Причины снижения качества электрической энергии. Проблема качества электроэнергии сама собой не решится

Электрическая энергия является одним из самых распространенных товаров в процессах купли-продажи. При этом электрическая энергия отличается особыми свойствами:

Совпадением во времени процессов производства, передачи, распределения и потребления;

Зависимостью характеристик качества электрической энергии не только от процессов производства, передачи и распределения, но и от процессов потребления.

То есть, электроэнергия – это один из немногих товаров, качество которого может напрямую зависеть и от потребителя. Тем не менее, на электроэнергию как товар распространяются соответствующие требования Гражданского кодекса РФ, ФЗ «О защите прав потребителей» и др. Нормы качества электрической энергии определяются межгосударственным стандартом , руководящими документами , хотя ряд свойств электрической энергии может напрямую создавать угрозы безопасности жизни, здоровья, людей (табл. 4.1). Поэтому целесообразно нормы качества электроэнергии регламентировать специальным техническим регламентом на уровне федерального закона.

Таблица 4.1.

Ущерб потребителя при нарушении нормативов качества электроэнергии

Свойства электроэнергии Вид ущерба
Отклонение частоты Недовыпуск и брак продукции
Отклонение напряжения Недовыпуск и брак продукции, сокращение срока службы электрооборудования, дополнительные потери мощности и энергии
Провал напряжения Сбой работы электронного оборудования, брак продукции, угроза безопасности жизни человека
Импульс напряжения Выход из строя оборудования, угроза безопасности жизни, здоровья человека
Временное перенапряжение Выход из строя оборудования
Несимметрия трехфазной системы напряжения в 4-х проводной сети – в 3-х проводной сети Дополнительные потери мощности и энергии, невозможность использования оборудования. Дополнительные потери мощности и энергии, сокращение срока службы и выход из строя оборудования
Несинусоидальность напряжения Дополнительные потери мощности и энергии, сокращение срока службы электрооборудования, сбой работы и выход из строя оборудования
Колебания напряжения Неблагоприятное воздействие на зрение человека, сбой работы и выход из строя оборудования

Есть и другие причины повышения уровня статуса норм по качеству электроэнергии. Некоторые из них:

Нормы качества электроэнергии являются обязательными для исполнения во всех режимах работы систем электроснабжения общего назначения за исключением режимов, обусловленных форс-мажорными обстоятельствами.


Нормы ГОСТ 13109-97 подлежат включению в технические условия (ТУ) на присоединение и в договорах энергоснабжения.

Требования к качеству электроэнергии в ТУ и договорах энергоснабжения для потребителей, являющихся источником ухудшения качества электроэнергии, могут быть более жесткими, чем нормы ГОСТ 13109-97.

Нормы качества электроэнергии должны применяться при проектировании и эксплуатации электрических сетей, установлении уровней помехоустойчивости и помехоэмиссии технических средств.

Нормы качества электроэнергии, установленные ГОСТ 13109-97, являются обязательными для систем электроснабжения потребителей электроэнергии, если для этих систем отсутствуют отраслевые нормативные документы.

4.2. Влияние качества электроэнергии на работу потребителей, затраты энергии и ресурсов

На практике наблюдаются отклонения параметров электрической энергии, подаваемой потребителям, от требуемых стандартизированных значений. Эти отклонения негативно влияют на работу потребителей, приводят к непроизводительным потерям энергии и материальных ресурсов. Причинами ухудшения качества электроэнергии могут являться:

короткие замыкания в распределительной сети;

аварии в электрической сети;

неравномерность распределения нагрузки у потребителя по отдельным фазам;

срабатывание средств защиты и автоматики;

электромагнитные и сетевые возмущения (переходные процессы), связанные с включением, отключением и работой мощных потребителей электроэнергии и др.

Показатели качества электрической энергии связаны с изменением напряжения, а также с условиями обеспечения нагрузок в трехфазной сети и должны соответствовать требованиям ГОСТ 13109-97 (2002) .

Рассмотрим влияние некоторых показателей качества на работу потребителей.

Отклонение напряжения от номинального значения. Отклонения напряжения от номинального значения происходят вследствие суточных, сезонных и технологических изменений электрической нагрузки потребителей, изменения мощности компенсирующих устройств, регулирования напряжения на выводах генераторов электростанций и трансформаторов на подстанциях энергосистем, а также изменения схем и параметров электрических сетей.

В соответствии с ГОСТ 13109-97 (2002) устанавливаются нормально и предельно допустимые отклонения напряжения на выводах приемников электрической энергии, которые составляют ±5 и ±10 % номинального значения напряжения.

В первую очередь на потребителях отражается установившееся отклонение напряжения. При понижении напряжения по отношению к его номинальному значению происходит уменьшение светового потока от ламп накаливания, снижается освещенность в помещении, на рабочих местах. Так, понижение напряжения на 10 % приводит к уменьшению освещенности рабочей поверхности в среднем на 40 %, что вызывает снижение производительности труда, повышенную утомляемость персонала. Повышение напряжения для ламп накаливания также на 10 % приводит к сокращению их срока службы и вызывает избыточное освещение рабочих поверхностей, что неблагоприятно сказывается на восприятии информации с мониторов и цифровых приборов. Газоразрядные люминесцентные лампы при указанном диапазоне изменения напряжения не столь существенно изменяют светоотдачу, но увеличение напряжения на 10-15 % приводит к резкому снижению их срока службы, а понижение напряжения на 20 % вызывает отказы зажигания ламп.

Отклонение напряжения от номинального значения приводит к изменению технических показателей электропривода. Снижение напряжения на входе асинхронных двигателей способствует изменению таких механических характеристик, как электромагнитный момент, частота вращения (скольжение). При этом уменьшается производительность механизма, а при понижении напряжения до уровня, когда механический момент на валу двигателя превышает электромагнитный, запуск двигателя становится невозможным. Установлено, что при понижении напряжения на 15 % номинального значения электромагнитный момент асинхронного двигателя снижается до 72 %, а при провалах напряжения двигатель вообще может остановиться. При понижении напряжения на входе электродвигателя при той же потребляемой мощности увеличивается потребляемый ток и происходит дополнительный нагрев обмоток двигателя, что приводит к сокращению срока его службы. При работе двигателя на напряжении 0,9 номинального значения срок его службы сокращается практически вдвое.

Повышение напряжения на входе электродвигателя вызывает увеличение потребления реактивной мощности. В среднем на каждый процент повышения напряжения потребление реактивной мощности увеличивается на 3 % для двигателей мощностью 20-100 кВт и на 5-7 % для двигателей меньшей мощности.

Использование электрической энергии в электротермических установках с отклонениями напряжения изменяет технологический процесс и себестоимость производимой продукции. Выделение теплоты в электротермических системах пропорционально приложенному напряжению во второй степени, поэтому при отклонении напряжения даже на 5 % производительность может измениться на 10-20 %.

Работа электролизных установок при пониженном напряжении связана со снижением их производительности, дополнительным расходом электродных систем, повышением удельного расхода электроэнергии и себестоимости продукции, получаемой в процессе электролиза.

Понижение напряжения на 5 % номинального значения приводит, например, к снижению выпуска продукции при производстве хлора и каустической соды на 8 %. Повышение напряжения более 1,05U ном вызывает недопустимый перегрев ванн электролизера.

Колебания напряжения. Колебания напряжения происходят вследствие резкого переменного изменения нагрузки на участке электрической сети, например, из-за включения асинхронного двигателя с большой кратностью пускового тока, технологических установок с быстропеременным режимом работы, сопровождающимся скачками активной и реактивной мощностей, таких как привод реверсивных прокатных станов, дуговые сталеплавильные печи, сварочные аппараты и т.п.

Колебания напряжения часто отражаются на источниках света. Человеческий глаз начинает воспринимать колебания светового потока, вызванные колебаниями напряжения. Колебания напряжения сети отрицательно сказываются на зрительном восприятии объектов, графической и текстовой информации. От пределов изменения напряжения и частоты колебаний в этом случае зависит возникновение фликкер-эффектов (мерцание света), что связано с ухудшением условий труда, понижением его производительности и утомляемостью работников.

