ugodna temperatura u stanovima. Glavni problem je nedostatak povratnih informacija - nemoguće je podesiti parametre rashladne tekućine ovisno o stupnju zagrijavanja zraka u svakom stanu. Zbog toga se sastavlja temperaturni raspored sistema grijanja.

Kopiju plana grijanja možete zatražiti od Društva za upravljanje. Pomoću njega možete kontrolirati kvalitetu pruženih usluga.

Sistem grijanja

Često nije potrebno praviti slične proračune za autonomne sisteme grijanja privatne kuće. Ako shema predviđa senzore unutrašnje i vanjske temperature, informacije o njima bit će poslane kontrolnoj jedinici kotla.

Stoga se, kako bi se smanjila potrošnja energije, najčešće odabire niskotemperaturni način grijanja. Odlikuje se relativno niskim zagrevanjem vode (do +70°C) i visokim stepenom cirkulacije vode. To je neophodno za ravnomjernu raspodjelu topline na sve grijače.

Za implementaciju takvog temperaturnog režima sistema grijanja moraju biti ispunjeni sljedeći uslovi:

  • Minimalni gubici toplote u kući. Međutim, ne treba zaboraviti na normalnu izmjenu zraka - ventilacija je neophodna;
  • Visoka toplotna snaga radijatora;
  • Ugradnja automatskih regulatora temperature u grijanje.

Ukoliko postoji potreba da se izvrši ispravan proračun sistema, preporučuje se upotreba posebnih softverskih sistema. Previše je faktora koje treba uzeti u obzir za samoproračun. Ali uz njihovu pomoć možete nacrtati približne temperaturne grafikone za načine grijanja.


Međutim, treba imati na umu da se tačan proračun rasporeda temperature dovoda topline radi za svaki sistem pojedinačno. U tablicama su prikazane preporučene vrijednosti za stepen zagrijavanja rashladne tekućine u dovodnim i povratnim cijevima, ovisno o vanjskoj temperaturi. Prilikom izvođenja proračuna nisu uzete u obzir karakteristike zgrade, klimatske karakteristike regije. Ali čak i tako, oni se mogu koristiti kao osnova za kreiranje temperaturnog grafikona za sistem grijanja.

Maksimalno opterećenje sistema ne bi trebalo da utiče na kvalitet kotla. Stoga se preporučuje da ga kupite s rezervom snage od 15-20%.

Čak i najprecizniji temperaturni grafikon kotlovnice za grijanje doživjet će odstupanja u izračunatim i stvarnim podacima tokom rada. To je zbog posebnosti rada sistema. Koji faktori mogu uticati na trenutni temperaturni režim opskrbe toplinom?

  • Zagađenje cjevovoda i radijatora. Da biste to izbjegli, potrebno je periodično čišćenje sistema grijanja;
  • Neispravan rad kontrolnih i zapornih ventila. Obavezno provjerite performanse svih komponenti;
  • Kršenje režima rada kotla - kao rezultat nagli skokovi temperature - pritisak.

Održavanje optimalnog temperaturnog režima sistema moguće je samo uz pravilan izbor njegovih komponenti. Za to treba uzeti u obzir njihova operativna i tehnička svojstva.

Grijanje baterije može se podesiti pomoću termostata, čiji princip rada možete pronaći u videu: