Простой высококачественный умзч. Настройка усилителя мощности ланзар - принципиальная схема усилителя мощности, описание принципиальной схемы, рекомендации по сборке и регулировке Материал по Высококачественному ПУ

Ремонт УМЗЧ – чуть ли не самый частый из вопросов, задаваемых на радиолюбительских форумах. И при том – один из самых сложных. Конечно, существуют «излюбленные» неисправности, но в принципе, выйти из строя может любой из нескольких десятков, а то и сотен компонентов, входящих в состав усилителя. Тем более, что и схем УМЗЧ – великое множество.

Конечно, охватить все случаи, встречающиеся в практике ремонта, не представляется возможным, однако, если следовать определенному алгоритму, то в подавляющем большинстве случаев удается восстановить работоспособность устройства за вполне приемлемое время. Данный алгоритм был выработан мною по опыту ремонта около полусотни различных УМЗЧ, от простейших, на несколько ватт или десятков ватт, до концертных «монстров» по 1…2 кВт на канал, большинство из которых поступало на ремонт без принципиальных схем.

Главной задачей ремонта любого УМЗЧ является локализация вышедшего из строя элемента, повлекшего за собой неработоспособность как всей схемы, так и выход из строя других каскадов. Поскольку в электротехнике бывает всего 2 типа дефектов:

  1. наличие контакта там, где его быть не должно;
  2. отсутствие контакта там, где он должен быть.

То «сверхзадачей» ремонта является нахождение пробитого или оборванного элемента!

А для этого – отыскать тот каскад, где он находится. Дальше – «дело техники». Как говорят врачи: «Правильный диагноз - половина лечения».

Перечень оборудования и инструментов, необходимых (или по крайней мере крайне желательных) при ремонте:

  1. отвертки, бокорезы, пассатижи, скальпель (нож), пинцет, лупа – т.е., минимальный обязательный набор обычного монтажного инструмента;
  2. тестер (мультиметр);
  3. осциллограф;
  4. набор ламп накаливания на различные напряжения – от 220 В до 12 В (по 2 шт.);
  5. низкочастотный генератор синусоидального напряжения (весьма желательно);
  6. двухполярный регулируемый источник питания на 15-25 (35) В с ограничением;
  7. выходного тока (весьма желательно);
  8. измеритель емкости и эквивалентного последовательного сопротивления (ESR) конденсаторов (весьма желательно);
  9. и, наконец, самый главный инструмент – голова на плечах (обязательно!).

Рассмотрим данный алгоритм на примере ремонта гипотетического транзисторного УМЗЧ с биполярными транзисторами в выходных каскадах (рис.1), не слишком примитивного, но и не очень сложного. Такая схема является наиболее распространенной «классикой жанра». Функционально он состоит из следующих блоков и узлов:

  1. двухполярный источник питания (не показан);
  2. входной дифференциальный каскад на транзисторах VT2, VT5 с токовым зеркалом на транзисторах VT1 и VT4 в их коллекторных нагрузках и стабилизатором их эмиттерного тока на VT3;
  3. усилитель напряжения на VT6 и VT8 в каскадном включении, с нагрузкой в виде генератора тока на VT7;
  4. узел термостабилизации тока покоя на транзисторе VT9;
  5. узел защиты выходных транзисторов от перегрузки по току на транзисторах VT10 и VT11;
  6. усилитель тока на комплементарных тройках транзисторов, включенных по схеме Дарлингтона в каждом плече (VT12VT14VT16 и VT13VT15VT17).

Рисунок 1

1. Первым пунктом любого ремонта является внешний осмотр сабжа и его обнюхивание (!). Уже одно это позволяет иногда хотя бы предположить сущность дефекта. Если пахнет паленым – значит, что-то явно горело.

2. Проверка наличия сетевого напряжения на входе: тупо перегорел сетевой предохранитель, разболталось крепление проводов сетевого шнура в вилке, обрыв в сетевом шнуре и т.п. Этап – банальнейший по своей сущности, но на котором ремонт заканчивается примерно в 10% случаев.

3. Ищем схему на усилитель. В инструкции, в Интернете, у знакомых, друзей и т.п. К сожалению, все чаше и чаще в последнее время – безуспешно. Не нашли – тяжко вздыхаем, посыпаем голову пеплом и принимаемся за вырисовывание схемы по плате. Можно этот этап и пропустить. Если неважен результат. Но лучше не пропускать. Муторно, долго, противно, но – «Надо, Федя, надо…» ((С) «Операция «Ы»…).

4. Вскрываем сабж и производим внешний осмотр его «потрохов». Применяем лупу, если нужно. Можно увидеть разрушенные корпуса п/п приборов, потемневшие, обуглившиеся или разрушенные резисторы, вздутые электролитические конденсаторы или потеки электролита из них, оборванные проводники, дорожки печатной платы и т.п. Если таковое найдено – это еще не повод для радости: разрушенные детали могут быть следствием выхода из строя какой-нибудь «блошки», которая визуально цела.

5. Проверяем блок питания. Отпаиваем провода, идущие от БП к схеме (или отсоединяем разъем, если он есть). Вынимаем сетевой предохранитель и к контактам его держателя подпаиваем лампу на 220 В (60-100 Вт). Она ограничит ток первичной обмотки трансформатора, равно как и токи во вторичных обмотках. Включаем усилитель. Лампа должна мигнуть (на время зарядки конденсаторов фильтра) и погаснуть (допускается слабое свечение нити). Это значит, что К.З. по первичной обмотке сетевого трансформатора нет, как нет явного К.З. в его вторичных обмотках. Тестером на режиме переменного напряжения измеряем напряжение на первичной обмотке трансформатора и на лампе. Их сумма должна быть равна сетевому. Измеряем напряжения на вторичных обмотках. Они должны быть пропорциональными тому, что измерено фактически на первичной обмотке (относительно номинального). Лампу можно отключать, ставить предохранитель на место и включать усилитель прямо в сеть. Повторяем проверку напряжений на первичной и вторичной обмотках. Соотношение (пропорция) между ними должно быть таким же, как при измерении с лампой. Лампа горит постоянно в полный накал – значит, имеем К.З. в первичной цепи: проверяем целостность изоляции проводов, идущих от сетевого разъема, тумблер питания, держатель предохранителя. Отпаиваем один из поводов, идущих на первичную обмотку трансформатора. Лампа погасла – скорее всего вышла из строя первичная обмотка (или межвитковое замыкание). Лампа горит постоянно в неполный накал – скорее всего, дефект во вторичных обмотках или в подключенных к ним цепях. Отпаиваем по одному проводу, идущему от вторичных обмоток к выпрямителя(м). Не перепутать, Кулибин! Чтобы потом не было мучительно больно от неправильной подпайки назад (промаркировать, например, с помощью кусочков липкой малярной ленты). Лампа погасла – значит, с трансформатором все в порядке. Горит – снова тяжко вздыхаем и либо ищем ему замену, либо перематываем.

6. Определились, что трансформатор в порядке, а дефект в выпрямителях или конденсаторах фильтра. Прозваниваем диоды (желательно отпаять под одному проводу идущему к их выводам, либо выпаять, если это интегральный мост) тестером в режиме омметра на минимальном пределе. Цифровые тестеры в этом режиме часто врут, поэтому желательно использовать стрелочный прибор. Лично я давно пользуюсь прозвонкой – «пищалкой» (рис. 2, 3). Диоды (мост) пробиты или оборваны – меняем. Целые – «звоним» конденсаторы фильтра. Перед измерением их надо разрядить (!!!) через 2-ваттный резистор сопротивлением около 100 Ом. Иначе можно сжечь тестер. Если конденсатор цел – при замыкании стрелка сначала отклоняется до максимума, а потом довольно медленно (по мере заряда конденсатора) «ползет» влево. Меняем подключение щупов. Стрелка сначала зашкаливает вправо (на конденсаторе остался заряд от предыдущего измерения) а потом опять ползет влево. Если есть измеритель емкости и ESR, то весьма желательно использовать его. Пробитые или оборванные конденсаторы меняем.

Рисунок 2

Рисунок 3

7. Выпрямители и конденсаторы целые, но на выходе блока питания стоит стабилизатор напряжения? Не беда. Между выходом выпрямителя(ей) и входом(ами) стабилизатора(ов) включаем лампу(ы) (цепочку(и) ламп) на суммарное напряжение близкое к указанному на корпусе конденсатора фильтра. Лампа загорелась – дефект в стабилизаторе (если он интегральный), либо в цепи формирования опорного напряжения (если он на дискретных элементах), либо пробит конденсатор на его выходе. Пробитый регулирующий транзистор определяется прозваниванием его выводов (выпаять!).

8. С блоком питания все в порядке (напряжения на его выходе симметричные и номинальные)? Переходим к самому главному – собственно усилителю. Подбираем лампу (или цепочки ламп) на суммарное напряжение, не ниже номинального с выхода БП и через нее (них) подключаем плату усилителя. Причем, желательно к каждому из каналов по отдельности. Включаем. Загорелись обе лампы – пробиты оба плеча выходных каскадов. Только одна – одно из плеч. Хотя и не факт. Лампы не горят или горит только одна из них. Значит, выходные каскады, скорее всего, целые. К выходу подключаем резистор на 10-20 Ом. Включаем. Лампы должны мигнуть (на плате обычно есть еще конденсаторы по питанию). Подаем на вход сигнал от генератора (регулятор усиления – на максимум). Лампы (обе!) зажглись. Значит, усилитель что-то усиливает, (хотя хрипит, фонит и т.п.) и дальнейший ремонт заключается в поиске элемента, выводящего его из режима. Об этом – ниже.

9. Для дальнейшей проверки лично я не использую штатный блок питания усилителя, а применяю 2-полярный стабилизированный БП с ограничением тока на уровне 0,5 А. Если такового нет – можно использовать и БП усилителя, подключенный, как было указано, через лампы накаливания. Только нужно тщательно изолировать их цоколи, чтобы случайно не вызвать КЗ и быть аккуратным, чтобы не разбить колбы. Но внешний БП – лучше. Заодно виден и потребляемый ток. Грамотно спроектированный УМЗЧ допускает колебания питающих напряжений в довольно больших пределах. Нам ведь не нужны при ремонте его супер-пупер параметры, достаточно просто работоспособности.

10. Итак, с БП всё в порядке. Переходим к плате усилителя (рис. 4). Перво-наперво надо локализовать каскад(ы) с пробитым(и)/оборванным(и) компонентом(ами). Для этого крайне желательно иметь осциллограф. Без него эффективность ремонта падает в разы. Хотя и с тестером можно тоже много чего сделать. Почти все измерения производятся без нагрузки (на холостом ходу). Допустим, что на выходе у нас «перекос» выходного напряжения от нескольких вольт до полного напряжения питания.

11. Для начала отключаем узел защиты, для чего выпаиваем из платы правые выводы диодов VD6 и VD7 (у меня в практике было три случая, когда причиной неработоспособности был выход из строя именно этого узла). Смотрим напряжение не выходе. Если нормализовалось (может быть остаточный перекос в несколько милливольт – это норма), прозваниваем VD6, VD7 и VT10, VT11. Могут быть обрывы и пробои пассивных элементов. Нашли пробитый элемент – меняем и восстанавливаем подключение диодов. На выходе ноль? Выходной сигнал (при подаче на вход сигнала от генератора) присутствует? Ремонт закончен. Ничего с сигналом на выходе не изменилось? Оставляем диоды отключенными и идем дальше.

12. Выпаиваем из платы правый вывод резистора ООС (R12 вместе с правым выводом C6), а также левые выводы R23 и R24, которые соединяем проволочной перемычкой (показана на рис. 4 красным) и через дополнительный резистор (без нумерации, порядка 10 кОм) соединяем с общим проводом. Перемыкаем проволочной перемычкой (красный цвет) коллекторы VT8 и VT7, исключая конденсатор С8 и узел термостабилизации тока покоя. В итоге усилитель разъединяется на два самостоятельных узла (входной каскад с усилителем напряжения и каскад выходных повторителей), которые должны работать самостоятельно. Смотрим, что имеем на выходе. Перекос напряжения остался? Значит, пробит(ы) транзистор(ы) «перекошенного» плеча. Выпаиваем, звоним, заменяем. Заодно проверяем и пассивные компоненты (резисторы). Наиболее частый вариант дефекта, однако должен заметить, что очень часто он является следствием выхода из строя какого-то элемента в предыдущих каскадах (включая узел защиты!). Поэтому последующие пункты все-таки желательно выполнить. Перекоса нет? Значит, выходной каскад предположительно цел. На всякий случай подаем сигнал от генератора амплитудой 3-5 В в точку «Б» (соединения резисторов R23 и R24). На выходе должна быть синусоида с хорошо выраженной «ступенькой», верхняя и нижняя полуволны которой симметричны. Если они не симметричны – значит, «подгорел» (потерял параметры) какой-то из транзисторов плеча, где она ниже. Выпаиваем, звоним. Заодно проверяем и пассивные компоненты (резисторы) Сигнала на выходе нет вообще? Значит, вылетели силовые транзисторы обоих плеч «насквозь». Печально, но придется выпаивать все и прозванивать с последующей заменой. Не исключены и обрывы компонентов. Тут уж нужно включать «8-й инструмент». Проверяем, заменяем…

Рисунок 4

13. Добились симметричного повторения на выходе (со ступенькой) входного сигнала? Выходной каскад отремонтирован. А теперь нужно проверить работоспособность узла термостабилизации тока покоя (транзистор VT9). Иногда наблюдается нарушение контакта движка переменного резистора R22 с резистивной дорожкой. Если он включен в эмиттерной цепи, как показано на приведенной схеме, ничего страшного с выходным каскадом при этом произойти не может, т.к. в точке подключения базы VT9 к делителю R20–R22R21 напряжение просто повышается, он приоткрывается больше и, соответственно, снижается падение напряжения между его коллектором и эмиттером. В выходном сигнале простоя появится ярко выраженная «ступенька». Однако (очень даже нередко), подстроечный резистор ставится между коллектором и базой VT9. Крайне «дураконезащищенный» вариант! Тогда при потере контакта движка с резистивной дорожкой напряжение на базе VT9 снижается, он призакрывается и, соответственно, повышается падение напряжения между его коллектором и эмиттером, что ведет к резкому возрастанию тока покоя выходных транзисторов, их перегреву и, естественно, тепловому пробою. Еще более дурацкий вариант выполнения этого каскада – если база VT9 соединена только с движком переменного резистора. Тогда при потере контакта на ней может быть все, что угодно, с соответствующими последствиями для выходных каскадов. Если есть возможность, стоит переставить R22 в базо-эмиттерную цепь. Правда, при этом регулировка тока покоя станет выражено нелинейной от угла поворота движка, но IMHO это не такая уж и большая плата за надежность. Можно просто заменить транзистор VT9 на другой, с обратным типом проводимости, если позволяет разводка дорожек на плате. На работу узла термостабилизации это никак не повлияет, т.к. он является двухполюсником и не зависит от типа проводимости транзистора. Проверка этого каскада осложняется тем, что, как правило, соединения с коллекторами VT8 и VT7 сделаны печатными проводниками. Придется поднимать ножки резисторов и делать соединения проводочками (на рис. 4 показаны разрывы проводников). Между шинами положительного и отрицательного напряжений питания и, соответственно, коллектором и эмиттером VT9 включаются резисторы примерно по 10 кОм (без нумерации, показаны красным) и замеряется падение напряжения на транзисторе VT9 при вращении движка подстроечного резистора R22. В зависимости от количества каскадов повторителей оно должно изменяться в пределах примерно 3-5 В (для «троек, как на схеме) или 2,5-3,5 В (для «двоек»).

14. Вот и добрались мы до самого интересного, но и самого сложного – дифкаскада с усилителем напряжения. Они работают только совместно и разделить их на отдельные узлы принципиально невозможно. Перемыкаем правый вывод резистора ООС R12 с колекторами VT8 и VT7 (точка «А», являющаяся теперь его «выходом»). Получаем «урезанный» (без выходных каскадов) маломощный ОУ, вполне работоспособный на холостом ходе (без нагрузки). Подаем на вход сигнал амплитудой от 0,01 до 1 В и смотрим, что будет в точке А. Если наблюдаем усиленный сигнал симметричной относительно земли формы, без искажений, значит данный каскад цел.

15. Сигнал резко снижен по амплитуде (мало усиление) – в первую очередь проверить емкость конденсатора(ов) С3(С4, т.к. производители для экономии очень часто ставят только один полярный конденсатор на напряжение 50 В и больше, рассчитывая, что в обратной полярности он все равно будет работать, что не есть гут). При его подсыхании или пробое резко снижается коэффициент усиления. Если нет измерителя емкости – проверяем просто путем замены на заведомо исправный. Сигнал перекошен – в первую очередь проверить емкость конденсаторов С5 и С9, шунтирующих шины питания предусилительной части после резисторов R17 и R19 (если эти RC-фильтры вообще есть, т.к. нередко они не ставятся). На схеме приведены два распространенных варианта симметрирования нулевого уровня: резистором R6 или R7 (могут быть, конечно же, и другие), при нарушении контакта движка которых тоже может быть перекос выходного напряжения. Проверить вращением движка (хотя, если контакт нарушен «капитально», это может и не дать результата). Тогда попробовать перемкнуть пинцетом их крайние выводы с выводом движка. Сигнал вообще отсутствует – смотрим, а есть ли он вообще на входе (обрыв R3 или С1, К.З. в R1, R2, С2 и т.п.). Только сначала нужно выпаять базу VT2, т.к. на ней сигнал будет очень маленьким и смотреть на правом выводе резистора R3. Конечно, входные цепи могут сильно отличаться от приведенных на рисунке – включать «8-й инструмент». Помогает.

16. Естественно, описать все возможные причинно-следственные варианты дефектов мало реально. Поэтому дальше просто изложу, как проверять узлы и компоненты данного каскада. Стабилизаторы тока VT3 и VT7. В них возможны пробои или обрывы. Из платы выпаиваются коллекторы и замеряется ток между ними и землей. Естественно, сначала нужно рассчитать по напряжению на их базах и номиналам эмиттерных резисторов, каким он должен быть. (N.B.! В моей практике был случай самовозбуждения усилителя из-за чрезмерно большого номинала резистора R10, поставленного изготовителем. Помогла подстройка его номинала на полностью работающем усилителе – без указанного выше разделения на каскады). Аналогично можно проверить и транзистор VT8: если перемкнуть коллектор-эмиттер транзистора VT6, он также тупо превращается в генератор тока. Транзисторы дифкаскада VT2V5T и токового зеркала VT1VT4, а также VT6 проверяются их прозвонкой после отпайки. Лучше замерить коэффициент усиления (если тестер – с такой функцией). Желательно подобрать с одинаковыми коэффициентами усиления.

17. Пару слов «не для протокола». Почему-то в подавляющем большинстве случаев в каждый последующий каскад ставят транзисторы все большей и большей мощности. В этой зависимости есть одно исключение: на транзисторах каскада усиления напряжения (VT8 и VT7) рассеивается в 3-4 раза большая мощность, чем на предрайверных VT12 и VT23 (!!!). Поэтому, если есть такая возможность, их сто́ит сразу же заменить на транзисторы средней мощности. Неплохим вариантом будет КТ940/КТ9115 или аналогичные импортные.

18. Довольно нередкими дефектами в моей практике были непропаи («холодная» пайка к дорожкам/«пятачкам» или плохое облуживание выводов перед пайкой) ножек компонентов и обломы выводов транзисторов (особенно в пластмассовом корпусе) непосредственно возле корпуса, которые очень трудно было увидеть визуально. Пошатать транзисторы, внимательно наблюдая за их выводами. В крайнем случае – выпаять и впаять заново. Если проверили все активные компоненты, а дефект сохраняется – нужно (опять же, с тяжким вздохом), выпаять из платы хоть по одной ножке и проверить тестером номиналы пассивных компонентов. Нередки случаи обрывов постоянных резисторов без каких-либо внешних проявлений. Неэлектролитические конденсаторы, как правило, не пробиваются/обрываются, но всякое бывает…

19. Опять же, по опыту ремонта: если на плате видны потемневшие/обугленные резисторы, причем симметрично в обеих плечах, стоит пересчитать выделяемую на нем мощность. В житомирском усилителе «Dominator» производитель поставил в одном из каскадов резисторы по 0,25 Вт, которые регулярно горели (до меня было 3 ремонта). Когда я просчитал их необходимую мощность – чуть не упал со стула: оказалось, что на них должно рассеиваться по 3 (три!) ватта…

20. Наконец, все заработало… Восстанавливаем все «порушенные» соединения. Совет вроде бы и банальнейший, но сколько раз забываемый!!! Восстанавливаем в обратной последовательности и после каждого соединения проверяем усилитель на работоспособность. Нередко покаскадная проверка, вроде бы, показала, что все исправно, а после восстановления соединений дефект опять «выползал». Последними подпаиваем диоды каскада токовой защиты.

21. Выставляем ток покоя. Между БП и платой усилителя включаем (если они были отключены ранее) «гирлянду» ламп накаливания на соответствующее суммарное напряжение. Подключаем к выходу УМЗЧ эквивалент нагрузки (резистор на 4 или 8 Ом). Движок подстроечного резистора R22 устанавливаем в нижнее по схеме положение и на вход подаем сигнал от генератора частотой 10-20 кГц (!!!) такой амплитуды, чтобы на выходе выл сигнал не более 0,5-1 В. При таких уровне и частоте сигнала хорошо заметна «ступенька», которую трудно заметить на большом сигнале и малой частоте. Вращением движка R22 добиваемся ее устранения. При этом нити накала ламп должны немного светиться. Можно проконтролировать ток и амперметром, включив его параллельно каждой гирлянде ламп. Не сто́ит удивляться, если он будет заметно (но не более, чем в 1,5-2 раза в бо́льшую сторону) отличаться от того, что указано в рекомендациях по настройке – нам ведь важно не «соблюдение рекомендаций», а качество звучания! Как правило, в «рекомендациях» ток покоя значительно завышается, для гарантированного достижения запланированных параметров («по худшему»). Перемыкаем «гирлянды» перемычкой, повышаем уровень выходного сигнала до уровня 0,7 от максимального (когда начинается амплитудное ограничение выходного сигнала) и даем усилителю прогреться 20-30 минут. Этот режим является наиболее тяжелым для транзисторов выходного каскада – на них при этом рассеивается максимальная мощность. Если «ступенька» не появилась (при малом уровне сигнала), а ток покоя возрос не более, чем в 2 раза, настройку считаем законченной, иначе убираем «ступеньку» снова (как было указано выше).

22. Убираем все временные соединения (не забывать!!!), собираем усилитель окончательно, закрываем корпус и наливаем чарку, которую с чувством глубокого удовлетворения проделанной работой, выпиваем. А то работать не будет!

Конечно же, в рамках данной статьи не описаны нюансы ремонта усилителей с «экзотическими» каскадами, с ОУ на входе, с выходными транзисторами, включенными с ОЭ, с «двухэтажными» выходными каскадами и многое другое…

Поэтому ПРОДОЛЖЕНИЕ СЛЕДУЕТ…

Отдаваемое в последнее время предпочтение ламповым выходным усилителям мощности звуковой частоты для звуковоспроизведения высокой верности трудно понять, исходя из объективного их сравнения с транзисторными УМЗЧ. Ведь по всем измеряемым характеристикам современный УМЗЧ на транзисторах существенно превосходит ламповый. На наш взгляд, измеряемыми обычно нелинейными искажениями (НИ) не исчерпываются те искажения, которые определяют качество звуковоспроизведения.

В самых совершенных конструкциях транзисторных УМЗЧ уровень НИ доведен практически до слухового порога и даже ниже, поэтому сомнительно, что их можно воспринимать на слух, тем более в условиях маскировки полезным сигналом.

Дело, по-видимому, в том, что обычно измеряют НИ в установившемся режиме, когда переходный процесс после подачи на вход испытываемого усилителя измерительного сигнала уже завершен как на входе, так и на выходе усилителя, а в замкнутой петле общей отрицательной обратной связи (ООС) установился стационарный колебательный процесс, отвечающий с большей или меньшей точностью поступающему на вход сигналу.

Очевидно, что нелинейность усилителя проявляется гораздо сильнее во время переходного процесса (длительность которого за счет задержки сигнала в цепи ООС может быть значительной), особенно на его начальном этапе, когда действие ООС наименее эффективно (из-за упомянутой задержки).

В отличие от динамических искажений, приводящих к перегрузке входного каскада на протяжении всей длительности неблагоприятного по параметрам входного сигнала - рассматриваемые переходные НИ имеются даже тогда, когда отсутствуют динамические, но только пока переходный процесс не закончен.

А если учесть, что реальные звуковые программы очень далеки от стационарности и на самом деле вызывают в УМЗЧ почти непрерывный переходный процесс, то при воспроизведении таких программ НИ могут намного превышать измеренные обычными методами в одном и том же экземпляре усилителя.

Вследствие малой длительности переходного процесса по сравнению с временем лабораторных измерений они пока "ускользают" от экспериментального изучения (для этого требуется разработка специальных методов) и в то же время легко воспринимаются на слух на протяжении звучания всей фонограммы.

С этой точки зрения становится понятным преимущество ламповых усилителей: хотя измеряемый уровень НИ у них больше (это относится только к стационарному режиму), в реальных условиях лампы как гораздо более линейные приборы обеспечивают меньшие НИ, чем транзисторы (хотя, конечно, большие, чем те же лампы в стационарном режиме), что и обусловливает лучшее звучание ламповых усилителей.

Однако очевидны такие недостатки ламповых усилителей, как неудобства в эксплуатации, громоздкость и большая масса, значительная потребляемая мощность при сравнительно низких КПД и выходной мощности.

В этой связи выглядело бы заманчивым создание транзисторного усилителя с реальным уровнем НИ не хуже, чем у лампового. Последнее означает, что измеряемый по обычным методикам уровень НИ такого усилителя должен быть снижен на один-два порядка (!) по сравнению с лучшими образцами (можно и больше), чтобы НИ в нестационарном режиме имели приемлемую величину.

Однако применяемые сейчас методы линеаризации транзисторных усилителей, по-видимому, себя уже исчерпали и не позволят достичь требуемого коэффициента НИ (0=0,0001 ...0,00001 %).

Поэтому была поставлена задача изучить возможность получения такого рекордно низкого уровня собственных НИ транзисторного УМЗЧ, не останавливаясь перед сложностью схемотехнических решений, а затем и решить, оправдан ли такой подход, приносит ли он выигрыш по качеству звучания по сравнению с существующими схемами.

Представляемая в настоящей работе конструкция адресована в первую очередь самым взыскательным ценителям высококачественного звуковоспроизведения. Она разработана на основе изложенного в принципа, который является усовершенствованием известного метода снижения искажений, описанного в .