Колебания напряжения отрицательно сказываются на работе высокочастотных преобразователей, синхронных двигателей, на качестве работы индукционных нагревательных устройств. При изменении напряжения в сети может выпускаться бракованная продукция в текстильной и бумажной промышленности. Колебания частоты двигателей намоточных и протяжных устройств приводят к обрывам нитей и бумаги, к выпуску продукции разной толщины.

Колебания напряжения могут привести к неправильной работе защитных и автоматических управляющих систем. При изменении напряжения и его колебаниях свыше 15 % возможно отключение магнитных пускателей.

Отклонение частоты переменного напряжения сети от номинального значения. Одним из важнейших параметров электрической системы, обеспечивающей генерацию и потребление электроэнергии переменного тока, является стабильность частоты сети. Частота переменного напряжения в электрической системе определяется частотой вращения генераторов на электростанциях. В случае отсутствия баланса по выработке и потреблению электроэнергии генераторы начинают вращаться с другой частотой, что отражается на частоте сети. Таким образом, отклонение частоты сети является общесистемным показателем, характеризующим баланс мощности в системе. Для компенсации изменения частоты и напряжения в узлах сети система должна иметь резерв активной и реактивной мощностей, а также устройства регулирования, которые позволяют поддерживать отклонения режимных параметров в пределах нормированных значений. Отклонение частоты сети часто служит сигналом для увеличения выработки электроэнергии генерирующими станциями и для отключения части нагрузки во время перегрузок и при авариях с короткими замыканиями в системе. Нормализации частоты можно добиться в результате строгого соблюдения баланса генерируемой и потребляемой мощностей, исключением аварийных ситуаций и несанкционированных коммутаций на электрических станциях и подстанциях.

При изменении частоты меняется мощность металлорежущих станков, вентиляторов, центробежных насосов. Снижение частоты часто приводит к изменению производительности оборудования, а зачастую и к ухудшению качества выпускаемой продукции .

Несимметрия напряжений в трехфазной системе при неравномерном распределении нагрузки по фазам. Несимметрия напряжений обусловлена наличием мощных однофазных нагрузок, неравномерным распределением нагрузки между фазами, обрывом одного из фазных проводов.

Неодинаковые значения напряжения и тока в фазах обычно свидетельствуют о неравномерном распределении нагрузок у потребителя по отдельным фазам.

Несимметричные значения фазных напряжений приводят к тому, что в электрических сетях появляются дополнительные потери. При этом существенно сокращается срок службы асинхронных двигателей вследствие дополнительного теплового нагрева, при этом целесообразно выбирать двигатели большей номинальной мощности, чем требуемая.

Несимметрия фазных напряжений в электрических машинах переменного тока равнозначна появлению магнитных полей, векторы магнитной индукции которых вращаются в противоположном направлении с удвоенной синхронной частотой, что может нарушить технологические процессы.

При несимметрии напряжений сети, посредством которой питаются синхронные двигатели, могут дополнительно возникать опасные вибрации. При значительной несимметрии фазного напряжения вибрации могут оказаться столь существенными, что возникает опасность разрушения фундаментов, на которых устанавливаются двигатели, и нарушения сварных соединений.

Несимметрия фазных напряжений оказывает заметное влияние на работу силовых трансформаторов, вызывая сокращение срока их службы. Анализ работы трехфазных силовых трансформаторов показал, что при номинальной нагрузке и коэффициенте несимметрии токов, равном 10%, срок службы изоляции трансформаторов сокращается на 16 %.

Несинусоидальность кривой напряжения при нелинейной нагрузке. Несинусоидальность кривой напряжения равнозначна возникновению высших гармонических составляющих в питающем напряжении. Чаще всего появление высших гармоник связано с подключением оборудования с нелинейной зависимостью сопротивления нагрузки. К такому оборудованию можно отнести преобразовательные устройства (выпрямители, преобразователи, стабилизаторы), газоразрядные приборы (люминесцентные лампы), установки с прерыванием тока в технологическом процессе (электросварка, дуговые печи и др.).

