Периферическая нервная система человека строение. Центральная и периферическая нервная система

Нервная система человека подразделяется на центральную, периферическую и автономную части. Периферическая часть нервной системы представляет собой совокупность спинномозговых и черепных нервов. К ней относятся образуемые нервами ганглии и сплетения, а также чувствительные и двигательные окончания нервов. Таким образом, периферическая часть нервной системы объединяет все нервные образования, лежащие вне спинного и головного мозга. Такое объединение в известной мере условно, так как эфферентные волокна, входящие в состав периферических нервов, являются отростками нейронов, тела которых находятся в ядрах спинного и головного мозга. С функциональной точки зрения периферическая часть нервной системы состоит из проводников, соединяющих нервные центры с рецепторами и рабочими органами. Анатомия периферических нервов имеет большое значение для клиники, как основа для диагностики и лечения заболеваний и повреждений этого отдела нервной системы.

Строение нервов

Периферические нервы состоят из волокон, имеющих различное строение и неодинаковых в функциональном отношении. В зависимости от наличия или отсутствия миелиновой оболочки волокна бывают миелиновые (мякотные) или безмиелиновые (безмякотные). По диаметру миелиновые нервные волокна подразделяются на тонкие (1-4 мкм), средние (4-8 мкм) и толстые (более 8 мкм). Существует прямая зависимость между толщиной волокна и скоростью проведения нервных импульсов. В толстых миелиновых волокнах скорость проведения нервного импульса составляет примерно 80-120 м/с, в средних - 30-80 м/с, в тонких - 10-30 м/с. Толстые миелиновые волокна являются преимущественно двигательными и проводниками проприоцептивной чувствительности, средние по диаметру волокна проводят импульсы тактильной и температурной чувствительности, а тонкие - болевой. Безмиелиновые волокна имеют небольшой диаметр - 1-4 мкм и проводят импульсы со скоростью 1-2 м/с. Они являются эфферентными волокнами вегетативной нервной системы.

Таким образом, по составу волокон можно дать функциональную характеристику нерва. Среди нервов верхней конечности наибольшее содержание мелких и средних миелиновых и безмиелиновых волокон имеет срединный нерв, а наименьшее число их входит в состав лучевого нерва, локтевой нерв занимает в этом отношении среднее положение. Поэтому при повреждении срединного нерва бывают особенно выражены болевые ощущения и вегетативные расстройства (нарушения потоотделения, сосудистые изменения, трофические расстройства). Соотношение в нервах миелиновых и безмиелиновых, тонких и толстых волокон индивидуально изменчиво. Например, количество тонких и средних миелиновых волокон в срединном нерве может у разных людей колебаться от 11 до 45%.

Нервные волокна в стволе нерва имеют зигзагообразный (синусоидальный) ход, что предохраняет их от перерастяжения и создает резерв удлинения в 12-15% от их первоначальной длины в молодом возрасте и 7-8% в пожилом возрасте.

Нервы обладают системой собственных оболочек. Наружная оболочка, эпиневрий, покрывает нервный ствол снаружи, отграничивая его от окружающих тканей, и состоит из рыхлой неоформленной соединительной ткани. Рыхлая соединительная ткань эпиневрия выполняет все промежутки между отдельными пучками нервных волокон. Некоторые авторы называют эту соединительную ткань внутренним эпиневрием, в отличие от наружного эпиневрия, окружающего нервный ствол снаружи.

В эпиневрии в большом количестве находятся толстые пучки коллагеновых волокон, идущих преимущественно продольно, клетки фибробластического ряда, гистиоциты и жировые клетки. При изучении седалищного нерва человека и некоторых животных установлено, что эпиневрия состоит из продольных, косых и циркулярных коллагеновых волокон, имеющих зигзагообразный извилистый ход с периодом 37-41 мкм и амплитудой около 4 мкм. Следовательно, эпиневрия - очень динамичная структура, которая защищает нервные волокна при растяжении и изгибе.

Из эпиневрия выделен коллаген I типа, фибриллы которого имеют диаметр 70-85 нм. Однако некоторые авторы сообщают о выделении из зрительного нерва и других типов коллагена, в частности III, IV, V, VI. Нет единого мнения о природе эластических волокон эпиневрия. Одни авторы считают, что в эпиневрии отсутствуют зрелые эластические волокна, но обнаружены два вида близких к эластину волокон: окситалановые и элауниновые, которые располагаются параллельно оси нервного ствола. Другие исследователи считают их эластическими волокнами. Жировая ткань является составной частью эпиневрия. Седалищный нерв содержит обычно значительное количество жира и этим заметно отличается от нервов верхней конечности.

При исследовании черепных нервов и ветвей крестцового сплетения взрослых людей установлено, что толщина эпиневрия колеблется в пределах от 18-30 до 650 мкм, но чаще составляет 70-430 мкм.

Эпиневрий - в основном питающая оболочка. В эпиневрии проходят кровеносные и лимфатические сосуды, vasa nervorum, которые проникают отсюда в толщу нервного ствола.

Следующая оболочка, периневрий, покрывает пучки волокон, из которых состоит нерв. Она является механически наиболее прочной. При световой и электронной микроскопии установлено, что периневрий состоит из нескольких (7-15) слоев плоских клеток (периневрального эпителия, нейротелия) толщиной от 0.1 до 1.0 мкм, между которыми располагаются отдельные фибробласты и пучки коллагеновых волокон. Из периневрия выделен коллаген III типа, фибриллы которого имеют диаметр 50-60 нм. Тонкие пучки коллагеновых волокон расположены в периневрии без особого порядка. Тонкие коллагеновые волокна образуют в периневрии двойную спиральную систему. Причем волокна образуют в периневрии волнистые сети с периодичностью около 6 мкм. Установлено, что пучки коллагеновых волокон имею в периневрии плотное расположение и ориентированы как в продольном, так и концентрическом направлениях. В периневрии найдены элауниновые и окситалановые волокна, ориентированные преимущественно продольно, причем первые в основном локализуются в поверхностном его слое, а вторые - в глубоком слое.

Толщина периневрия в нервах с многопучковой структурой находится в прямой зависимости от величины покрываемого им пучка: вокруг мелких пучков не превышает 3-5 мкм, крупные пучки нервных волокон покрываются периневральным футляром толщиной от 12-16 до 34-70 мкм. Данные электронной микроскопии свидетельствуют, что периневрий имеет гофрированную, складчатую организацию. Периневрию придается большое значение в барьерной функции и обеспечении прочности нервов.

Периневрий, внедряясь в толщу нервного пучка, образует там соединительнотканные перегородки толщиной 0.5-6.0 мкм, которые делят пучок на части. Подобная сегментация пучков чаще наблюдается в поздних периодах онтогенеза.

Периневральные влагалища одного нерва соединяются с периневральными влагалищами соседних нервов, и через эти соединения происходит переход волокон из одного нерва в другой. Если учесть все эти связи, то периферическую нервную систему верхней или нижней конечности можно рассматривать как сложную систему связанных между собой периневральных трубок, по которым осуществляется переход и обмен нервных волокон как между пучками в пределах одного нерва, так и между соседними нервами.

Самая внутренняя оболочка, эндоневрий, покрывает тонким соединительнотканным футляром отдельные нервные волокна. Клетки и внеклеточные структуры эндоневрия вытянуты и ориентированы преимущественно по ходу нервных волокон. Количество эндоневрия внутри периневральных футляров по сравнению с массой нервных волокон невелико. Эндоневрий содержит коллаген III типа с фибриллами диаметром 30-65 нм. Мнения о наличии в эндоневрии эластических волокон весьма противоречивы. Одни авторы считают, что эндоневрий не содержит эластических волокон. Другие обнаружили в эндоневрии близкие по свойствам к эластическим окситалановые волокна с фибриллами диаметром 10-12.5 нм, ориентированные, главным образом, параллельно аксонам.

При электронно-микроскопическом исследовании нервов верхней конечности человека обнаружено, что отдельные пучки коллагеновых фибрилл инвагинированы в толщу шванновских клеток, содержащих помимо этого еще и немиелинизированные аксоны. Коллагеновые пучки могут быть полностью изолированы клеточной мембраной от основной массы эндоневрия или только могут частично внедряться в клетку, находясь в контакте с плазматической мембраной. Но каким бы ни было расположение коллагеновых пучков, фибриллы всегда находятся в межклеточном пространстве, и никогда не были замечены во внутриклеточном. Такой тесный контакт шванновских клеток и коллагеновых фибрилл, по мнению авторов, увеличивает сопротивление нервных волокон различным растягивающим деформациям и укрепляет комплекс «шванновская клетка - немиелинизированный аксон».

Известно, что нервные волокна сгруппированы в отдельные пучки различного калибра. У разных авторов существуют различные определения пучка нервных волокон в зависимости от позиции, с которой эти пучки рассматриваются: с точки зрения нейрохирургии и микрохирургии или с точки зрения морфологии. Классическим определением нервного пучка является группа нервных волокон, ограниченная от других образований нервного ствола периневральной оболочкой. И этим определением руководствуются при исследовании морфологи. Однако при микроскопическом исследовании нервов часто наблюдаются такие состояния, когда несколько групп нервных волокон, прилежащих друг к другу, имеют не только собственные периневральные оболочки, но и окружены общим периневрием. Эти группы нервных пучков часто бывают видны при макроскопическом исследовании поперечного среза нерва во время нейрохирургического вмешательства. И эти пучки чаще всего описываются при клинических исследованиях. Из-за различного понимания строения пучка происходят в литературе противоречия при описании внутриствольного строения одних и тех же нервов. В связи с этим ассоциации нервных пучков, окруженные общим периневрием, получили название первичных пучков, а более мелкие, их составляющие, - вторичных пучков.

На поперечном срезе нервов человека соединительнотканные оболочки (эпиневрий, периневрий) занимают значительно больше места (67.03-83.76%), чем пучки нервных волокон. Показано, что количество соединительной ткани зависит от числа пучков в нерве. Ее значительно больше в нервах с большим количеством мелких пучков, чем в нервах с немногими крупными пучками.

Показано, что пучки в нервных стволах могут располагаться относительно редко с промежутками в 170-250 мкм, и более часто - расстояние между пучками менее 85-170 мкм.

В зависимости от строения пучков выделяют две крайние формы нервов: малопучковую и многопучковую. Первая характеризуется небольшим количеством толстых пучков и слабым развитием связей между ними. Вторая состоит их множества тонких пучков с хорошо развитыми межпучковыми соединениями.

Когда количество пучков небольшое, пучки имеют значительные размеры, и наоборот. Малопучковые нервы отличаются сравнительно небольшой толщиной, наличием небольшого количества крупных пучков, слабым развитием межпучковых связей, частым расположением аксонов внутри пучков. Многопучковые нервы отличаются большей толщиной и состоят из большого количества мелких пучков, в них сильно развиты межпучковые связи, аксоны располагаются в эндоневрии рыхло.

Толщина нерва не отражает количества содержащихся в нем волокон, и не существует закономерностей расположения волокон на поперечном срезе нерва. Однако установлено, что в центре нерва пучки всегда тоньше, на периферии - наоборот. Толщина пучка не характеризует количества заключенных в нем волокон.

В строении нервов установлена четко выраженная асимметрия, то есть неодинаковое строение нервных стволов на правой и левой сторонах тела. Например, диафрагмальный нерв имеет слева большее количество пучков, чем справа, а блуждающий нерв - наоборот. У одного человека разница в количестве пучков между правым и левым срединными нервами может варьировать от 0 до 13, но чаще составляет 1-5 пучков. Разница в количестве пучков между срединными нервами разных людей равняется 14-29 и с возрастом увеличивается. В локтевом нерве у одного и того же человека разница между правой и левой сторонами в количестве пучков может колебаться от 0 до 12, но чаще составляет также 1-5 пучков. Различие в количестве пучков между нервами разных людей достигает 13-22.

Разница между отдельными субъектами в количестве нервных волокон колеблется в срединном нерве от 9442 до 21371, в локтевом нерве - от 9542 до 12228. У одного и того же человека разница между правой и левой стороной варьирует в срединном нерве от 99 до 5139, в локтевом нерве - от 90 до 4346 волокон.

Источниками кровоснабжения нервов являются соседние близлежащие артерии и их ветви. К нерву обычно подходят несколько артериальных ветвей, причем интервалы между входящими сосудами варьируют в крупных нервах от 2-3 до 6-7 см, а в седалищном нерве - до 7-9 см. Кроме того, такие крупные нервы, как срединный и седалищный, имеют собственные сопровождающие артерии. В нервах, имеющих большое количество пучков, в эпиневрии содержится много кровеносных сосудов, причем они имеют сравнительно малый калибр. Наоборот, в нервах с небольшим количеством пучков сосуды одиночные, но значительно более крупные. Артерии, питающие нерв, в эпиневрии Т-образно делятся на восходящую и нисходящую ветви. Внутри нервов артерии делятся до ветвей 6-го порядка. Сосуды всех порядков анастомозируют между собой, образуя внутриствольные сети. Эти сосуды играют значительную роль в развитии коллатерального кровообращения при выключении крупных артерий. Каждая артерия нерва сопровождается двумя венами.

Лимфатические сосуды нервов находятся в эпиневрии. В периневрии между его слоями образуются лимфатические щели, сообщающиеся с лимфатическими сосудами эпиневрия и эпиневральными лимфатическими щелями. Таким образом, по ходу нервов может распространяться инфекция. Из больших нервных стволов обычно выходят несколько лимфатических сосудов.

Оболочки нервов иннервируются ветвями, отходящими от данного нерва. Нервы нервов имеют в основном симпатическое происхождение и по функции являются сосудодвигательными.

Спинномозговые нервы

Развитие спинномозговых нервов

Развитие спинномозговых нервов связано как с развитием спинного мозга, так и формированием тех органов, которые иннервируют спинномозговые нервы.

В начале 1-го месяца внутриутробного развития у эмбриона по обеим сторонам нервной трубки закладываются нервные гребни, которые подразделяются, соответственно сегментам тела, на зачатки спинномозговых ганглиев. Нейробласты, находящиеся в них, дают начало чувствительным нейронам спинномозговых ганглиев. На 3-4-й неделе последние образуют отростки, периферические концы которых направляются к соответствующим дерматомам, а центральные концы врастают в спинной мозг, составляя задние (дорсальные) корешки. Нейробласты вентральных (передних) рогов спинного мозга посылают отростки к миотомам «своих» сегментов. На 5-6-й неделе развития в результате объединения волокон вентральных и дорсальных корешков формируется ствол спинномозгового нерва.

На 2-м месяце развития дифференцируются зачатки конечностей, в которые врастают нервные волокна соответствующих закладке сегментов. В 1-й половине 2-го месяца в связи с перемещением метамеров, формирующих конечности, образуются нервные сплетения. У человеческого эмбриона длиной 10 мм хорошо заметно плечевое сплетение, представляющее собой пластинку из отростков нервных клеток и нейроглии, которая на уровне проксимального конца развивающегося плеча делится на две: дорсальную и вентральную. Из дорсальной пластинки формируется в дальнейшем задний пучок, дающий начало подмышечному и лучевому нервам, а из передней - латеральный и медиальный пучки сплетения.

У эмбриона длиной 15-20 мм все нервные стволы конечностей и туловища соответствуют положению нервов у новорожденного. При этом формирование нервов туловища и нервов нижних конечностей совершается подобным же путем, но на 2 недели позже.

Сравнительно рано (у эмбриона длиной 8-10 мм) наблюдается проникновение в нервные стволы мезенхимных клеток вместе с кровеносными сосудами. Мезенхимные клетки делятся и образуют внутриствольные оболочки нервов. Миелинизация нервных волокон начинается с 3-4-го месяца эмбрионального развития и заканчивается на 2-м году жизни. Раньше миелинизируются нервы верхних конечностей, позже - нервы туловища и нижних конечностей.

Таким образом, каждая пара спинномозговых нервов осуществляет связь определенного сегмента спинного мозга с соответствующим сегментом тела зародыша. Эта связь сохраняется и в дальнейшем развитии зародыша. Сегментарная иннервация кожных покровов может быть выявлена у взрослого человека, она имеет большое значение в неврологической диагностике. Обнаружив расстройство чувствительности в том или ином участке тела, можно определить, какие сегменты спинного мозга затронуты патологическим процессом. Иначе обстоит дело с иннервацией мышц. Поскольку большинство крупных мышц образуется от слияния нескольких миотомов, каждая из них получает иннервацию из нескольких сегментов спинного мозга.

Периферическая нервная система содержит в себе нервы, черепно-мозговые нервные узлы и спинномозговые, расположенные по их ходу (ганглии). Она соединяет с внутренними органами, кожей и мышцами На основании этой связи периферическая нервная система бывает двух видов: вегетативная и соматическая. Последнюю образуют те нервы, которые соединяют ЦНС с мышцами, кожей и сухожилиями. К принадлежат те нервы, которые ЦНС связывают с железами, кровеносными сосудами и внутренними органами.