Рис. 1-3. Блок-схемы усилителей.

На рис.1 изображена блок-схема двухкаскадного усилителя с передаточной функцией первого каскада К1 и второго К2, передаточной функцией b цепи общей ООС, охватывающей весь усилитель, и передаточной функцией g цепи местной положительной обратной связи (МПОС), охватывающей первый каскад. Результирующая передаточная функция такого устройства описывается выражением К=К1К2/(1-тК1+рК1К2). (1)

Если установить усиление в петле МПОС тК1=1, то окажется, что в отличие от усилителя с одной ООС, у которого К = К1К2/(1+ |ЗК1К2) и только приближенно К=1/р (при |ЗК1К2»1), передаточная функция данного усилителя будет точно равна 1/р.

При этом глубина ООС должно быть больше глубины МПОС, т.е. |ЗК1К2>уК1, что является необходимым (но недостаточным) условием устойчивости. Таким образом, при уК1=1 подавляются все искажения, которые возникают во втором каскаде и причиной которых является непостоянство его передаточной функции (поскольку К=1/|3 и не зависит от К2).

Однако абсолютно полное подавление искажений возможно только при идеальном первом каскаде. Реально же ему присущи как нелинейные, так и частотные искажения, приводящие к отклонению передаточной функции К1 от оптимального значения. Кроме того, оно изменяется из-за колебаний питающих напряжений, температурного дрейфа и изменения со временем параметров деталей.

Проблемой является и обеспечение совместной устойчивости такой сложной системы при совместном действии ООС и ПОС (второе условие устойчивости), так как введение ПОС уменьшает запас устойчивости исходной системы .

С другой стороны, желательно (для получения наибольшей линейности), чтобы глубина как ПОС, так и ООС была постоянной в рабочем диапазоне частот, т.е. чтобы первый полюс АЧХ системы с разомкнутыми обратными связями находился на частоте f>20...30 кГц, и частота среза в петле ПОС была также не меньше.

Между тем выполнить последние требования и одновременно обеспечить надежный запас устойчивости вовсе не просто, а отступление от них значительно снижает эффективность метода. Видимо, поэтому автору неизвестны примеры использования описанного принципа подавления искажений для целей высококачественного звуковоспроизведения.

Принципиальным недостатком устройства, показанного на рис.1, является, как показывает анализ, то, что петля МПОС включена последовательно в цепь ООС. Значительно улучшить работу устройства можно путем параллельного подключения петли МПОС к петле ООС, т.е. подключив вход второго каскада не к выходу первого каскада (точка 2 рис.1), а к его входу (точка 1).

Блок-схема устройства, предложенного в , показана на рис.2. Важнейшим преимуществом такого устройства является меньший фазовый сдвиг, вносимый в петлю ООС элементами схемы МПОС (от входа устройства до входа второго каскада).

Это понятно из сравнения рис.2 с рис.1, так как очевидно, что фаза сигнала в точке 2 отстает от фазы в точке 1 (рис.1) на фазовый сдвиг, вносимый первым каскадом (и этот сдвиг может быть весьма существенным на частотах 0,2... 1 МГц и выше, в области которых должно обеспечиваться устойчивость устройства).

Данное преимущество является решающим для применения этого метода компенсации искажений в высококачественных УМЗЧ, так как вносимые при его использовании минимальные фазовые сдвиги позволяют получить достаточный запас устойчивости и тем самым обеспечить надежную работу усилителя с МПОС.

Достоинством устройства, показанного на рис.2, является также возможность более независимого (хотя независимость эта относительная, поскольку петли по-прежнему взаимодействуют между собой) и оптимального выбора параметров петель МПОС и ООС в соответствии с их функциональным назначением, которое существенно различно.

Эта большая независимость видна из выражения для передаточной функции усовершенствованной системы К = К2/(1 -7KI +|ЗК2), (2) которое, в отличие от (1), не содержит смешанных произведений передаточных функций элементов, относящихся к различным петлям.

Такое разделение невозможно в устройстве, показанном на рис.1, где первый каскад является общей частью петель МПОС и ООС, вследствие чего его параметры определяют одновременно и свойства ООС, и свойства ПОС. Требования к этим параметрам во многом противоречивы, что также затрудняет решение задачи максимального подавления искажений.

Преимущества параллельного подключения петли МПОС к петле ООС позволяют практически реализовать устройство даже не с одной, а с двумя МПОС, взаимно усиливающими действие друг друга и тем самым улучшающими компенсацию искажений. Блок-схема такого устройства показан на рис.3, где К1, К2, КЗ - передаточные функции трех каскадов основного канала усилителя; в -передаточная функция цепи ООС; а1у1 и а2у2 -передаточные функции первой и второй петли МПОС соответственно, причем равенства а1у1=1 и а2у2=1 устанавливаются с возможно большей точностью. Из его передаточной функции К = К1К2К3/[(1- а1у1)(1-а2у2)+рК1К2К3] (3) следует, что поскольку 1- а1у1<<1, то степень подавления искажений, зависящая от выражения (1-а1у1)(1-а2у2), значительно больше, чем в устройстве с одной петлей МПОС, в котором эта степень определяется одним членом 1 -а1у1<<(1-а1у1)(1-а2у2).

Однако самым замечательным является то, что при одной МПОС минимально достижимый уровень НИ нельзя сделать меньше искажений, вносимых элементами самой петли МПОС, а в устройстве с двумя (или более) петлями МПОС, как показывает расчет, собственные НИ каждой петли МПОС подавляются действием другой, т.е. возможно снизить НИ ниже уровня, определяемого самым линейным блоком устройства, каким должен быть контур МПОС.

Это является существенным преимуществом данного метода компенсации искажений перед другими, позволяющими снижать искажения лишь до предела, определяемого собственной нелинейностью схемы компенсации.

Заметим, что все сказанное выше полностью относится к тем искажениям, которые обусловлены непостоянством передаточных функций (кроме нелинейных, например, амплитудно-частотных). Такие искажения компенсируются в любых частях устройства, кроме цепи ООС b.

Можно показать, что эти искажения компенсируются, если они возникают в частях устройства, находящихся между петлей МПОС и выходом устройства, включая и сам выход, а возникающие между входом устройства и петлей МПОС не компенсируются. Поэтому уровень шума устройства, показанного на рис.3, определяется в основном шумовыми свойствами входного каскада.

Характеристики усилителя мощности

  • Номинальное входное напряжение 0,3 В;
  • Номинальная выходная мощность на нагрузке 8 Ом (4 Ом) - 40 (80) Вт;
  • Частотный диапазон при завалах на краях не более 0,5 дБ - 15-100000 Гц;
  • Входное сопротивление - 50 кОм;
  • Выходное сопротивление - 0 Ом;
  • (с контурами МПОС) Коэффициент интермодуляционных искажений, не более 0,005 %;
  • Уровень шума(взвешенный) -105 дБ (с контурами МПОС).

Принципиальная схема УМЗЧ

Принципиальная схема УМЗЧ, соответствующая рис.3, изображена на рис.4. Для получения как можно более низкого уровня НИ основной канал усилителя (без МПОС) задуман как достаточно линейный УМЗН.

Рис. 4. Принципиальная схема транзисторного усилителя мощности НЧ на 80Ватт Hi-End класса.

Для этого все каскады усилителя выполнены двухтактными на комплементарных парах транзисторов, что позволило сделать оба плеча симметричными относительно общего провода и получить более линейную амплитудную характеристику.

Все транзисторы работают в режиме А, за исключением выходного каскада с плавающим смещением на входе (супер-А), которое задается схемой на элементах VT15-VT18, R38-R41, VD15, VD16. Это обеспечивает не выключающийся режим работы оконечных транзисторов при их малом токе покоя.

Входной каскад выполнен по каскадной схеме (VT1, VT3, VT2, VT4). Режим роботы его транзисторов выбран так, что они не входят в режим отсечки или ограничения тока при действии на входе сигналов с амплитудой, в несколько раз превышающей номинальное входное напряжение даже при отключенной ООС.

Этим он выгодно отличается от традиционного дифференциального каскада. Цепочка R19, R18, С7 с частотой среза 90 кГц ограничивает усиление самых высокочастотных составляющих импульсных сигналов, предотвращая перегрузку и последующих каскадов усилителя.

Благодаря этим мерам, а также высокому быстродействию за счет отказа от применения в каскадах транзисторов с общим эмиттером и коррекции по опережению (конденсаторы С5, С6), динамические искажения в усилителе отсутствуют, что особенно важно для устойчивой роботы системы с ПОС.

Напряжение ООС с выхода усилителя подается в точку соединения резисторов R11 и R12, которые вместе с R10 и R13 определяют рабочий ток VT1 и VT2. Одновременно R10 и R13 в составе делителей R14/R10C3 и R15/R13C4 задают передаточную функцию цепи ООС.

Постоянная составляющая выходного напряжения поступает на эмиттеры входных транзисторов через R10R11 и R12R13, а не только через R14 и R15, поэтому глубина ООС по постоянному напряжению намного больше, чем по переменному, и осуществляется жесткая стабилизация постоянной составляющей напряжения на выходе УМЗЧ.

Использование электролитических конденсаторов С3, С4 не приводит, как следует из измерений, к существенному увеличению искажений, так как они поляризованы постоянным напряжением около 4 В (переменная составляющая намного меньше), так что режим их работы практически линеен.

Второй каскад на транзисторах VT5-VT8, включенных по схеме ОК-ОБ, является буферным между двумя контурами МПОС. Диоды VD3-VD6 задают напряжение смещения на базах эмиттерных повторителей VT9, VT10, а диоды VD7, VD8 защищают от слишком сильного его увеличения при неисправностях в усилителе или перегорании одного из предохранителей.

Усилитель напряжения (VT11, VT13 VT12, VT14) также выполнен по каскодной схеме. Напряжение питания первых каскадов около 21 В и задается стабилизатором (VT23, VT24, VD17, VD18). Выходные транзисторы работают с малым током покоя, поэтому термостабилизация их не требуется.

Элементы частотной коррекции R19R18C7, R27C10, R22C8, R23C9 формируют АЧХ усилителя, обеспечивая его устойчивость при действии OOC. Одновременно R19 и R27 служат нагрузкой входного и буферного каскадов соответственно, а также нагрузкой петель МПОС, определяя их коэффициент усиления.

В контурах МПОС использованы полевые транзисторы для минимизации собственных искажений контуров. Каждый контур МПОС -усилительный каскад с коэффициентом передачи около единицы, изменять который можно подстроечными резисторами R58 и R67.

Непосредственным соединением выхода каскада с его входом осуществляется 100%-ная ПОС. Цепочки R57C15 и R66C16 корректируют АЧХ каскадов, улучшая точность компенсации на частотах звукового диапазона. Контуры МПОС подключают к основному каналу в узловых точках А, В и к общему проводу.

Рабочие точки транзисторов первых каскадов и контуров МПОС жестко стабилизированы высокоомными резисторами в их эмиттерных (истоковых) цепях. Этим достигается постоянство характеристик каскадов, подключенных к точкам А и В.

Кроме того, транзисторы VT3VT4 и VT27VT28, VT7VT8 и VT31VT32 - динамическая нагрузка друг для друга, а эмиттерные повторители VT5VT6, VT9VT10 и полевые транзисторы VT25VT26 и VT29VT30 обладают высоким входным сопротивлением, поэтому сопротивление нагрузки для петель МПОС определяется резисторами R19, R27 (на звуковых частотах).

Благодаря этому удалось добиться высокой стабильности усиления в петлях МПОС, которое не зависит от температуры и не изменяется с течением времени.

Налаживание усилителя

Затем подстроечными резисторами R7, R20 и R31 установить нулевое напряжение на выходе усилителя и в узловых точках А и В соответственно. Проверить суммарное падение напряжения на парах диодов VD3VD4, VD5VD6, VD11VD12, VD13VD14, которое должно быть около 2 В. После этого проверить ток покоя выходных транзисторов

VT21, VT22, который должен быть в пределах 20...30 мА. Величину его нужно установить подбором резисторов R38, R39, при которых искажения типа "ступенька" отсутствуют.

К выходу усилителя подключают эквивалент нагрузки сопротивлением 4.8 Ом и проверяют работу схемы плавающего смещения оконечной ступени.

Для этого подключают осциллограф к базам VT19 и VT20 и на вход усилителя подают синусоидальный сигнал с частотой 100 Гц. Осциллограмма должна иметь вид пульсирующего напряжения (типа "выпрямленной" синусоиды) с амплитудой около 5 В при номинальном выходном напряжении и сопротивлении нагрузки 4 Ом. При увеличении сопротивления нагрузки или уменьшении входного сигнала эта амплитуда должна уменьшаться.

Проверяют прохождение через усилитель прямоугольных импульсов. Выбросы на осциллограммах выходного напряжения должны отсутствовать, в противном случае увеличивают емкость конденсаторов С5 и С6. На этом настройку основного канала можно считать законченной.

Отметим, что уже базовый усилитель (без контуров МПОС) обладает следующими достаточно высокими характеристиками (смотри начало статьи).

Настраивают контуры МПОС, подключив их к схеме и установив движки R58, R67 в положение максимального сопротивления, т.е. минимального петлевого усиления контуров МПОС.

Напряжение между стоком и истоком полевых транзисторов должно быть не более 10 В (максимально допустимое для транзистора КП103), но и не слишком малым, в противном случае добиваются нужного значения подбором резисторов R51, R52, R60, R61. Желательно, чтобы комплементарные транзисторы были подобраны в пары с близкими значениями начального тока стока и напряжения отсечки.