Несинусоидальность кривой напряжения влияет на все группы потребителей. Это вызвано дополнительным нагревом элементов электроприемников от высших гармоник. Высшие гармоники вызывают дополнительные потери мощности в двигателях, трансформаторах, а также тепловые потери в изоляции, силовых кабелях и системах, в которых используются электрические конденсаторы, ухудшают условия работы батарей конденсаторов устройств компенсации реактивной мощности. При несинусоидальной кривой напряжения происходит ускоренное старение изоляции электрических машин, трансформаторов, конденсаторов и кабелей в результате необратимых физико-химических процессов, протекающих под воздействием высокочастотных полей, повышенного нагрева токоведущих частей сердечников и изоляции.

Таким образом, снижение качества электроэнергии приводит к ухудшению условий труда, уменьшению объемов производства, потерям ресурсов из-за ухудшения качества продукции и снижению срока службы оборудования, а также к дополнительным затратам электрической энергии.

Показатели качества электроэнергии могут быть определены с помощью специальных приборов. В результате анализа показаний этих приборов в ряде случаев можно определить и виновников ухудшения качества электроэнергии, которыми могут быть энергоснабжающая организация, потребители с переменной, нелинейной или несимметричной нагрузкой.

В настоящее время существуют устройства для улучшения качества электроэнергии. Уменьшить влияние высших гармоник на питающее напряжение удается с помощью специальных активных фильтров, которые подавляют высшие гармоники. Для равномерного распределения нагрузки применяют симметрирующие устройства, включающие в себя емкостные и индуктивные элементы.

4.3. Проверка качества работы энергоустановок

Как показано выше, от качества работы элементов энергоустановки и систем энергоснабжения зачастую зависит и состояние промышленного производства, и качество жизни населения. Качество энергоснабжения напрямую влияет на обеспечение эффективности, надежности и безопасности у энергопотребителей.

Задача энергоаудита качества – получить доказательства о фактических значениях выходных параметров (потребительских свойств) энергоустановки, энергоносителя, энергооборудования и проверить соответствие этих параметров обоснованным потребностям промышленных и бытовых потребителей, проектной и технической документации, установленным нормам и правилам, а также современному уровню технологического развития.

Основная информация о технических характеристиках электрооборудования содержится в их технических паспортах. Кроме того, стандарты предписывают производителям оборудования наносить на его поверхность номинальные параметры работы.

Рабочие характеристики оборудования, необходимые для потребителей, обычно можно почерпнуть из проектной и эксплуатационной документации на объект, в котором установлено данное оборудование.

Это же касается и систем энергоснабжения в целом, для которых должен существовать также и специализированный документ: схема энергоснабжения.

К сожалению, зачастую случается так, что найти необходимую документацию не удается, маркировка оборудования закрашена, а требования, на основе которых разрабатывался проект энергоустановки, не соответствует современным.

Качество энергоносителя фиксируется в договорах энергоснабжения и, как правило, должно подтверждаться сертификатом или гарантироваться поставщиком.

Однако то и другое у нас в стране находится пока еще в начальной стадии развития, а в договорной практике принято ограничиваться указанием только энергетических характеристик энергоносителя.

Поэтому на сегодняшний день одним из основных источников аудиторских доказательств по качественным характеристикам работы энергоустановок являются вахтенные журналы оперативного учета и контрольные измерения, выполненные самим аудитором.

Особенности энергоаудита качества рассмотрим на примере систем электроснабжения.

Качество электрической энергии, как известно,обуславливается ее пригодностью для обеспечения нормального функционирования технических средств (электрических, электронных, радиоэлектронных и других) потребителей электрической энергии.

Еще раз подчеркнем, что особенность электрической энергии, как продукции, в частности состоит в неразрывности и одновременности процессов производства и потребления, в результате чего искажающее влияние на качество энергии может быть оказано как электроприемниками потребителя, так и привнесено извне в виде конструктивной электромагнитной помехи, распространяемой по общей электрической сети. При этом источниками искажений качества электрической энергии могут быть как собственные электроприемники, так и электроприемники других потребителей, а также электротехническое оборудование электрических станций и сетей. В части терминов и определений параметров качества электрической энергии энергоаудитору следует руководствоваться ГОСТ 23875-88 .