Чувствительные вместе с двигательными составляют спинномозговые нервы. На коже, мышцах, слизистой оболочке, внутренних органах, сухожилиях расположены рецепторы. Эти образования являются началом чувствительных волокон. Они посылают сигналы, которые содержат данные о том, в каком состоянии находится организм и окружающая его среда, в ЦНС. По двигательным волокнам, наоборот, ЦНС посылает сосудам, внутренним органам, мышцам сигналы. Таким образом она управляет реакцией организма на те или иные раздражители, воспринимаемые рецепторами.

Связаны с головным мозгом. Благодаря им остаются чувствительными полость носа и рта, гортань, слизистая оболочка глаз, кожа лица. Также они обеспечивают соединение ЦНС со всеми рецепторами слуха, вкуса, зрения и обоняния. Это соматические волокна, а вегетативные управляют функционированием желез (и слезных, и слюнных), также участвуют в процессе дыхания, в работе сердца и органов пищеварения.

Периферическая нервная система должна очень быстро в ЦНС доставлять двигательные или чувствительные импульсы. Это крайне необходимо, чтобы обеспечить скорую связь между мозгом головным, спинным и рецепторами.

Периферическая подвержена немалому количеству заболеваний. Причины их самые разнообразные: отравление, травма, нарушение кровообращения или обмена веществ, воспаление. Часто встречается сочетание нескольких факторов.

Классификация этих заболеваний зависит от того, какой поражается участок периферической нервной системы. Если воспаляются окончания спинного мозга, возникает радикулит, если поражаются нервные сплетения - плеврит. Чаще периферическая невропатия проявляется комплексом симптомов. Так, если страдает участок спинного мозга, появляются плекситы, невриты, радикулиты. Они сопровождаются болью по направлению нервных стволов, снижается чувствительность кожного покрова в этой области, появляется слабость в мышцах, постепенно они атрофируются. Проявления одинаковы, меняется лишь локализация поражения.

А вот при повреждении любого из черепно-мозговых нервов наблюдается нарушение восприятия зрительных образов, звуковых сигналов и запахов, но нет боли, утраты чувствительности. Периферическая нервная система имеет несколько отделов, поэтому и лечение заболеваний зависит и от причины, их вызвавшей, и от того, какой ее участок поражен. После тщательного обследования врач назначает лекарственные препараты, физиотерапевтичекие процедуры. В зависимости от тяжести болезни пациенту предлагают пребывание в больнице или Хирургическое вмешательство применяется только в случае разрыва периферических нервов, полученного в результате травмы.

Профилактика заболеваний заключается в соблюдении техники безопасности при работе с ядами. Следует избегать переохлаждений. Больные сахарным диабетом, чтобы предупредить диабетический полиневрит, должны регулярно бывать у врача и проходить специальный профилактический курс. Особо предрасположены к поражениям этой системы курильщики и алкоголики.

Центральная нервная система, ее структура и функции. Контроль функций организма, обеспечение его взаимодействия с окружающей средой. Нейроны и их роль в получении и передаче информации, поддержании жизнедеятельности нашего организма. Мозг и способности.

Строение и значение нервной системы. Нервная система координирует деятельность клеток, тканей и органов нашего тела. Она регулирует функции организма и его взаимодействие с окружающей средой, обеспечивает возможности реализации психических процессов, которые лежат в основе механизмов языка и мышления, запоминания и обучения. Кроме того, у человека нервная система составляет материальную основу его психической деятельности.

Нервная система представляет собой сложный комплекс высокоспециализированных клеток, передающих импульсы от одной части тела к другой, в результате организм получает возможность реагировать как единое целое на изменения факторов внешней или внутренней среды.

В состав центральной нервной системы входят головной и спинной мозг, периферической - нервы, нервные узлы и нервные окончания.

Спинной мозг представляет собой продолговатый, цилиндрический тяж длиной до 45 см и массой 34-38 г, располагающийся в позвоночном столбе. Его верхняя граница расположена у основания черепа (верхние отделы переходят в головной мозг), а нижняя - у I-II поясничных позвонков. От спинного мозга симметрично отходят корешки спинномозговых нервов. В нем находятся центры некоторых простых рефлексов, например рефлексов, обеспечивающих движения диафрагмы, дыхательных мышц. Спинной мозг выполняет две функции: рефлекторную и проводящую, под контролем головного мозга регулирует работу внутренних органов (сердца, почек, органов пищеварения).

Совокупность нейронов и межклеточного вещества образует нервную ткань, со строением которой вы познакомились в .

Знаете ли вы, что...
- нервная система состоит из 10...100 миллиардов нервных клеток;
- мозг потребляет около 10 Ватт энергии (эквивалентно мощности ночной лампы) и за 1 мин через него протекает 740-750 мл крови;
- нервные клетки генерируют примерно до тысячи импульсов в секунду...

Нервные клетки состоят из тела, отростков и нервных окончаний. От других типов специализированных клеток нейроны отличает наличие нескольких отростков, которые обеспечивают проведение нервного импульса по телу человека. Один из отростков клетки - аксон , как правило, длиннее остальных. Аксоны могут достигать в длину 1-1,5 м. Таковы, например, аксоны, образующие нервы конечностей. Аксоны заканчиваются несколькими тоненькими веточками - нервными окончаниями.

В зависимости от функции нервные окончания подразделяются на чувствительные (афферентные ), промежуточные (вставочные) и исполнительные (эфферентные ) (смотри рисунок 1.5.22). Чувствительные нейроны (2) реагируют на воздействия внешней или внутренней среды и передают импульсы в центральные отделы нервной системы. Ими, как датчиками, пронизано все наше тело. Они постоянно как бы измеряют температуру, давление, состав и концентрацию компонентов среды и другие показатели. Если эти показатели отличаются от стандартных, чувствительные нейроны посылают импульсы в соответствующий отдел нервной системы. Промежуточные нейроны (3) передают этот импульс с одной клетки на другую. Посредством исполнительных нейронов (4) нервная система побуждает к действию клетки рабочих (исполнительных) органов. Таким действием становится соответствующее возникшей ситуации уменьшение или увеличение выработки клетками биологически активных веществ (секрета ), расширение или сужение кровеносных сосудов, сокращение или расслабление мышц.