Вход усилителя закорачивают, к выходу подключают акустическую систему (АС) или измерительный прибор, а сигнал от источника (генератора сигналов или источника музыкальной программы, богатой низко- и высокочастотными составляющими) с высокоомным выходом подают в узловую точку В, имитируя сигнал искажений.

Общий провод источника соединяют с общим проводом усилителя. Регулировкой R58 добиваются максимального ослабления сигнала на выходе усилителя. Подбором R57C15 улучшают подавление высокочастотных составляющих спектра сигнала.

Настроив первый контур МПОС, отключают его от точки А, а источник- имитатор искажений - от точки В. Выход имитатора подключают параллельно резистору R35 и настраивают второй контур МПОС аналогично первому. После этого вновь подключают первый контур МПОС и наблюдают дополнительное подавление сигнала.

На завершающем этапе проводят прямую проверку подавления НИ в усилителе. Достаточно измерить лишь коэффициент интермодуляционных искажений ОИ, так как при достаточно малых его значениях коэффициент гармонических искажений заведомо приемлем.

В соответствии с методикой на вход усилителя подают два синусоидальных сигнала с частотой 25-30 кГц и разностью частот 1 кГц при одинаковой амплитуде, не превышающей половины номинальной, и оценивают уровень звука, воспроизводимого АС.

При отключенных контурах МПОС можно расслышать очень тихий звук (соответствующий 0И=0,005%), который при их подключении полностью исчезает.

Для наглядной демонстрации подавления НИ можно временно увеличить нелинейность базового усилителя путем подключения цепочки из последовательно соединенных диода в проводящем направлении (например, Д9) и резистора сопротивлением 47 кОм параллельно резистору R9.

При этом ОИ базового усилителя возрастает примерно до 0,5%, комбинационная частота становится отчетливо различимой, и можно более уверенно судить о ее подавлении при подключении контуров МПОС.

Из таких измерений следует, что каждый из контуров МПОС подавляет искажения не менее чем на 30 дБ, а оба они вместе - почти на 60 дБ, так что НИ всего усилителя измерить обычными методами невозможно из-за их крайне малой величины, а можно только оценить с учетом ОИ базового усилителя, уменьшенного на три порядка, что дает фантастическую величину 0И=0,00001%)!

Следует отметить еще одну положительную сторону применения МПОС в усилителе. Так как при прекращении действия общей ООС коэффициент усиления из-за действия ПОС стремится возрастать, то при задержках сигнала в цепи ООС контуры МПОС становятся фактически форсирующими корректирующими устройствами, которые ускоряют процессы в системе и уменьшают фазовый сдвиг между входным и выходным сигналами . Благодаря этому улучшается качество переходного процесса, что также способствует уменьшению искажений.

Субъективное впечатление от работы данного усилителя трудно передать словами, нужно слышать чистоту и прозрачность его звучания. В этом отношении он не только не уступает ламповым усилителям, но и заметно превосходит их, не внося в звуковую картину практически ничего "от себя".

Опыт его эксплуатации в течение 5 лет показал надежность конструкции, а периодические проверки - хорошую стабильность настройки и сохранение точности компенсации искажений в заданных пределах без дополнительных регулировок.

Детали и печатная плата

Печатная плата разработана с учетом обычных требований. Блоки МПОС на транзисторах VT25-VT32 выполнены на двух отдельных небольших платах и в виде модулей и закреплены перпендикулярно плате основного усилителя вблизи узловых точек А и В.

Рис. 5-6. Печатные платы для схемы высококачественного усилителя мощности НЧ.

В усилителе использованы резисторы типа МЛТ, подстроечные резисторы типа СПЗ-29М, конденсаторы К50-16 (СЗ, С4, С11-С14), K73-I7 (C1, C2), КД1, KT1 -остальные. Теплоотводы транзисторов VT21, VT22 расположены вблизи элементов схемы плавающего смещения оконечного каскада для компенсации температурной нестабильности тока покоя выходных транзисторов.

Печатные платы выполнены из фольгированного текстолита. Размер платы основного канала (рис.5) 150 х 105 мм, модулей МПОС (рис.6) 105 х 30 мм.

После распайки всех деталей модули МПОС устанавливают на основную плату вдоль направлений, указанных стрелками на рис.1. Соответствующие печатные проводники плат соединяются согласно принципиальной схемы с помощью проволочных перемычек. Шины общего провода можно соединить с помощью проволочных растяжек, удерживающих платы во взаимно перпендикулярном положении.

Отключение и подключение контуров МПОС при настройке производится перемычками между узловыми точками А, Б и соответствующими точками модулей МПОС.

Для стерео усилителя платы основного канала и модулей МПОС имеют вдвое большую ширину - не 105, а 210 мм, и на них нанесены по два одинаковых рисунка.

Компоновке усилителя следует уделить особое внимание. Провода, соединяющие усилитель с блоком питания, должны быть максимально короткими и большого сечения.

Особенно это касается провода, соединяющего шину общего провода печатной платы с «нулем» блока питания - точкой соединения конденсаторов фильтра.

Если по каким-то причинам последнее требование невыполнимо, то «земляные» выводы конденсаторов С13, С14 лучше не соединять с общим проводом на плате, а, закоротив между собой, соединить с «нулем» блока питания отдельным проводом. К этому же месту подключаются и провода от акустических систем, как показано на рис.7.

Рис. 7. Разводка нуля и подключение АС в усилителе.

Качество компоновки стереоусилителя легко проверить, нагружая один его канал 4-омным эквивалентом нагрузки и подавая на вход этого канала меандр с частотой 2000 Гц, а контроль проводить по АС второго канала, вход которого закорочен. При правильной компоновке сигнала с частотой меандра в АС не должно быть.

Литература:

  1. Матюшкин В.П. - Линейный усилитель.
  2. Проектирование транзисторных усилителей звуковых частот - Н.Л. Безладнов, Б.Я.Герценштейн, В.И. Кожанов и др. -М.: Связь, 1976.
  3. Костин В. - Психоакустические критерии качества звучания и выбор параметров УМЗЧ. Радио-1987-12.
  4. Хлыпало Е.И. - Расчет и проектирование нелинейных корректирующих устройств в автоматических системах, 1982.

Ответы Матюшкина В.П. на вопросы тех, кто хочет повторить конструкцию усилителя

- Какова скорость нарастания выходного напряжения? Ответ: Скорость нарастания выходного напряжения не менее 20 В/мкс при включенной ООС.

Какова величина коэффициента усиления? Ответ: Величина Ку определяется величиной коэффициента передачи цепи ООС (обратна ей) и на звуковых частотах - главным образом отношением R14/R10 (R15/R13). Измеренная его величина около 86.

- Какое максимальное напряжение допустимо на входе усилителя без ухудшения его характеристик?

Ответ: При ограничении пиков сигнала в выходном каскаде искажения не компенсируются, поскольку «исправляющее» напряжение звеньев МПОС уже не может изменить ивых. В такие моменты параметры усилителя соответствуют усилителю без МПОС в режиме ограничения, и искажения значительны. Следовательно, ивх не должно быть больше номинального.

- Можно ли избежать использования эмиттерных повторителей, т.е. сократить путь прохождения сигнала?

Ответ: Без эмиттерных повторителей обойтись нельзя. Они необходимы для согласования высокого Rвых буферного каскада и звена МПОС со сравнительно низким Rвх усилителя напряжения. Кроме того, ЭП нужны для усиления сигнала по току, т.к. только они вместе с VT11, VT12 определяют ток раскачки оконечного каскада (VT13, VT14 по току не усиливают, т.к. включены по схеме с ОБ).

- Можно ли понизить отношение сигнал/шум за счет применения в УМЗЧ полевых транзисторов. Если да, то каких и в каких каскадах?

Ответ: В первых каскадах канала усиления необходимо применять комплементарные пары полевых транзисторов с граничной частотой усиления не менее 200 МГц. В звеньях МПОС вполне возможно применение низкочастотных транзисторов, однако для основного канала они не подходят.

В принципе весь УМЗЧ можно выполнить на полевых транзисторах, но это будет уже другая конструкция.

- Можно ли увеличить выходную мощность УМЗЧ, т.е. количество выходных транзисторов?

Наиболее простой вариант - использование вместо VT21, VT22 более современных и мощных КТ8101, КТ8102 и увеличение напряжения питания до ±46 В. Тогда в качестве VT13, VT14 нужно использовать КТ502Е, КТ503Е. Сопротивление резисторов R46, R47 нужно увеличить до 1,5 кОм, а R36, R37 - до 5,1 кОм.

Желательно увеличить емкость конденсаторов в блоке питания. Возможно также понадобится изменить номиналы корректирующих элементов C5, C6, C8, C9, R18 для обеспечения устойчивости. В результате номинальная мощность возрастает по крайней мере до 150 Вт на нагрузке 4 Ом при номинальном входном напряжении ~ 0,4 В.

- Каким должен быть блок питания УМЗЧ: стабилизированным или нет?

Ответ: Блок питания - нестабилизированный двухполярный выпрямитель с емкостями конденсаторов фильтра 10000 мкФ. Применение импульсных источников питания нежелательно, поскольку они создают значительные ВЧ наводки на цепи УМЗЧ.

- Какова должна быть площадь теплоотводов транзисторов VT19-VT22?

Ответ: Площадь поверхности радиаторов выходных транзисторов должна быть не менее 400 см2. В более мощном варианте УМЗЧ (см. выше) она должна быть увеличена до 600 см2. В этом случае следует снабдить небольшими теплоотводами из листового алюминия толщиной 1,5 мм размером 2х3 см2 и транзисторы VT19, VT20.

- Какими диодами можно заменить КД520А?

Ответ: Они могут быть заменены другими кремниевыми диодами, например,серий КД503, Д219, Д220. Поскольку они определяют рабочие точки соответствующих транзисторов, нужно проверить коллекторный ток VT11, VT12, VT13, VT14 в режиме молчания, величина которого должна быть около 5 мА и не более.

Если он значительно меньше, можно увеличить количество последовательно соединенных диодов по сравнению со схемой, если ток больше -уменьшить сопротивление резисторов R28, R29 (для уменьшения 1к VT11, VT12) и увеличить сопротивление резисторов R32, R35 (для уменьшения 1к VT13, VT14).

- Возможна ли замена подстроечных резисторов R7, R20, R31, R53, R67 проволочными типа СП- 5?

- Какое должно быть сопротивление источника сигналов для настройки усилителя?

Ответ: Выходное сопротивление источника сигналов, подключаемого к узловой точке, должно быть не менее десятков килоом, но при слишком большом Rвых уменьшается регистрируемый сигнал. Я настраивал усилитель, подключая источник сигнала через резистор сопротивлением 16- 20 кОм.

При настройке второго контура Rвых нужно уменьшить до ~2 кОм, а выходное напряжение источника увеличить до нескольких вольт, поскольку при этом регистрируемый сигнал существенно меньше, чем при настройке первого контура.

- Какой допустимый уровень постоянной составляющей на выходе усилителя в точках А и В?

Ответ: На выходе УМЗЧ уровень постоянной составляющей должен быть возможно ближе к нулю. Допустимым можно считать 20- 50 мВ. В точках А и В уровень постоянной составляющей может быть нулевым только при идеальной комплементарности пар транзисторов VT5, VT6 и VT9, VT10.

Поскольку на самом деле разброс входных характеристик достигает десятых долей вольта, то и упомянутый уровень должен отличаться от нуля на величину этого разброса, если более приоритетным (как в данном случае) является поддержание одинаковых токов коллекторов в каждой из пар транзисторов. Наличие постоянной составляющей в этих точках не имет принципиального значения.

- Возможна ли подстройка токов коллекторов транзисторов VT11, VT12 резисторами R33, R34 (подстройка резисторами R28, R29 невозможна)?

Ответ: Возможна, но не желательна, так как коэффициент передачи канала усиления сильно зависит от сопротивлений резисторов R33, R34, и изменение их может привести к самовозбуждению, для устранения которого потребуется изменить номиналы других элементов коррекции.

Следует действовать, как указано в РА2/99 (с. 12). Замечу, что при R28=R29=0 1к транзисторов VT11, VT12 тоже будет равен нулю, поэтому уменьшить ток коллекторов уменьшением сопротивлений резисторов R28 и R29 всегда можно. Важно изменять сопротивления одинаково и одновременно. Если это не удается, то либо неисправны транзисторы, либо потенциал в точке В слишком велик, и его нужно отрегулировать с помощью R31.

- Какова причина того, что второй контур МПОС (VT29- VT32) не удается настроить? Испытания проводились в обоих каналах усилителя, все элементы МПОС исправны, напряжения на транзисторах соответствуют рекомендованным в статье.

Ответ: В-контур МПОС настроить сложнее, хотя принцип настройки одинаков. Во-первых, трудно получить значительный уровень сигнала на выходе усилителя. Во- вторых, при подключении имитатора к усилителю напряжения и оконечному каскаду легко наступает самовозбуждение, а даже при незначительном возбуждении R67 уже практически не действует. Поэтому при настройке нужно контролировать отсутствие генераций.

В- контур можно настроить по минимуму нелинейных искажений при проведении эксперимента, описанного в конце статьи. Номиналы элементов схемы выбраны так, что даже без настройки точность установки а1, у1 порядка 10%, и задача сводится к достижению максимально возможного эффекта.

- Требуется ли подбирать транзисторы по коэффициенту усиления?