Качество электрической энергии (КЭ) оказывает существенное влияние на надежность и экономичность работы электрооборудования. Ухудшение КЭ может привести к имущественному ущербу у потребителей (выход из строя электротехнического оборудования), нарушение работы устройств автоматики, телемеханики, связи, электронной техники, увеличение потерь электроэнергии, нерегламентируемым изменениям технологического процесса, снижению качества выпускаемой продукции, производительности труда и др. В отдельных случаях, КЭ может повлиять на безопасность жизни и здоровья людей.

Зачастую из-за неудовлетворительного КЭ оказываются бессмысленными капиталовложения в современные технологии и промышленное оборудование, требовательное к параметрам электроснабжения.

Во многом сложившиеся положение с КЭ в электрических сетях объясняется тем, что длительное время электроэнергетика России развивалась по экстенсивному пути. В первую очередь решались задачи обеспечения электроэнергией растущих потребностей промышленности, сельского и коммунально-бытового хозяйства страны, повышения надежности электроснабжения и др.

На этом этапе развития электроэнергетики обеспечение КЭ, поставляемой потребителям, не рассматривалось энергоснабжающими организациями как одна из основных задач во взаимоотношениях с ними.

В связи с этим, энергоснабжающие организации не уделяли должного внимания созданию системы управления КЭ, отпускаемой потребителям, в том числе созданию организационной структуры, разработке внутренних документов, организации системы контроля и анализа КЭ и др. Вопросы КЭ не затрагивались в договорах энергоснабжения и технических условиях на присоединение потребителей.

В настоящее время спрос на аудит КЭ постоянно повышается. Потребители электроэнергии, как юридические, так и физические лица, не желают мириться с положением, когда энергоснабжающие организации не обеспечивают качество поставляемой энергии.

В связи с этим, задачей энергетического аудита качества является не только установление степени соответствия параметров энергоносителя или энергооборудования установленным требованиям, но и выработка комплекса мероприятий, обеспечивающих стабильность поддержания требуемых показателей качества и их защиту от возможного искажения.

Квалифицированный аудит системы управления качеством электрической энергии позволит энергоснабжающим организациям улучшить качество поставляемой энергии, уменьшить убытки от претензий со стороны потребителей, повысить надежность электроснабжения и стабильность выручки.

Под системой качества энергоснабжающей организации понимают совокупность организационной структуры, методик, процессов и ресурсов энергоснабжающей организации, которая необходима для осуществления административного руководства обеспечением качества поставляемой электрической энергии.

Аудиторские проверки проводятся путем контроля производства электрической энергии и/или системы качества, а также экспертизы протоколов периодического или непрерывного контроля КЭ.

Контроль качества электрической энергии подразумевает оценку соответствия показателей установленным нормам и определение стороны виновной в ухудшении этих показателей.

Нормы качества электрической энергии в системах электроснабжения общего назначения установлены для следующих показателей КЭ:

Отклонение частоты;

Установившиеся отклонение напряжения;

Коэффициент искажения синусоидальности кривой напряжения;

Коэффициент n-ой гармонической составляющей напряжения;

Коэффициент несимметрии напряжений по обратной последовательности;

Коэффициент несимметрии напряжений по нулевой последовательности.

Первые два показателя являются наиболее критичными для электропотребителей, поэтому с учетом только этих двух показателей установлена наиболее массовая процедура обязательной сертификации электрической энергии.

Определение показателей качества электрической энергии задача нетривиальная.

Большинство процессов в электрических сетях – быстротекущие, все нормируемые показатели качества электрической энергии не могут быть одномоментно измерены напрямую – их необходимо рассчитывать, а окончательное заключение можно дать только статистически обработанными результатами.

Поэтому для определения показателей КЭ необходимо выполнить большой объем измерений с высокой скоростью и одновременной математической и статистической обработкой значений этих параметров. Причем самый большой поток измерений необходим для определения несинусоидальности напряжения. Для определения всех гармоник до 40-ой включительно и в пределах допустимых погрешностей требуется выполнять измерения мгновенных значений трех междуфазных напряжений 256 раз за период (3·256·50=38400 в секунду). А для определения виновной стороны, одновременно измеряются мгновенные значения фазных токов и фазовый сдвиг между напряжением и током, только в этом случае возможно определить, с какой стороны и какой величины внесена та или иная помеха. Наиболее сложная математика задействована при оценке колебаний напряжения. ГОСТ 13109-97 нормирует эти явления для огибающей меандровой (прямоугольной) формы, а в сети колебания напряжения имеют случайный характер.