Нервные клетки в местах соединения друг с другом образуют особые контакты - синапсы (смотри рисунок 1.5.19). В пресинаптической части межнейронного контакта содержатся пузырьки с посредником (медиатором ), которые высвобождают этот химический агент в синаптическую щель при прохождении импульса. Далее медиатор взаимодействует со специфическими рецепторами на постсинаптической мембране, в результате чего следующая нервная клетка приходит в состояние возбуждения, которое передается еще дальше по цепи. Так осуществляется передача нервного импульса в нервной системе. Подробнее о работе синапса мы рассказывали в предыдущем разделе. Роль медиатора выполняют различные биологически активные вещества: ацетилхолин , норадреналин , дофамин , глицин , гамма-аминомасляная кислота (ГАМК) , глутамат , серотонин , и другие. Медиаторы центральной нервной системы называются еще нейромедиаторы .

Благодаря рефлексу многие наши действия происходят автоматически. Действительно, нам некогда думать, когда мы прикасаемся к горячей плите. Если мы начнем рассуждать: “Мой палец на горячей плите, он обожжен, мне больно, надо бы убрать палец с плиты”, то ожог наступит гораздо раньше, чем мы предпримем какие-либо действия. Мы просто отдергиваем руку, не задумываясь и не успевая осознать, что же произошло. Это безусловный рефлекс и для такой ответной реакции достаточно соединения чувствительного и исполнительного нервов на уровне спинного мозга. Мы тысячи раз сталкиваемся с подобными ситуациями и просто не задумываемся об этом.

Рефлексы, которые осуществляются при участии головного мозга и формируются на основе нашего опыта, называют условными рефлексами . По принципу условного рефлекса мы действуем, когда управляем автомобилем или выполняем различные механические движения. Из условных рефлексов складывается значительная часть нашей повседневной деятельности.

Все наши действия происходят при участии и контроле со стороны центральной нервной системы. Точность выполнения команд контролирует головной мозг.

Строение и функции головного мозга. Мозг и способности. Человек издавна стремился проникнуть в тайну головного мозга, понять его роль и значение в жизни человека. Уже в глубокой древности связывали понятия сознание и мозг, но прошли еще многие сотни лет, прежде чем ученые начали разгадывать его загадки.

Головной мозг располагается в полости черепа и имеет сложную форму. Масса у взрослого человека колеблется от 1100 до 2000 г. Это всего около 2% от массы тела, но составляющие мозг клетки потребляют 25% энергии, вырабатываемой в организме! В возрасте от 20 до 60 лет масса и объем мозга остаются постоянными для каждого индивидуума. Если расправить извилины коры, то она займет площадь примерно 20 м 2 .

Мозг человека состоит из ствола, мозжечка и полушарий большого мозга. В стволе мозга находятся центры, регулирующие рефлекторную деятельность и связывающие организм с корой полушарий большого мозга. Кора полушарий толщиной 3-4 мм разделяется бороздами и извилинами, что значительно увеличивает поверхность мозга.

Участки коры полушарий большого мозга выполняют различные функции, поэтому они подразделяются на зоны. Например, в затылочной доле находится зрительная зона, в височной - слуховая и обонятельная. Их повреждение приводит к невозможности человеком различать запахи или звуки. С деятельностью головного мозга связаны сознание человека, мышление, память и другие психические процессы. Подробнее о работе головного мозга вы сможете узнать из следующей главы.

С тех пор, как люди убедились, что психические особенности человека связаны с мозгом, начались поиски таких связей. Некоторые специалисты считали что, масса вещества мозга в центрах, отвечающих за жадность, любовь, щедрость и прочие человеческие качества, должна быть пропорциональна их активности. Были попытки связать способности с массой мозга. Считалось, что чем она больше, тем человек способнее. Но и этот вывод ошибочен.

Так, например, масса мозга талантливых людей различна. Наряду с тяжелым мозгом И. Тургенева (2012 г!), масса мозга А. Франса составляла 1017 г. Однако трудно сказать, кто из них больше одарен, каждый из них занимал свое место в истории.

Что же такое способности, и какое отношение к ним имеет мозг? Способности - это психические возможности, позволяющие освоить ту или иную деятельность. Вполне понятно, что люди, занимающиеся разной деятельностью, должны иметь разные способности. Не случайно в коре головного мозга человека имеется множество нейронов, которые “ждут своего часа”, когда они будут задействованы. Таким образом, мозг человека способен решать не только стандартные задачи, но и осваивать новые программы.

Периферическая нервная система , или сокращенно ПНС , это система, которая соединяет конечности и органы с центральной нервной системой . Нейроны данной нервной системы находятся за границей ЦНС – спинного и головного мозга.

В отличие от ЦНС, периферическая нервная система не обладает защитой в виде гематоэнцефалического барьера или костей, поэтому она может быть повреждена механически либо в результате воздействия токсинов .

Периферическая нервная система подразделяется на вегетативную нервную систему и соматическую , при этом в некоторых источниках можно встретить упоминания о сенсорной нервной системе .

Соматическая периферическая нервная система ответственна за получение стимулов из внешней среды, а также за координацию движений тела. Она регулирует деятельность, которая находится в полном осознании.