Ответ: Биполярные транзисторы (в основном канале усиления) подбирать не нужно. Полевые транзисторы (в контурах МПОС) желательно подобрать по значениям начального тока стока и напряжения отсечки.

Ответ: Вначале был собран один УМЗЧ. После доводки схемы она была повторена как второй канал стереоусилителя. Он был работоспособен и имел близкие к первому характеристики без подбора элементов (не считая полевых транзисторов). Это свидетельствует о хорошей повторяемости конструкции.

Радиолюбитель из г. Житомира Дубченко Р. собрал усилитель, слушает его с акустикой S- 90 и доволен звучанием. Сообщил, что у него получились практически все эксперименты с контурами МПОС (настройка и подавление искажений), описанные в статье.

Ответ: Судя по симптомам, проблемы не в самом усилителе, а от неправильной стыковки его с источником сигнала (ИС), блоком питания (БП) и нагрузкой. Входное сопротивление усилителя сравнительно велико, поэтому его вход чувствителен к наводкам.

Ни в коем случае нельзя переносить "земляной" вывод нагрузки к общей шине печатной платы. Коллекторный провод каждого выходного транзистора нужно свить в один жгут с эмиттерным, базовый провод оставить свободным. Если длина проводов больше 10 см, следует укоротить их.

Шум исчезает после подключения первого контура МПОС к точке А. До этого он, действительно, ощутим. Однако пока усилитель не налажен, контуры МПОС подключать не следует. Сначала надо добиться устойчивой работы усилителя на эквивалент нагрузки и только потом подключать АС.

- Какие транзисторы серий КП103 и КП303 можно применять, какой допустимый разброс их параметров и какое номинальное напряжение между стоком и истоком?

Ответ: Можно применять транзисторы КП103Е, Ж, И; КП303А, Б, Ж с разбросом параметров 20-30%. иси.ном ~9 В. Приводим также ответы автора на вопросы по статье В. П. Матюшкина"Физиологическое регулирование тембра" (см. ниже)

- Какую функциональную зависимость должен иметь переменный резистор R15 (рис.4,а)?

Ответ: Лучше использовать переменные резисторы R14, R15 с линейной характеристикой регулирования.

- Какие схемы предварительного усилителя, регуляторов громкости и стереобаланса применил автор?

Ответ: Можно использовать любые схемы этих устройств.

- Являются ли кривые на графике рис.4,б в высокочастотной области продолжением кривых в низкочастотной (кривые 0, 1, 2)?

Ответ: Высокочастотные части АЧХ на рис.4,б показаны при различных положениях движка R15 для иллюстрации их характерной формы. Вид их при f>>1 кГц практически не зависит от положения переключателя SA1. Другими словами, регулировки тембра НЧ и ВЧ не зависят друг от друга, как в обычных регуляторах тембра.

Усилитель мощности Ланзар имеет две базовых схемы - первая полностью на биполярных транранзисторах (рис.1), вторая с использованием полевых в предпоследнем каскаде (рис. 2). На рисунке 3 приведена схема этого же усилителя, но выполненная в симмуляторе МС-8. Позиционные номера элементов практически совпадают, поэтому можно смотреть любую из схем.

Рисунок 1 Схема усилителя мощности ЛАНЗАР полностью на биполярных транзисторах.
УВЕЛИЧИТЬ


Рисунок 2 Схема усилителя мощности ЛАНЗАР с использованием полевых транзисторов в предпоследнем каскаде.
УВЕЛИЧИТЬ


Рисунок 3 Схема усилителя мощности ЛАНЗАР из симмулятора МС-8. УВЕЛИЧИТЬ

ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ УСТАНОВЛЕННЫХ В УСИЛИТЕЛЕ ЛАНЗАР

ДЛЯ БИПОЛЯРНОГО ВАРИАНТА

ДЛЯ ВАРИАНТА С ПОЛЕВИКАМИ

C3,C2 = 2 x 22µ0
C4 = 1 x 470p
C6,C7 = 2 x 470µ0 x 25V
C5,C8 = 2 x 0µ33
C11,C9 = 2 x 47µ0
C12,C13,C18 = 3 x 47p
C15,C17,C1,C10 = 4 x 1µ0
C21 = 1 x 0µ15
C19,C20 = 2 x 470µ0 x 100V
C14,C16 = 2 x 220µ0 x 100V

R1 = 1 x 27k
R2,R16 = 2 x 100
R8,R11,R9,R12 = 4 x 33
R7,R10 = 2 x 820
R5,R6 = 2 x 6k8
R3,R4 = 2 x 2k2
R14,R17 = 2 x 10
R15 = 1 x 3k3
R26,R23 = 2 x 0R33
R25 = 1 x 10k
R28,R29 = 2 x 3R9
R27,R24 = 2 x 0.33
R18 = 1 x 47
R19,R20,R22
R21 = 4 x 2R2
R13 = 1 x 470

VD1,VD2 = 2 x 15V
VD3,VD4 = 2 x 1N4007

VT2,VT4 = 2 x 2N5401
VT3,VT1 = 2 x 2N5551
VT5 = 1 x KSE350
VT6 = 1 x KSE340
VT7 = 1 x BD135
VT8 = 1 x 2SC5171
VT9 = 1 x 2SA1930

VT10,VT12 = 2 x 2SC5200
VT11,VT13 = 2 x 2SA1943

C3,C2 = 2 x 22µ0
C4 = 1 x 470p
C6,C7 = 2 x 470µ0 x 25V
C5,C8 = 2 x 0µ33
C11,C10 = 2 x 47µ0
C12,C13,C18 = 3 x 47p
C15,C17,C1,C9 = 4 x 1µ0
C21 = 1 x 0µ15
C19,C20 = 2 x 470µ0 x 100V
C14,C16 = 2 x 220µ0 x 100V

R1 = 1 x 27k
R2,R16 = 2 x 100
R8,R11,R9,R12 = 4 x 33
R7,R10 = 2 x 820
R5,R6 = 2 x 6k8
R4,R3 = 2 x 2k2
R14,R17 = 2 x 10
R15 = 1 x 3k3
R26,R23 = 2 x 0R33
R25 = 1 x 10k
R29,R28 = 2 x 3R9
R27,R24 = 2 x 0.33
R18 = 1 x 47
R19,R20,R22
R21 = 4 x 2R2
R13 = 1 x 470

VD1,VD2 = 2 x 15V
VD3,VD4 = 2 x 1N4007

VT8 = 1 x IRF640
VT9 = 1 x IRF9640
VT2,VT3 = 2 x 2N5401
VT4,VT1 = 2 x 2N5551
VT5 = 1 x KSE350
VT6 = 1 x KSE340
VT7 = 1 x BD135
VT10,VT12 = 2 x 2SC5200
VT11,VT13 = 2 x 2SA1943

Для примера возьмем напряжение питания равным ±60 В. Если монтаж выполнен правильно и нет не исправных деталей то получим карту напряжений, показанную на рисунке 7. Токи, протекающие через элементы усилителя мощности показаны на рисунке 8. Рассеиваемая мощность каждого элемента показана на рисунке 9 (на транзисторах VT5, VT6 рассеивается порядка 990 мВт, следовательно корпусу TO-126 требуется теплоотвод ).


Рисунок 7. Карта напряжений усилителя мощности ЛАНЗАР УВЕЛИЧИТЬ


Рисунок 8. Карта токов усилителя мощности УВЕЛИЧИТЬ


Рисунок 9. Карта рассеиваемых мощностей усилителя УВЕЛИЧИТЬ

Несколько слов о о деталях и монтаже:
Прежде всего следут обратить на правильность монтажа деталей, поскольку схема симметричная, то бывают довольно частыми ошибки. На рисунке 10 показано распложение деталей. Регулировка тока покоя (тока, протекающего через оконечные транзисторы при замкнутом на общий провод входе и компенсирующего вольт-амперную характеристику транзисторов) производится резистором Х1. При первом включении движок резистора должен находиться в верхенм по схеме положении, т.е. иметь максимальное сопротивление. Ток покоя должен составлять 30...60 мА. Ставить выше не имеет мысла - ни приборы, ни на слух ощутимых изменений не происходит. Для установки тока покоя производится измерение напряжения на любом из эмиттерных резисторов оконечного каскада и выставляется в соответствии с таблицей:

НАПРЯЖЕНИЕ НА ВЫВОДАХ ЭМИТТЕРНОГО РЕЗИСТОРА, В

СЛИШКОМ МАЛЕНЬКИЙ ТОК ПОКОЯ, ВОЗМОЖНЫ ИСКАЖЕНИЯ "СТУПЕНЬКА", НОРМАЛЬНЫЙ ТОК ПОКОЯ, ВЕЛИКОВАТ ТОК ПОКОЯ - ЛИШНИЙ НАГРЕВ, ЕСЛИ ЭТО НЕ ПОПЫТКА СОЗДАТЬ КЛАСС "А", ТО ЭТО АВАРИЙНЫЙ ТОК .

ТОК ПОКОЯ ОДНОЙ ПАРЫ ОКОНЕЧНЫХ ТРАНЗИСТОРОВ, мА


Рисунок 10 Расположение деталей на плате усилителя мощности. Показаны места, где возникают наиболее часто ошибки монтажа.

Поднимался вопрос о целесообразности использования в эмиттерных цепях оконечных транзисторов керамических резисторов. Можно использовать и МЛТ-2, по два штуки, включенных параллельно с номиналом 0,47...0,68 Ома. Однако вносимые керамическими резисторами искажения слишком малы, а вот тот факт, что они обрывные - при перегрузке они обрываются, т.е. их сопротивление становиться бесконечным, что довольно часто приводит к спасению оконечных транзисторов в критических ситуациях.
Площадь радиатора зависит от условий охлаждения, на рисунке 11 показан один из вариантов, крепить силовые транзисторы к теплоотводу необходимо через изоляционные прокладки . Лучше использовать слюду, поскольку она обладает довольно маленьким тепловым сопротивлением. Один из вариантов крепления транзисторов пказан нарисунке 12.


Рисунок 11 Один из вариантов радиатора для мощности 300 Вт при условии хорошей вентиляции


Рисунок 12 Один из вариантов крепления транзисторов усилителя мощности к радиатору.
Необходимо использовать изоляционные прокладки.

Перед монтажом силовых транзисторов, а так же в случае подозрений на их пробой, силовые транзисторы проверяются тестером. Предел на тестере устанавливается на проверку диодов (рис 13).


Рисунок 13 Проверка оконечных транзисторов усилителя перед монтажом и в случае подозрений на пробой транзисторов после критических ситуаций.

Стоит ли подбирать транзисторы по коф. усиления? Споров на эту тему довольно много и идея подбора элементов тянеться еще с глубоких семидесятых годов, когда качество элементной базы оставляло желать лучшего. На сегодня завод изготовитель гарантирует разброс параметров между транзисторами одной партии не более 2%, что уже само по себе говорит о хорошем качестве элементов. Кроме этого, учитывая то, что оконечные транзисторы 2SA1943 - 2SC5200 прочно обосновались в звукотехнике завод изготовитель начал выпус парных транзисторов, т.е. транзисторы и прямой, и обратной проводимости уже имеют одинаковые параметры, т.е. разницу не боле 2% (рис 14). К сожалению такие пары не всегда встречаютсяв продаже, тем не менее несколько раз нам доводилось покупать "близнецов". Однако даже имея разборос по коф. усиления между транзисторами прямой и обратной проводимости необходимо лишь следить за тем, чтобы транзисторы одной структуры были одной партии, поскольку включены они параллельно и разброс по h21 может вызывать перегрузку одного из транзисторов (у которого этот параметр выше) и как следствие - перегрев и выход из строя. Ну а разброс между транзисторами для положительной и отрицательной полуволн вполне компенсируется отрицательной обратной связью.


Рисунок 14 Транзисторы разной структуры, но одной партии.

Тоже самое относиться и к транзисторам дифкаскада - если они одной партии, т.е. куплены одновременно в одном месте, то шанс на то, что разница в параметрах будет более 5 % ОЧЕНЬ малы. Лично нам больше нравяться транзисторы 2N5551 - 2N5401 фирмы ФАИРЧАЛЬД, однако и ST звучат вполне достойно.
Однако это усилитель собирают и на отечественной элементной базе. Это вполне реально, однако давайте поправку на то, что у купленных КТ817 и найденных на полках у себя в мастерской, купленных еще в 90-х года параметры будут отличаться довольно сильно. Поэтому тут лучше все таки воспользаваться имеющимся почти во всех цифровых тестреах измерителем h21. Правда эта примочка в тестере показываетправду лишь для транзисторов малой мощности. Подбирать при ее помощи транзисторы оконечного каскада будет не совсм правильно, поскольку h21 зависит еще и от протекаемого тока. Именно поэому для отбраковки силовых транзисторов уже делают отдельные проверочные стенды. с регулируемых токо коллектора проверяемого транзистора (рис 15). Градуировка постоянного прибора для отбраковки транзисторов производиться таким образом, чтобы микроамперметр при токе коллектора 1 А отклонялся на половину шкалы, а при токе 2 А - полностью. Собирая усилитель только себе стенд можно и не делать, достаточно двух мультиметров с пределом измерения тока не менее 5 А.
Для произведения отбраковки следует взять любой транзистор из отбраковываемой партии и переменным резистором выставить ток коллектора равным 0,4...0,6 А для транзисторов предпоследнего каскада и 1...1,3 А для транзисторов оконечного каскада. Ну а далее все просто - к клемам подключаются транзисторы и по показаниям амперметра, включенного в коллектор выбираются транзисторы с одинаковыми показаниями, не забывая поглядывать на показания амперметра в базовой цепи - они тоже должны быть похожими. Разброс в 5 % вполне приемлем, для стрелочных индикаторов на шкале можно сделать метки "зеленого коридора" во время градуировки. Следует заметить, что подобные токи вызывают не плохой нагрев кристала транзистора, а учитывая то, что он без теплоотвода длительность замеров не следует растягивать во времени - кнопку SB1 удерживать в нажатом состоянии более чем 1...1,5 сек не следует . Подобная отбраковка прежде всего позвлит отобрать транзисторы с реально похожим коф усиления, а проверка мощных транзисторов цифровым мультиметром есть лишь проверка для успокоения совести - в режиме микротоков у мощных транзисторов коф усиления более 500 и даже небольшой разброс при проверке мультиметром в режимах реальных токов может оказаться огромным. Другими словами - проверяя коф усиления мощного транзистора показанаия мультиметра есть не что иное как абстрактная величина, не имеющая ни чего общего с коф усиления транзистора через переход коллектор-эмиттер протекат хотя бы 0,5 А.