Здесь же необходимо указать на наиболее массовые причины, ухудшающие показатели КЭ:

Удаленность потребителя от центра питания;

Малое сечение проводов в высоковольтных внешних сетях, по которым поставляется электроэнергия потребителю;

Плохое качество электрических соединений во внутренней сети потребителя;

Превышение потребителями мощности электроприемников, согласованной с электроснабжающей организацией;

Самовольное подключение абонентов, не зарегистрированных в электроснабжающей организации;

Использование потребителями приемников электроэнергии с резкопеременной нагрузкой, импульсными блоками питания;

Переходные процессы в электрических сетях из-за коротких замыканий, ударов молний в элементы сети, действий систем релейной защиты и автоматики, коммутаций различного электрооборудования, обрывов нулевого провода в сетях 0,4 кВ;

Ошибочные действия персонала и ложные срабатывания средств защиты и автоматики;

Отсутствие или недостаточность централизованного регулирования напряжения, средств компенсации реактивной мощности.

При выражении мнения о способах повышения КЭ аудитору целесообразно рассмотреть эффективность следующих технических мероприятий:

1. проведение поэтапной реконструкции в самых удаленных участках распределительной электросети 6-10/0,4 кВ, где уровень напряжения недопустимо низок;

2. увеличение сечения линий электропередач;

3. присоединение к более мощной системе энергоснабжения;

4. организация работы по выявлению самовольно подключившихся к электросети абонентов;

5. периодическая перефазировка нагрузок;

6. питание мощных искажающих нагрузок от отдельной системы шин;

7. внедрение автоматизированных систем коммерческого учета электроэнергии с контролем КЭ или автоматизированных систем управления КЭ;

8. выполнение сезонных переключений потребителей на трансформаторных подстанциях;

9. применение ЧРП или устройств плавного пуска электроприемников с большими пусковыми токами;

10.применение конденсаторных установок для компенсации реактивной мощности в распределительной сети;

Кроме того, важно выразить мнение по договорам энергоснабжения на предмет четкого распределения ответственности сторон за недопустимое отклонение показателей от установленных норм.


Примечание: Вопросы воздействия на различные компоненты окружающей среды и применимости, а также экономические аспекты обсуждаются в разделе 3.6.7

Качество электроэнергии требуется выражать количественными показателями для оценки питающей сети. Провайдеры обязаны поддерживать соответствие ГОСТам таких характеристик, как колебание напряжения и частоты. В зависимости от подключенных потребителей значения основных показателей меняются, что может при значительных их отклонениях приводить к выходу из строя бытовых приборов.

Что влияет на характеристики питающей сети?

Качество электроэнергии зависит от огромного числа факторов, изменяющих показатели сверх установленных нормативами пределов. Так, напряжение может оказаться завышенным из-за аварии на подстанции. Заниженные значения появляются в вечернее время суток или в летний сезон, когда люди возвращаются домой и включают телевизоры, электрические плиты, сплит-системы.

Качество электроэнергии согласно ГОСТам может незначительно колебаться. В очень плохих питающих сетях потребителям приходится пользоваться стабилизаторами напряжения. Контроль над характеристиками возложен на Роспотребнадзор, куда можно обращаться при возникающих несоответствиях.

Качество электроэнергии может зависеть от следующих факторов:

  • Суточных колебаний, связанных с неравномерным подключением потребителями либо с влиянием приливов и отливов на морских станциях.
  • Изменениями воздушной среды: влажности, образование льда на питающих проводах.
  • Изменением ветра, когда питание вырабатывают ветровики.
  • Качеством проводки, со временем она изнашивается.

Зачем нужны основные характеристики питающей сети?