Вегетативная нервная система классифицируется на энтеральную , парасимпатическую и симпатическую . Роль первого вида заключается в управлении работы прямой кишки, тонкого кишечника, желудка, пищевода, то есть всеми аспектами пищеварительной системы. Парасимпатическая нервная система становится активной, когда человек чувствует себя расслабленно или отдыхает, она в ответе за стимуляцию работы мочеполовой системы, расширение кровеносных сосудов, замедление сердцебиения, сужение зрачков, нормализацию работы пищеварения. Главная роль симпатической нервной системы заключается в реакции на стресс или потенциальную опасность, вместе с прочими физиологическими изменениями данная система способствует повышению уровня адреналина при волнении, увеличению кровяного давления и частоты пульса.

Таким образом, к периферической нервной системе можно отнести 12 пар нервов, их вегетативные и чувствительные ганглии, корешки, расположенные по ходу этих нервов, а также 31 пару спинномозговых нервов, задние и передние корешки спинного мозга и многие другие нервные образования.

Так как ПНС связывает спинной и головной мозг с рецепторами и мышцами, чувствительный и двигательный импульс должен достигать центральной нервной системы очень быстро. Хоть двигательные реакции организма и кажутся мгновенными на различные раздражители, за это время сигнал должен пробежать длинный путь от рецепторов до ЦНС и в обратном направлении. Ученые подсчитали, что скорость такого сигнала достигает более 90 метров в секунду. Но не всем функциям организма необходимы такие сверхскорости.

Как правило, являются приобретенными. Обычно они связаны с инфекциями , травмами , , сосудистыми и метаболическими нарушениями, , а также некоторыми другими дефицитными состояниями. Однако и наследственные заболевания имеют место, среди них невральная амиотрофия, гипертрофические полинефропатии. К болезням периферической нервной системы также относятся невриты, плекситы, ганглиониты. Плекситы обычно возникают из-за сдавления стволов различных сплетений мышцами, патологическими измененными; активный вирус герпеса нередко приводит к поражениям спинномозговых ганглий и т.д.

Повреждения спинномозговых корешков во время родов, стволов плечевого сплетения являются частой причиной различных патологий периферической нервной системы в детском возрасте.

Злокачественные и доброкачественные опухоли периферической нервной системы встречаются относительно редко, однако возможно их возникновение на различных уровнях системы.

Клиническое обследование больного лежит в основе диагностики поражений периферической нервной системы. В зоне поражений, как правило, встречаются и параличи, нарушение чувствительности, трофические и вегетативно-сосудистые расстройства в зоне нарушении функциональности нервного ствола. Проводят такие методы исследования как электродиагностика, электромиография, хронаксиодиагностика, теплоинвазивное исследование, компьютерную томографию, гистохимические и гистологические исследования . Выбор методики исследования во многом зависит от места локализации нарушения функциональности элементов периферической нервной системы.

Лечение болезней периферической нервной системы связано с устранением этиологического фактора, улучшением обменно-трофических и микроциркуляционных процессов в нервной системе. Прописывают витамины группы В, анаболические и препараты калия, препараты никотиновой кислоты, стимуляторы нервной проводимости, также назначают , санаторно-курортное лечение, лечебную физкультуру, массаж.

Периферическая нервная система образована черепными и спинно­мозговыми нервами, узлами и сплетениями вегетативной (автономной) нервной системы. Ее основу составляют нервные волокна - отростки клеток, расположенных в головном и спинном мозге, а также в нерв­ных узлах, обеспечивающие передачу импульсов от периферии к центру (чувствительные волокна), от центра к скелетной мускулатуре (двигательные волокна), от центра к внутренним органам, сосудам и железам (вегетативные волокна).

Соматическая часть периферической нервной системы включает 12 пар черепных и 31 пару спинномозговых нервов.

Последовательность черепных нервов строится от переднего от­дела головного мозга к заднему: 1 - обонятельный нерв, 2 - зри­тельный, 3 - глазодвигательный, 4 - блоковый, 5 - тройничный, 6 - отводящий, 6 - лицевой, 8 - преддверно-улитковый, 9 - языкоглоточный, 10 - блуждающий, 11 - добавочный, 12 - подъязычный.

Черепные нервы включают волокна всех перечисленных видов (нервы вмешанного строения): 5, 9, 10 пары, или только двигательные волокна: 3, 4, 6, 7, 11, 12 пары, или только чувствительные волокна: 1, 2, 8 пары; 3 и 7 пары нервов наряду с соматическими содержат и вегетативные волокна (рис. 11).

Спинномозговые нервы делятся на следующие группы: 8 пар шейных, 12 грудных, 5 поясничных, 5 крестцовых, 1 пара копчиковая.

Стволы спинномозговых нервов образуются от соединения задних и пе­редних корешков. Задние корешки образованы входящими в спинной мозг чувствительными волокнами - отростками нервных клеток спинно­мозговых узлов, передние - двигательными волокнами от мотонейронов передних рогов спинного мозга. Спинномозговые нервы, смешанные по своему составу, включают как чувствительные, так и двигательные волокна (лишь задняя ветвь 1 шейного нерва исключительно двигательная). Они отдают 4 ветви: переднюю, заднюю, оболочечную (к оболочкам спинного мозга) и соединительную (к узлам симпатического ствола как части вегетативной нервной системы - см. ниже). Задние ветви, как правило, тоньше передних. Исключение представ­ляет 1 шейный нерв, ветви которого равновелики, и 2 шейный нерв с более толстой задней ветвью. Передние ветви спинномозговых нервов образуют сплетения: шейное. плечевое, поясничное, крестцово-копчиковое, от которых отходят волокна, иннервирующие части опорно-двигательного аппарата. Задние ветви идут самостоятельно к мышцам затылка, спины, поясницы и частично ягодиц, иннервируя кожу и глубокую (автохтонную) мускулатуру.