Рисунок 15 Отбраковка мощных транзисторов по коф усиления.

Проходные конденсаторы С1-С3, С9-С11 имеют не совсем типовое включение, по сравнению с заводскими аналогами усилителей. Связанно это с тем, что при таком включении получается не полярный конденсатор довольно большой емкости, а использование плленочного конденсатора на 1 мкФ компенсирует не совсем корректную работу электролитов на высоких частотах. Другими словами эта реализация позволила получить более приятный звук усилителя, по сравнению с одним элетролитом или одним пленочным конденсатором.
В старых версиях Ланзар вместо диодов VD3, VD4 использовались резисторы на 10 Ом. Смена элементной базы позволила немного улучшить работу на пиках сигнала. Для более подробного рассмотрения этого вопроса обратимся к рисунку 3 .
В схеме смоделирован не идеальный источник питания, а более приблежонный к реальному, имеющему свое сопротивление (R30, R31). При воспроизведении синусоидального сигнала напряжение на шинах питания будет иметь вид, показанный на рисунке 16. В данном случае емкость конденсаторов фильтра питания составляет 4700 мкФ, что несколько маловато. Для нормальной работы усилителя емкость конденсаторов питания должна составлять не менее 10000 мкФ на один канал , можно и больше, но существенной разницы уже не заметно. Но вернемся к рисунку 16. Синией линией показано напряжение непосредственно на коллекторах транзисторов оконечного каскада, а красной линией - напряжение питания усилителя напряжения в случае использования резисторов вместо VD3, VD4. Как видно из рисунка напряжение питания оконечного каскада просело с 60 В и распологается между 58,3 В в паузе и 55,7 В на пике синусоидального сигнала. Благодарая тому, что конденсатор С14 не только заражается через развязывающий диод, но и разряжается на пиках сигнала напряжение питания усилителя напряжение приобретает вид красной линии на рисунке 16 и колебается от 56 В до 57,5 В, т.е имеет размах порядка 1,5 В.


Рисунок 16 форма напряжения при использовании развязывающих резисторов.


Рисунок 17 Форма напряжений питания на оконечных транзисторах и усилителе напряжения

Заменив резисторы на диоды VD3 и VD4 мы получаем напряжения, представленные на рисунке 17. Как видно из рисунка амплитуда пульсаций на коллекторах оконечных транзисторах почти не изменилась, а вот напряжение питания усилителя напряжения приобрело совсем другой вид. Прежде всего амплитуда уменьшилась с 1,5 В до 1 В, а так же в тот момент когда проходит пик сигнала напряжение питания УН проседает лишь до половины амплитуды, т.е. примерно на 0,5 В, в то время как при использовании резистора напряжение на пике сигнала проседает 1,2 В. Другими словами - простой заменой резисторов на диоды удалось уменьшить пульсации питания в усилителе напряжения в 2 с лишним раза.
Однако это теоритические выкладки. На практике эта замена позволяет получить "халявных" 4-5 Ватт, поскольку усилителя наступает при более высоком выходном напряжении и уменьшает искажения на пиках сигнала.
После сборки усилителя и регулировки тока покоя следует убедиться в отсутствии постоянного напряжения на выходе усилителя мощности. Если оно выше 0,1 В, то это уже однозначно требует корректировки режимов работы усилителя. В данном случае наиболее простым способом является подбор "подпирающего" резистора R1. Для наглядности приведем несколько вариантов этого номинала и покажем иземения постоянного напряжения на выходе усилителя на рисунке 18.


Рисунок 18 Изменение постоянного напряжения на выходе усилителя в зависимости от номана R1

Не смотря на то, что на симмуляторе оптимальное постоянное напряжение получилось лишь при R1 равным 8,2 кОм в реальных усилителях этот номинал составляет 15 кОм...27 кОм, в зависимости какого производителя используются транзисторы дифкаскада VT1-VT4.
Пожалуй стоит сказать несколько слов об отличиях усилителей мощности полгостью на биполярных транзисторах и с использованием полевиков в предпоследенм каскаде. Прежде всего при использовании полевых транзисторов ОЧЕНЬ сильно разгружается выходной каскад усилителя напряжения, поскольку затворы полевых транзисторов практически не имеют активного сопротивления - только емкость затвора является нагрузкой. В этом варианте схемотехника усилителя начинает наступать на пятки усилителям класса А, поскольку во всем диапазоне выходных мощностей ток протекающий через выходной каскад усилителя напряжения почти не изменятеся. Увеличение тока покоя предпоследнего каскада, работающего на плавающую нагрузку R18 и базы эмиттерных повторителей мощных транзисторов тоже меняется в небольших пределах, что в итоге привело к довольно заметному снижению THD. Однако в этой бочке меда есть и ложка дегтя - снизился КПД усилителя и уменьшилась выходная мощность усилителя, за счет необходимости подавать на затворы полевиков напряжение более 4 В для их открытия (для биполярного транзистора этот параметр составляет 0,6...0,7 В). На рисунке 19 показан пик синусоидального сигнала усилителя, выполненого на биполярных транзистора (синяя линия) и полевиках (красная линия) при максимальной амплитуде выходного сиганала.


Рисунок 19 Изменение амплитуды выходного сигнала при использовании разной элементной базы в усилителе.

Другими словами снижение THD заменой полевых транзисторов приводит к "недополучению" примерно 30 Вт, а уменьшение уровня THD примерно в 2 раза, так что именно ставить уже решать каждому персонально.
Так же следует помнить, что уровень THD зависит и от собственного коф усиления усилителя. В данном усилителе коф усиления зависит от номиналов резисторов R25 и R13 (при используемых номиналах коф усиления составляет почти 27 дБ). Расчитать коф усиления в дБ можно по формуле Ku =20 lg R25 / (R13 +1) , где R13 и R25 - сопротивление в Омах, 20 - множитель, lg - десятичный логарифм. Если необходимо расчитать коф усиления в разах, то формула приобретает вид Ku = R25 / (R13 + 1) . Этот расчет бывает необходим при изготовлении предварительного усилителя и вычисления амплитуды выходного сигнала в вольтах, чтобы исключить работу усилителя мощности в режиме жесткого клиппинга.
Снижение собственного коф. усиления до 21 дБ (R13 = 910 Ом) приводит к снижению уровня THD примерно в 1,7 раза при той же амплитуде выходного сигнала (увеличена амплитуда входного напряжения).

Ну а теперь несколько слов о самых популярных ошибках при сборке усилителя самостоятельно.
Одной из самых популярных ошибок является монтаж стабилитронов на 15 В не правильной полярностью , т.е. эти элементы работают не в режиме стабилизации напряжения, а как обычные диоды. Как правило такая ошибка вызывает появление на выходе постоянного напряжения, причем полярность может быть как положительной, так и отрицательной (чаще отрицательной). Величина напряжения базируется между 15 и 30 В. При этом ни один элемент не греется. На рисунке 20 показана карта напряжений при не правильном монтаже стабилитронов, которую выдал симмулятор. Ошибочный элементы выделены зеленым цветом.


Рисунок 20 Карта напряжений усилителя мощности с неправильно запаянными стабилитронами.

Следующей популярной ошибкой является монтаж транзисторов "вверх ногами" , т.е. когда путают коллектор и эмиттер местами. В этом случае так же наблюдается постоянное напряжение, отсутствие каких либо признаков жизни. Правда обратное включение транзисторов дифкаскада может привести к выходу их из строя, ну а дальше как повезет. Карта напряжений при "перевернутом" включении показан на рисунке 21.


Рисунок 21 Карта напряжений при "перевернутом" включении транзисторов дифкаскада.

Довольно часто транзисторы 2N5551 и 2N5401 путают местами , причем могут попутать так же и эмиттер с коллектором. На рисунке 22 показана карта напряжений усилителя при "правильном" монтаже попутанных местами транзисторов, а на рисунке 23 - транзисторы не только поменяны местами, но и перевернуты.


Рисунок 22 Транзитсторы дифкаскада попутаны местами.


Рисунок 23 Транзисторы дифкаскада попутаны местами, кроме этого попутаны местами коллектор и эмиттер.

Если попутаны местами транзисторы, а эмиттер-коллектор запаяны правильно, то на выходе усилителя наблюдается небольшое постоянное напряжение, регулируется ток покоя окнечных транзисторов, но звук либо отсутствует полностью, либо на уровне "кажется он играет". Перед монтажом на плату запаянных таким образом тразисторов их следует проверить на работоспособность. Если транзисторы поменяны местами, да еще и поменяны местами эмиттер-коллектор, то тут ситуация уже довольно критическая, поскольку в этом варианте для транзисторов дифкаскада полярность приложенного напряжения является правильной, а вот рабочие режимы нарушены. В этом варианте наблюдается сильный нагрев оконечных транзисторов (протекающий через них ток равен 2-4 А), небольшое постоянное напряжение на выходе и едва слышный звук.
Попутать цоколевку транзисторов последнего каскада усилителя напряжения довольно проблематично, при использовании транзисторов в корпусе ТО-220, а вот транзисторы в корпусе ТО-126 довольно часто впаивают "вверх ногами", меняя местами коллектор и эмиттер . В этом варианте наблюдается сильно искаженный выходной сигнал, плохая регулировка тока покоя, отсутствие нагрева транзисторов последнего каскада усилителя напряжения. Более подробная карта напряжения для этого варианта монтажа усилителя мощности показана на рисунке 24.


Рисунок 24 Транзисторы последнего каскада усилителя напряжения запаяны "вверх ногами".

Иногда путают местами транзисторы последнего каскада усилителя напряжения. В этом случае наблюдается небольшое постоянное напряжение на выходе усилителя, звук если и есть, то очень слабый и с огромными искажениями, ток покоя регулируется только в сторону увеличения. Карта напряжений усилителя с такой ошибкой показана на рисунке 25.


Рисунок 25 Ошибочный монтаж транзисторов последнего каскада усилителя напряжения.

Предпоследний каскад и оконечные транзисторы в усилителе местами путают слишком редко, поэтому этот вариант расматриваться не будет.
Иногда усилитель выходит из строя, самые частые причины для этого перегрев оконечных тразисторов или перегрузка. Недостаточная площадь теплоотвода или плохой тепловой контакт фланцев транзисторов может привести к нагреву кристалла оконечных транзисторов до температуры механического разрушения. Поэтому до полного ввода усилителя мощности в эксплуатацию необходимо убедиться в том, что винты или саморезы, крепящие оконечники к радиатору затануты полностью, изолирующиепрокладки между фланцами транзисторов и теплоотводом имеет хорошую смазку термопастой (рекомендуем старую, добрую КПТ-8), а так же размер прокладок больше размера транзистора минимум на 3 мм с каждой стороны. Если недостаточна площадь теплоотвода, а другого попросту нет, то можно воспользоваться вентиляторами на 12 В, которые используются в компьютерной технике. Если собранный усилитель планируется для работы только на мощностях выше средней (кафе, бары и т.д.) то куллер можно влючить на непрерывную работу, поскольку его все равно не будет слышно. Если же усилитель собран для домашенго использования и будет эксплуатироваться и на малых мощностях, то работу куллера уже будет слышно, а необходимость в охлаждении отпадает - радиатор почти не греется. Для таких режимо работы лучше испозовать управляемык куллеры. Несколько вариантовуправления куллером можно . Предлагаемые варианты управления куллерами основаны на контрле температуры радиатора и вклюячаются лишь по достижении радиатором определенной, регулируемой температуры. Решить проблему выхода из строя окнечных транзисторов можно либо установкой дополнительной защиты от перегрузки, либо аккуратным монтажом проводов идущих на акустическую систему (например использовать для подключения АС к усилителю автомобильных безкислородных проводов, которые кроме уменьшеного активного сопротивления имеют повышенную крепость изоляции, устойчивую к ударам и температуре).
Для примера рассмотрим несколько варианов выхода из строя оконечных транзисторов. На рисунке 26 показана карта напряжений в случае выхода обратных оконечных транзисторов (2SC5200) на обрыв, т.е. переходы отгорели и имеют максимально возможное сопротивление. В этом случае усилитель сохраняет рабочие режимы, на выходе сохраняется напряжение близкое в нулю, но вот качество звука однозначно желает лучше, поскольку воспроизводится только одна полуволна синусоиды - отрицательная (рис 27). Тоже самое будет при обрыве прямых оконечных транзисторов (2SA1943), только воспроизводится будет положительная полуволна.