Периферическая нервная система образует ряд сплетений. Их подразделяют на вне- и внутриорганные, внутри ствольные и внутриневральные. Примером вне органных служат перечисленные выше сплетения, образованные передними ветвями спинномозговых нервов (кроме грудных). Внутриорганные сплетения есть, например, в мышцах, внутренних органах. Внутри ствольное и внутриневральные сплетения представляют собой сложное переплетение волокон в пределах нерва. Внеорганные сплетения включают магистральные стволы и коллатеральные ветви - постоянные и непостоянные. Каждый нерв имеет определённую зону действия, расширение которой связано с непостоянными ветвями. Некоторые зоны иннервации могут перекрывать друг друга. Непостоянные ветви чаше идут к адвентиции кровеносных сосудов, капсуле суставов, фасциям и надкостнице, значительно реже к мышцам.

Строение периферического нерва .

Нервные стволы содержат от­дельные пучки, окруженные периневрием. Пучки состоят из волокон-отростков нервных клеток, покрытых эндоневрием. Диаметр волокон варьирует. Часть их располагается в «футляре» из миелина - миелиновые волокна; амиелиновые волокна лишены этого покрова.

Присутствие миелиновой оболочки увеличивает скорость прове­дения импульсов по нерву. Амиелиновые волокна образуют полиаксональную оболочечную систему. Ее аксоны окружены клетками-сател­литами (шванновскими). Аксон вдавлен в тяж шванновских клеток, и плазматическая оболочка последних образует некоторое подобие брыжейки - мезаксон. Волокна, которые должны покрыться мякотной оболочкой, никогда не принадлежат полиаксональным оболочечным системам. Каждый аксон здесь связан с одной шванновской клеткой. Вначале аксон располагается на периферии клетки-сателлита, затем «вдавливается» в неё, что приводит к впячиванию плазматической оболочки, образующей «брыжейку» - мезаксон. Мезаксон спирально разрастается вокруг аксона, в местах соприкосновения складок разросшегося мезаксона образуется миелин. По ходу мякотного волокна миелиновый покров местами истончается, образуя перехваты Ранвье. Это биологически активные участки нерва, где скапливаются митохондрии, ионы, продукты метаболизма нерва.

Существуют два крайних варианта строения периферического нер­ва: малопучковый (нерв тонкий, состоит из небольшого количества крупных пучков при компактном расположении волокон в пучке) и многопучковый (нерв толстый, образующие его пучки меньше диамет­ром, расположение волокон в пучке рыхлое). Количество волокон в составе нерва весьма изменчиво: локтевой нерв на уровне середины плеча содержит 13000-18000 волокон, срединный на том же уровне -19000-32000, мышечно-кожный нерв - 3000-12000. Однако индивиду­альные колебания числа волокон в комплексах нервов уменьшены. Так, суммарно в срединном и мышечно-кожном нерве содержится 27500-36700 волокон.

Нервные стволы отличаются по диаметру слагающих их волокон: мелкие и средние миелиновые волокна составляют в срединном нерве 11-45%, локтевом - 9-37 %, лучевом - 10-27%. В кожных нервах этих волокон больше (60-80%), чем в мышечных нервах (18-40%). В межре­берных нервах их больше (70-80%), чем в нервах конечностей (36-38%).

Различие числа и диаметра волокон позволяет говорить о морфо­логической вариабельности у отдельных людей нервных стволов, опре­деляющей во многом клинические различия при однотипных повреждениях нервов. Одной из ее причин служит асимметрия в строении пе­риферических нервов. Асимметрия нервной системы человека - эволюционное приобретение.

Возрастные и половые различия .

Спектр распределения волокон в составе периферического нерва изменяется с возрастом - число миелиновых волокон повышается. Так, в нервах нижней косой мышцы головы 4-месячных плодов их насчитывается 818, у новорожденных - 1694, у годовалых детей - 2387, у 3-летних - 2403, затем их количество остается неизменным до старости.

Об уменьшении в старости количества миелинизированных волокон свидетельствуют данные, приводимые для преддверно-улиткового нер­ва. Общее число этих волокон у лиц в возрасте 20-25 лет было в пределах 16040-18353, к 75- 85 годам оно снизилось до 9274-15980. С возрастом уменьшаются общее число нервных волокон и плотность расположения их в нерве. Количество нервных волокон и плотность их расположения больше у мужчин.

Возрастная редукция числа волокон затрагивает в первую очередь волокна большого диаметра. Это связано с уменьшением в процессе старения числа нервных клеток в основном за счет гибели крупных клеток. Поэтому площадь тел сохранившихся нейронов и их ядер снижается с возрастом.

Старение периферической нервной системы идет в определенной последовательности: раньше других изменениям подвергаются клетки спинного мозга, позже - корешки спинномозговых нервов и лишь за­тем периферические нервы. В протоплазме мотонейронов увеличиваются отложения пигмента - липофусцина, тигроидное вещество оттесня­ется к периферии клеток, изменяются контуры клеток и их ядер. Де­генеративной перестройке в первую очередь подвергаются миелиновые волокна большого диаметра. Происходит распад миелина, нервные стволы склерозируются. Считается, что изменениям нервных волокон предшествуют преобразования соединительно-тканной стромы и сосудов нерва. Расстояние между перехватами Ранвье с возрастом уменьшает­ся, а вариабельность этого показателя увеличивается. Возрастная атрофия и склероз периферических нервов определяют в известной мере наблюдающееся в пожилом и старческом возрасте снижение мышеч­ной силы, угасание сухожильных и периостальных рефлексов, трофиче­ские нарушения и т.п.

Обусловленная возрастом гибель нервных клеток и уменьшение числа нервных волокон периферических нервов ведут к сокращению числа нервных окончаний, выполнявших функции рецепторов.

Особенности структуры нерва определяют его функциональные характеристики, в частности скорость проведения импульсов. Счи­тается. что скорость проведения импульсов в тонких миелиновых и немиелиновых волокнах медленная (0,2-1,6 м/с), в толстых миелиновых волокнах - быстрая (90-120 м/с).

Влияние физических нагрузок на строение нерва .

В двигательных нейронах передних рогов спинного мозга при умеренных мышеч­ных нагрузках усиливается образование нуклеопротеидов, активизируются гидролитические ферменты.

Физические нагрузки отражаются на строении периферических нервов. Как показано многочисленными опытами, физические нагрузки ускоряют миелинизацию нервных волокон, улучшая тем самым условия проведения импульсов по нерву.

Выше отмечалось, что с возрастом соотношение мякотных волокон разного диаметра в составе периферических нервов меняется: доляволокон малого и среднего диаметра увеличивается, большого диамет­ра - уменьшается. Это объясняется преимущественной естественной убылью крупных нейронов, толщина аксона которых значительна. Ре­зультатом служит ухудшение условий проведения нервных импульсов. Важно отметить, что физические нагрузки умеренной интенсивности придают иной характер перестройке спектра нервных волокон: повы­шается доля волокон большого и среднего диаметра с улучшением ус­ловий проведения импульсов по нерву.

Черепные нервы

Принадлежность ядер черепных нервов тем или иным отделам головного мозга обсуждалась выше. Отметим их расположение в сером веществе, окружающем желудочки мозга, - на поверхности ромбовид­ной ямки, в центральном сером веществе водопровода среднего мозга.

Это серое вещество можно рассматривать как серое вещество спинного мозга, «рассеченное» между задними рогами и «превращен­ное» в пластинку, где задние рога будут располагаться латерально, промежуточные - посередине, а передние - медиально. Так и для ядер черепных нервов чувствительные имеют латеральное положение, двигательные - медиальное, а вегетативные (парасимпатические) - промежуточное. Общность происхождения некоторых нервов (например, 9 и 10 пары) подтверждается наличием общих ядер - конечного, чувствитель­ного и слюноотделительных парасимпатических.

Первые две пары черепных нервов чисто чувствительные.

Обонятельный нерв (1 пара)

разветвляется в слизистой верхнего носового хода. Волокна нерва проникают в полость черепа через отверстия решетчатой пластинки и направляются к обонятельной луковице обонятельного мозга. К проводящим путям обонятельного анализатора относится свод. Корковый центр находятся в передней части парагиппокампальной извилины височной доли.

Зрительный нерв (2 пара)

берет начало цепью нейронов в внут­ренней (чувствительной) оболочке глазного яблока - сетчатке. Сам нерв состоит из отростков 3-го нейрона. Направляясь к перекресту, где переходят на противоположную сторону волокна от медиальных половин сетчатки, продолжается после перекреста зрительным трактом. В его составе волокна достигают подкорковых зрительных центров (верхние холмики крыши среднего мозга и латеральные коленчатые тела промежуточного мозга). Корковый центр находится по краям шпорной борозды затылочной доли.

Глазодвигательный нерв (3 пара)

имеет смешанный состав, вклю­чая двигательные и вегетативные (парасимпатические) волокна. Дви­гательные волокна иннервируют все мышцы глазного яблока, кроме верхней косой и латеральной прямой. Парасимпатические волокна иннервируют гладкую мышцу-сфинктер зрачка (суживающую зрачок).

Боковой нерв (4 пара)

чисто двигательный. Иннервирует верхнюю косую мышцу глаза.

Тройничный нерв (5 пара)

смешанный по своему составу, вклю­чает двигательные и чувствительные (от тройничного узла) волокна (рис. 12). Зона иннервации - лицевая область: чувствительная иннер­вация содержимого глазницы, кожи лобной области и слизистой но­совой полости (глазной нерв); кожи средней части лица, слизистой ротовой полости, верхних зубов (верхнечелюстной нерв), кожи ниж­ней части лица. слизистой оболочки языка и ротовой полости, нижних зубов, слюнных желез (нижнечелюстной нерв); двигательная иннервация четырех жевательных мышц, а также мышц, напрягающих небную занавеску и барабанную перепонку (нижнечелюстной нерв).

Поблизости от ветвей тройничного нерва располагаются вегетативные узлы головы: ресничный (рядом с глазным нервом), крылонебный узел (рядом с верхнечелюстным нервом), ушной узел (рядом с нижнечелюстным нервом). Эти узлы получают вегетативные (парасимпатические) волокна от разных черепных нервов и из разных ядер - ресничный от глазоцвигательного нерва (3 пара), крылонебный - от промежуточного нерва (части лицевого, 7 пара), ушной - от языкоглоточного нерва (9 пара), поднижнечелюстной - от промежуточного нерва. Симпатические нервные волокна идут от верхнего шейного симпатического узла, образуя сплетения вокруг внутренней сонной артерии и ее ветвей. Чувствительные волокна к каждому узлу направляются от соответствующей ветви тройничного нерва. Ресничный узел иннервирует мышцу сфиктер зрачка (пара­симпатические волокна) и дилататор радужки (симпатические волокна); крылонебный узел - слезную железу; ушной узел - околоушную железу; поднижнечелюстной узел - подъязычную и подчелюстную слюн­ные железы.

Отводящий нерв (6 пара)

Чисто двигательный, иннервирует латеральную прямую мышцу глазного яблока, которая при своем со­кращении отводит взор кнаружи.

Лицевой нерв (7 пара)

Чисто двигательный, однако вместе с ним рассматривается не имеющий самостоятельного порядкового но­мера промежуточный нерв , несущий чувствительные и вегетативные (парасимпатические) волокна. Лицевой нерв иннервирует все мимические мышцы; промежуточный дает парасимпатическую иннервацию слезной железы (через крылонебный узел), поднижнечелюстной и подъязычной слюнным железам (через поднижнечелюстной узел), а также чувствительную иннервацию некоторым вкусовым сосочкамязы­ка.