Рисунок 26 Обратные оконечные транзисторы выгорели до обрыва.


Рисунок 27 Сигнал на выходе усилителя в случае, когда транзисторы 2SC5200 отгорели полностью

На рисунке 27 - карта напряжений в ситуации, когда оконечники вышли из строя и имеют максимально низкое сопротивление, т.е. закорочены. Этот вариант неисправности загоняет усилитель в ОЧЕНЬ жесткие условия и дальнейшие горение усилителя ограничивает только источник питания, поскольку потребляемый в этот момент ток может превысить 40 А. Оставшиеся в живых детали мгновенно набирают температуру, в том плече, где транзисторы еще исправны напряжение немного больше, чем в том, где собственно произошло замыкание на шину питания. Однако именно эта ситуация относиться к наиболее легкой диагностике - достаотчно до включения усилителя проверит мультиметром сопротивление переходов между собой, даже не выпаивая их из усилителя. Предел измерения, установленного на мультиметре - ПРОВЕРКА ДИОДОВ или ЗВУКОВАЯ ПРОЗВОНКА. Как правило выгоревшие транзисторы показывают сопротивление между переходами в диапазоне от 3 до 10 Ом.


Рисунок 27 Карта напряжений усилителя мощности в случае перегорания оконечных транзисторов(2SC5200) на короткое замыкание

Усилитель поведет себя точно так же в случае пробоя предпоследнего каскада - при отгороани выводов будет воспроизводиться только одна полуволна синусоиды, при коротком замыкании переходов - огромное потребление и нагрев.
При перегреве, когда считают, что радиатор на транзисторы последнего каскада усилителя напряжения не нужен (транзисторы VT5, VT6) они могут так же выйти из строя, причем как уйти на обрыв, так и на короткое замыкание. В случае отгорания переходов VT5 и бесконечно большого сопротивления переходов возникает ситуация, когда поддерживать ноль на выходе усилителя не чем, а приоткрытые оконечные транзисторы 2SA1943 потянут напряжение на выходе усилителя к минусу напряжения питания. Если нагрузка подключена, то величина постоянного напряжения будет зависеть от установленного тока покоя - чем он выше, тем будет больше величина отрицательного напряжения на выходе усилителя. Если нагрузка не подключена, то на выходе будет напряжение очень близкое по величине к минусовой шине питания (рис 28).


Рисунок 28 Транзистор усилителя напряжения VT5 "оборвался".

Если же транзистор в последнем каскаде усилителя напряжения VT5 вышел из строя и его переходы замкнулись, то при подключенной нагрузке на выходе будет довольно большое постоянное напряжение и ппротекающий через нагрузку постоянный ток, порядка 2-4 А. Если же нагрузка отключена, то напряжение на выходе усилителя будет почти равно положительной шине питания (рис. 29).


Рисунок 29 Транзистор усилителя напряжения VT5 "замкнулся".

На последок осталось только предложить несколько осцилограмм в наиболее координальных точках усилителя:


Напряжение на базах транзисторов дифкаскада при входном напряжении 2,2 В. Синия линия - базы VT1-VT2, красная линия - базы VT3-VT4. Как видно из рисунка и амплитудат и фаза сигнала практически совпадают.


Напряжение в точке соединения резисторов R8 и R11 (синяя линия) и в точке соединения резисторов R9 и R12 (красная линия). Входное напряжение 2,2 В.


Напряжение на коллекторах VT1 (красная линия), VT2 (зеленая), а так же на верхенм выводе R7 (синяя) и нижнем выводе R10 (сиреневая). ПРовал напряжения вызван рабтой на нагрузку и небольшим уменьшением питающего напряжения.


Напряжение на коллекторах VT5 (синим) и VT6 (красным. Входное напряжение уменьшено до 0,2 В, чтобы было наглядней видно, по по постоянному напряжению имеется разница примерно в 2,5 В

Осталось лишь пояснить на счет блока питания. Прежде всего мощность сетевого трансформатора для усилителя мощности в 300 Вт должна быть не менее 220-250 Вт и этого будет достаточно для воспроизведения даже очень жестких композиций.Более подробно о мощности блока питания усилителей мощности можно . Другими словами, если у вас есть трансформатор от лампового цветного телевизора, то это ИДЕАЛЬНЫЙ ТРАНСФОРМАТОР для одного канала усилителя позволяющего без проблем воспроизводить музыкальные композиции мощностью до 300-320 Вт.
Емкость конденсаторов фильтра блока питания должна быть не менее 10 000 мкФ на плечо, оптимально 15 000 мкФ. При использовании емкостей выше указанного номинала Вы попросту увеличиваете стоимость конструкции без какого либо заметного улучшения качества звука. Не следует забывать, что при использовании таких больших емкостей и напряжении питания выше 50 В на плечо мгновенные токи уже критически огромны, поэтому настоятельно рекомендуется использовать ситемы софт-старта.
Прежде всего настоятельно рекомендутеся перед сборкой какого либо усилителя скачать на ВСЕ полупроводниковые элементы описания заводов производителей (даташиты). Это даст возможность ознакомиться с элементной базой поближе и в случае отсутствия в продаже какого либо элемента найти ему замену. Кроме этого у вас будет под рукой правильная цоколевка транзисторов, что значительно увеличит шансы на правильный монтаж. Особо ленивым предлагается ОЧЕНЬ внимаетльно ознакомиться хотя бы с расположением выводов транзисторов, используемых в усилителе:

.
На последок осталось добавить, что далеко не всем требуется мощность 200-300 Вт, поэтому печатная плата была переработана под одну пару оконечных танзисторов. Данный файл выполнен одним из посетителей форума сайта "ПАЯЛЬНИК" в программе СПРИНТ-ЛАЙОУТ-5 (СКАЧАТЬ ПЛАТУ). Подробности о данной программе находяться .

Профессиональный УМЗЧ своими руками

После знакомства с конструктором Новосибирского завода "Ноэма" Владимиром Перепелкиным, меня заинтересовала схема его разработки. На выбор конструкции так же повлияли результаты сравнения с другими УМЗЧ различного класса. Сразу оговорюсь, я не сравнивал, но мнению людей, проводивших сравнение, я доверяю. Несмотря на то, что этот УМ создан для профессионального применения, где казалось бы нужно только лишь "чтобы бухало погромче", он имеет отличный звук, гораздо более высокого качества чем Бриги, Брагины и т.д.

В этом УМЗЧ применена модульная конструкция, если можно так назвать. Т.е. он разделен на два логически завершенных блока: усилитель напряжения и выходной мощный повторитель. Это позволяет при необходимости или ради ксперимента применять различную схемотехнику данных узлов. Можно комбинировать ламповый усилитель напряжения и транзисторный выходной каскад. Так же, выходной каскад может быть выполнен как на биполярных транзисторах, так и на MOSFET.

Так как в лампах я, мягко говоря, не силен, мною был выбран транзисторный вариант усилителя напряжения, и биполярный выходной каскад (который опять же по отзывам, звучит лучше MOSFETа). И хотелось повторить вариант, максимально приближенный к авторскому исполнению.

Cхема усилителя напряжения показана здесь:


Из особенностей УН:
симметричный входной диффкаскад,
индуктивная коррекция в первом каскаде,
а также, инвертирующее включение.
NFB - цепь ООС, подключается к выходу повторителя, Out - выход УН. Напряжение питания +-U желательно сделать на 5-7В больше, чем напряжение питания выходного повторителя, это позволит максимально использовать источник питания. Хотя у меня применено такое же (+-75В).

Из особенностей мощного выходного повторителя:
оригинальная система термостабилизации тока покоя (транзисторы VT1, VT2),
высокоэффективная система защиты выходных транзисторов от токовых перегрузок, с самовосстановлением (VT3, VT4, описание - номер 3).

Хоть я и не являюсь сторонником оценки качества звучания по ТТХ, все же пара слов о характеристиках УМЗЧ.
мощность - порядка 500Вт на нагрузке 4Ом,
диапазон воспроизводимых частот далеко за пределами звукового диапазона. УМ без каких-либо искажений воспроизводит синус 100кГц,
Кни - порядка 0.01%,
входное сопротивление 2кОм.

Некоторые возможные замены деталей.
вместо BC546 BC556 допустимо применить BC182 BC212 или отечественные кт3102 кт3107,
быстрые диоды BAV21 допустимо заменить на 1N4937 или 1N4936,
шоттки 1N5817 заменимы на любые из этой серии, с допустимым током 1А,
стабилитроны 1N4744 можно заменить на любые на 15В, с допустимым током более 20мА,
транзисторы VT9 VT10 желательно ставить с граничной частотой не более 50мГц, иначе возможно самовозбуждение,
выходные транзисторы можно поставить любые импортные для аудио, однако примененные 2SC4793 2SA5200 производства TOSHIBA имеют отличные характеристики, при достаточно низкой цене - 100р. за комплементарную пару.
VT1 VT2 выходного каскада можно заменить на 2SA1837 2SC4793.

Для тех, кому мощность 500Вт кажется избыточной - ее очень легко уменьшить. Для этого необходимо только снизить напряжение питания до необходимого уровня, уменьшить количество выходных транзисторов (при +-50В достаточно 2 пар, мощность при этом будет порядка 180Вт на 4 ома), и уменьшить пропорционально значения гасящих резисторов R1-R2, R11-R14. Все остальные режимы от напряжения питания НЕ ЗАВИСЯТ.

Конструктивно УМЗЧ выполнен на двух платах - УН и основная. Плата усилителя напряжения впаивается в основную на ножках, также можно сделать разъем.

На основной плате смонтированы все выходные транзисторы, разъем под УН, а также на входе сделан повторитель на ОУ. ВАЖНО!!! В данном УМЗЧ не допускается оставлять вход усилителя напряжения НЕ ПОДКЛЮЧЕННЫМ. Это может привести к возбуждению и следовательно выгоранию выхода. Именно по этой причине поставлен повторитель на ОУ, можно использовать каскад на полевом транзисторе.

Между выравнивающими резисторами выходных транзисторов на свободном месте предусмотрена установка до 6 шт. конденсаторов по питанию (3 шт. на плечо).
Транзисторы VT1 VT2 повторителя установлены непосредственно на выходных транзисторах соответствующей половинки.

Настройка УМЗЧ сводится к проверке правильности сборки и установке тока покоя 100-150ма на пару транзисторов подбором резисторов R2 R3 выходного повторителя.

Блок питания УМЗЧ выполнен на основе трансформатора ТСА-320, перемотаны все обмотки:
первичная намотана проводом 1.18мм и содержит 2х290 витков,
вторичная - провод 1.5мм - 2х130 витков.
Выпрямитель - любые мощные, желательно быстрые диоды, например, кд2999. Емкость конденсаторов БП не менее 10000мкф на плечо, но лучше побольше.

Транзисторный УМЗЧ с дифкаскадом (ДК) на входе традиционно строится по трех каскадной схеме: ДК входной усилитель напряжения; усилитель напряжения; выходной двух тактный усилитель тока. При этом наибольший вклад в спектр искажений вносит именно выходной каскад. Это, в первую очередь, искажения типа "ступенька", коммутационные искажения, усугубляемые наличием сопротивлений в эмиттерных (истоковых) цепях, а также тепловые искажения, которым до недавних пор не придавали должного внимания. Все эти искажения, будучи сдвинутыми по фазе в цепях отрицательной обратной связи, способствуют формированию широкого спектра гармоник (вплоть до 11 й). Это и обусловливает в ряде неудачных разработок характерное транзисторное звучание.

По всем каскадам на сегодняшний день накоплен огромный набор схемотехнических решений от простых несимметричных каскадов до сложных полностью симметричных. Тем не менее, поискирешений продолжаются. Искусство схемотехники в том и заключается, чтобы простыми решениями добиться хорошего результата. Одно из таких удачных решений опубликовано в . Авторы отмечают, что режим работы наиболее распространенных выходных каскадов с общим коллектором задается напряжением на эмиттерных переходах, которое сильно зависит как от тока коллектора, так и от температуры. Если в маломощных эмиттерных повторителях можно стабилизировать напряжение база эмиттер путем стабилизации тока коллектора , то в мощных выходных каскадах класса АВ это сделать практически невозможно.

Схемы термостабилизации с термочувствительным элементом(чаще всего транзистор) даже при установке последнего на корпусодного из выходных транзисторов инерционны и могут отслеживать только среднее изменение температуры кристалла, но не мгновенное, что приводит кдополнительной модуляции выходного сигнала. В ряде случаев схемы термостабилизации являются источником мягкого возбужденияили подвозбуждения, что тоже придает звучанию определенное окрашивание. Для принципиального решения этой проблемыавторы предложили выполнить выходной каскад по схеме с ОЭ (идея не нова, см. например ). В результате, в отличие от традиционного трех каскадного построения (каждый каскад со своей частотой среза и своим с пектром гармоник), получился всего двухкаскадный усилитель. Его упрощенная схема показана на рис.1.

Первый каскад выполнен по традиционной схеме ДК с нагрузкой в виде токового зеркала. Симметричный съем сигнала с ДК с помощью токового зеркала (встречная динамическая нагрузка) позволяет получить вдвое большее усиление с одновременным уменьшением шумов. Выходное сопротивление каскада при таком съеме сигнала достаточно высокое, что обусловливает его работу в режиме генератора тока. В этом случае ток вцепи нагрузки (базы транзистора VT8 и эмиттера транзистора VT7)мало зависит от входного сопротивления и определяется, в основном, внутренним сопротивлением источника тока. Эмиттерные токи транзисторов VT8, VT9 являются базовыми для транзисторов VT10, VT11. Генератор тока I2 и схема сдвига уровня на транзисторах VT5 VT7 задают и стабилизируют начальный ток транзисторов VT8 VT11 независимо от их температуры.

Рассмотрим подробнее работу схемы управления током выходных транзисторов. Переходы база эмиттер транзисторов VT5 VT8 образуют между выходом источника тока I2 и базой транзистора VT10 две параллельные цепи. Это не что иное, как сложный масштабный отражатель тока. Принцип работы простейшего отражателя тока основан на том, что конкретному значению тока коллектора (эмиттера) соответствует вполне определенное падение напряжения на его базо эмиттерном переходе и наоборот, т.е. если это напряжение приложить к базо эмиттерному переходу другого транзистора с такими же параметрами, то его ток коллектора будет равен току коллектора первого транзистора. Правая цепь (VT7, VT8) состоит из базо эмиттерных переходов с разными токами коллектора (эмиттера). Чтобы заработал принцип "отражателя тока" левая цепь должна быть зеркальной по отношению к правой,т.е. содержать идентичные элементы. Для того чтобы ток коллектора транзистора VT6 (он же ток генератора тока I2) соответствовал току коллектора транзистора VT8, падение напряжения на базо эмиттерном переходе транзистора VT5, в свою очередь, должно быть равно падению напряжения на базо эмиттерном переходе транзистора VT7.

Для этого в реальной схеме (рис.2) транзистор VT5 заменен составным транзистором по схеме Шиклаи. На основании выше изложенного напрашивается выполнение следующих условий:

  • статические коэффициенты передачи тока транзисторов VT7, VT8, VT11 (VT12) должны быть равны;
  • статические коэффициенты передачи тока транзисторов VT9 и VT10 также должны быть равны между собой, а еще лучше, если все 6 транзисторов (VT7 VT12) будут иметь одинаковые характеристики, что трудно выполнимо при ограниченном количестве транзисторов, имеющихся в наличии;
  • в качестве транзисторов VT8, VT9 необходимо отобрать транзисторы с минимальным базо эмиттерным напряжением (с учетом разброса параметров), поскольку эти транзисторы работают при пониженном напряжении эмиттер коллектор;
  • произведения статических коэффициентов передачи тока транзисторов VT11, VT13 и VT12, VT14 также должны быть близкими.

Таким образом, если мы хотим задать ток коллектора транзисторов VT13, VT14 равным 100 мА и имеем выходные транзисторы с h21э=25, то ток генератора тока на транзисторе VT6 должен составлять: Iк(VT6)/h21э=100/25=4 мА, что и определяет сопротивление резистора R11 около 150Ом (0,6 В/0,004 А=150 Ом).

Поскольку выходной каскад управляется выходным током ДК, общий эмиттерный ток смещения выбран достаточно большим около 6 мА (определяется резистором R6), он же определяет и максимально возможный выходной ток ДК. Отсюда можно рассчитать и максимальный выходной ток усилителя. Например, если произведение коэффициентов усиления по току выходных транзисторов равно 1000, то максимальный выходной ток усилителя будет близок к 6 А. Для заявленного максимального выходного тока 15 А коэффициент усиления выходного каскада по току должен быть соответственно не менее 2500, что вполне реально. Более того, с целью повышения нагрузочной способности ДК общий эмиттерный ток смещения можно увеличить до 10 мА, уменьшив сопротивление резистора R6 до 62 Ом.

В приведены следующие технические характеристики усилителя:

  • Выходная мощность в полосе до 40 кГц на нагрузке 8 Ом- 40 Вт.
  • Импульсная мощность на нагрузке 2 Ом- 200 Вт.
  • Амплитудное значение неискаженного выходного тока- 15 А.
  • Коэффициент гармоник на частоте 1 кГц (1 Вт и 30 Вт, рис.3)- 0,01%
  • Скорость нарастания выходного напряжения- 6 В/мкс
  • Коэффициент демпфирования, не менее- 250

График зависимости коэффициента гармоник при выходной мощности 1 Вт (кривая а) и при выходной мощности 30 Вт (кривая b) на нагрузке 8 Ом показан на рис.3. В комментариях к схеме утверждается, что усилитель имеет высокую стабильность, в нем отсутствуют "переключательные искажения", а также гармоники высших порядков.

Прежде чем собрать опытный образец усилителя схема была смакетирована виртуально и исследована с помощью программы Multisim 2001. Поскольку в базе данных программы не оказалось указанных в схеме выходных транзисторов, они были заменены ближайшими аналогами отечественных транзисторов КТ818, КТ819. Исследования схемы (рис.4) дали результаты, несколько отличные от приведенных в . Нагрузочная способность усилителя оказалась ниже заявленной, а коэффициент гармоник более чем на порядок хуже. Недостаточным оказался и коэффициент запаса по фазе всего 25°. Наклон АЧХ в районе 0 дБ близок к 12 дБ/окт., что также говорит о недостаточной устойчивости усилителя.

В целях опытной проверки был собран макет усилителя иустановлен в гитарный комбик рок группы "Афазия". Для увеличения устойчивости усилителя емкость коррекции увеличена до 2,2 нФ. Натурные испытания усилителя в сравнении сдругими усилителями подтвердили его достоинства и усилитель получил высокую оценку музыкантов.

Технические параметры усилителя

  • Полоса пропускания на уровне 3 дБ-15 Гц-190 кГц
  • Коэффициент гармоникна частоте 1 кГц (25 Вт, 8 Ом)-0,366%
  • Частота единичного усиления-3,5 МГц
  • Запас по фазе- 25°

Строго говоря, приведенные рассуждения по поводу токового управления выходным каскадом справедливы для усилителя с разомкнутой ООС. При замкнутой ООС в соответствии с ее глубиной уменьшается не только выходное сопротивление усилителя в целом, но и всех его каскадов, т.е. они посути начинают работать как генераторы напряжения.

Поэтому с целью получения заявленных в технических характеристик усилитель был доработан до вида рис.5, а результат его исследования приведен на рис.6. Как видно из рисунка, в схему добавлено всего два транзистора, которые образуют двухтактный гибридный повторитель класса А. Введение буферного каскада с высокой нагрузочной способностью позволило более эффективно использовать усилительные свойства ДК по напряжению и существенно повысить нагрузочную способность усилителя в целом. Увеличение усиления с разорванной ООС благоприятно сказалось и на уменьшении коэффициента гармонических искажений.

Увеличение емкости коррекции с 1 нФ до 2,2 нФ хоть и сузило полосу пропускания сверху до 100 кГц, но зато увеличило запас по фазе на 30° и обеспечило наклон АЧХ в области единичного усиления 6 дБ/окт., что гарантирует хорошую устойчивость усилителя.

В качестве испытательного сигнала на вход усилителя подавался сигнал типа "меандр" частотой 1 кГц (калибровочный сигнал от осциллографа). Выходной сигнал усилителя неимел ни завала фронтов, ни выбросов на фронтах сигнала,т.е. полностью соответствовал входному.

Технические характеристики доработанного усилителя

  • Полоса пропускания на уровне 3 дБ- 8 Гц-100 кГц
  • Частота единичного усиления- 2,5 МГц Запас по фазе- 55°
  • Коэффициент усиления- 30 дБ
  • Коэффициент гармоник на частоте1 кГц (25 Вт, 8 Ом)- 0,007%
  • Коэффициент гармоник на частоте1 кГц (50 Вт, 4 Ом)- 0,017%
  • Коэффициент гармоник при Ku=20 дБ- 0,01%

С целью натурных испытаний доработанного усилителя было изготовлено два образца в габаритах платы усилителя "Лорта 50У 202С" (он же "Амфитон 001") и установлено в указанный усилитель. Одновременно был доработан регулятор громкости в соответствии с .

В результате доработки хозяин усилителя полностью отказался от регулятора тембра, а натурные испытания показали его явное преимущество над прежним усилителем. Звучание инструментов стало более чистым и натуральным, сталичетче формироваться кажущиеся источники звука (КИЗ), онистали как бы более "осязаемыми". Заметно повысилась и неискаженная выходная мощность усилителя. Термостабильность усилителя превзошла все ожидания. После двухчасового испытания усилителя на выходной мощности, близкой к максимальной, боковые теплоотводы оказались практически холодными, в то время как с прежними усилителями дажев отсутствие сигнала усилитель, будучи оставленным вовключенном состоянии, достаточно сильно разогревался.

Конструкция и детали
Плата (с элементами на просвет) усилителя, предназначенного для установки в усилитель "Лорта", показана на рис.7. В плате предусмотрены места для установки диодного моста и резистора R43 из старой схемы, а также места для установки токо выравнивающих базовых и эмиттерных резисторов для спаренных выходных транзисторов. В нижней части платы зарезервированы места для установки элементов активного источника тока (АИТ) в виде отражателя тока, состоящего из токо задающего резистора сопротивлением 75 кОм с выхода УМ, двух транзисторов типа КТ3102Б и двух резисторов по 200 Ом для активного выключения нижнего плеча усилителя (в опытном образце не устанавливались). Конденсаторы С4, С6 типа К73 17. Емкость конденсатора С2 можно безболезненно увеличить до 1 нФ, при этомчастота среза входного фильтра НЧ будет 160 кГц.

Транзисторы VT13, VT14 снабжены небольшими алюминиевыми флажками толщиной 2 мм. Транзисторы VT8 и VT12для лучшей термостабилизации усилителя установлены пообе стороны общего флажка, причем транзистор VT8 черезслюдяную прокладку или эластичный тепло проводящий изолятор типа "Номакон Gs" ТУ РБ 14576608.003 96. Что касается параметров транзисторов, то они подробно оговорены выше. В качестве транзисторов VT1, VT5 можно использовать транзисторы КТ503Е, а вместо транзисторов VT2, VT3 транзисторы типа КТ3107 с любым буквенным индексом. Желательно, чтобы статические коэффициенты усиления тока транзисторов были попарно равны с разбросом не более 5%, а коэффициенты усиления транзисторов VT2, VT4 были несколько больше или равны коэффициентам усиления транзисторов VT1, VT5.

В качестве транзисторов VT3, VT6 можно использовать транзисторы типов КТ815Г, КТ6117А, КТ503Е, КТ605. Транзисторы VT8, VT12 можно заменить транзисторами типа КТ626В. При этом транзистор VT12 крепится на флажок, атранзистор VT8 на транзистор VT12. Под головку винта состороны транзистора VT8 следует подложить тексто литовую шайбу. В качестве транзистора VT10 из отечественных полевых транзисторов наилучшим образом подходит транзистор типа КП302А, 2П302А, КП307Б(В), 2П307Б(В). Желательно подобрать транзисторы с начальным током стока 7-12 мА и напряжением отсечки в пределах (0,8-1,2) В. Резистор R15 типа СП3 38б. Транзисторы VT15, VT16 можно заменить соответственно КТ837 и КТ805, а также КТ864 и КТ865 с более высокочастотными характеристиками. Плата разрабатывалась для установки спаренных выходных транзисторов (КТ805, КТ837). Для этой цели в плате предусмотрены места для установки как базовых (2,2-4,3 Ом), так и эмиттерных (0,2-0,4 Ом) токо выравнивающих резисторов. В случае установки одиночных выходных транзисторов вместо токо выравнивающих резисторов следует запаять перемычки или сразу распаять провода выходных транзисторов в соответствующие места платы. Вопытном образце оставлены "родные" выходные транзисторы, только их пришлось поменять местами.

В усилителе желательно увеличить емкости по питанию (в исходном усилителе в каждом плече по 2.2200 мкФ.50 В) Как минимум, желательно добавить в каждое плечо еще по 2200 мкФ, а еще лучше заменить конденсатором 10000мкФ. 50 В. На 50 В зарубежные конденсаторы относительно дешевы.

Налаживание
Прежде чем подключать выходные транзисторы, необходимо временно припаять на место базо эмиттерных переходов выходных транзисторов любые диоды средней мощности (например, КД105, КД106), подать питание на плату и, не подключая нагрузку, убедиться, что усилитель отрабатывает среднюю точку. Подайте на вход усилителя сигнал и убедитесь с помощью осциллографа, что на "холостом ходу" он усиливается без искажений и возбуждения. Это говорит оправильности монтажа и исправности всех элементов усилителя. Только после этого можно впаять выходные транзисторы и приступить к установкеих тока покоя.

Для установки тока покоя необходимо выставить движок резистора R15 в нижнее по схеме положение, снять предохранитель в одном из плеч усилителя и вместо него включить амперметр. Ток потребления выставляют под строечным резистором R15 в пределах 110-130 мА (с учетом тока ДК около 6 мА и тока буферного повторителя около 3-5 мА). Затем проверяют чувствительность усилителей и при необходимости корректируют резисторы ОС.

После этого можно приступать к различным исследованиям, если, конечно, позволяет оборудование лаборатории радиолюбителя. Для этой цели можно воспользоваться прямым входом усилителя, сняв с него заглушку перемычку на задней стенке усилителя.

Литература

  1. Дайджест УМЗЧ//Радиохобби. 2000. №1. С.8 10.
  2. Петров А. Сверхлинейный ЭП с высокой нагрузочной способностью//Радіоаматор. 2002. №4. С.16.3.
  3. Дорофеев М. Режим В в усилителях мощности ЗЧ//Радио. 1991. №3. С.53 56.
  4. Петров А. Доработка регулятора громкости усилителя "Лорта 50У 202С"//Радіоаматор. 2000. №3. С.10