Количественная величина и погрешности отклонения параметров устанавливаются согласно ГОСТ. Качество электроэнергии прописано в документе 32144-2013. Потребовалось узаконить эти показатели из-за риска возгорания приборов потребителя, а также нарушения функционирования электроприборов чувствительных к перепадам напряжения установок. Последние устройства распространены в медицинских учреждениях, научных центрах, на военных объектах.

Электроэнергии обновлены в 2013 году в связи с развитием рынка сбыта энергии и появлением новых электронных устройств. Рассматривать электричество в рамках его поставки следует как продукцию, соответствующую определённым критериям. При отклонении установленных характеристик к провайдерам может применяться административная ответственность. Если же по вине колебаний входящего напряжения пострадали или могло пострадать люди, то может возникнуть уже уголовная ответственность.

Что происходит с потребителями при отклонении нормальных режимов питания?

Параметры качества электроэнергии влияют на длительность работы подключаемых устройств, часто это становится критично на производствах. Падает производительность линий, увеличивается Так на валу двигателей снижается вращающий момент при падении значений показателей питающей сети. Укорачивается срок службы ламп освещения, световой поток ламп становится меньше либо мерцает, что сказывается на выпускаемой продукции в теплицах. Существенное влияние оказывается на процессы других биохимических реакций.

Согласно законам физики снижение напряжения при неизменной нагрузке на валу двигателя приводит к стремительному росту тока. Это, в свою очередь, приводит к сбоям в работе защитных выключателей. В результате плавится изоляция, в лучшем случае горят в худшем безвозвратно портятся обмотки двигателей, элементы электроники. При аналогичных обстоятельствах электросчетчик начинает вращаться с большей скоростью. Хозяин помещения терпит убытки.

Критерии оценки питающей сети

Что же содержит ГОСТ? Качество электроэнергии определяется характеристиками трёхфазных сетей и распространенных в быту цепей частотой 50 Гц:

  • Установившееся значение отклонения напряжения определяет величину характеристики, при которой потребители могут функционировать без сбоя. Устанавливается нижний нормальный предел от 220 В это 209 В и верхний равен 231 В.
  • Размах изменения входного напряжения представляет собой разность величин действующей и амплитудной. Замеры производят за цикл перепада параметра.
  • Доза фликера подразделяется на кратковременную в пределах 10 минут и длительную, определяемую 2 часами. Обозначает степень восприимчивости человеческого глаза к мерцанию света, причиной которого стало колебание питающей сети.
  • Импульсное напряжение описывается временем восстановления, имеющего разную величину в зависимости от причины возникновения скачка.
  • Коэффициенты для оценки качества питающей сети: по искажению синусоидальности, значения временного перенапряжения, гармонических составляющих, несимметричности по обратной и нулевой последовательностях.
  • Интервал провала напряжения определяется периодом восстановления параметра, установленного согласно ГОСТ.
  • Отклонение питающей частоты приводит к повреждениям электрических частей и проводников.

Фиксируемое отклонение входной величины

Показатели качества электроэнергии стараются сделать соответствующими установленным номиналам, прописанным в законодательных актах. Внимание уделяется погрешностям, возникающим при замерах U и f. Если имеются погрешности, то можно обращаться в надзорные органы, чтобы привлечь к ответственности поставщика электричества.

Общие требования к качеству электроэнергии включают параметр отклонения питающего напряжения, который подразделяют на две группы:

  • Нормальный режим, когда отклонение составляет ±5 %.
  • Предел допустимого режима установлен для колебаний ±10 %. Это составит для сети 220 В минимальный порог 198 В и максимальный 242 В.

Восстановление напряжения должно происходить во временной интервал не более двух минут.

Размах изменения питающей сети

Нормы качества электроэнергии содержат надзор за таким параметром, как колебание составляющих напряжения. Он устанавливает разницу между верхним порогом амплитуды и нижним. Учитывая, что допуски отклонения параметра от установленного укладываются в предел ±5 %, то размах предельный режим не может превышать ±10 %. Питающая сеть 220 В не может колебаться более или менее 22 В, а 380 В работает нормально в границах ±38 В.

Результирующий размах колебаний напряжения рассчитывается по следующему выражению ΔU = U max −U min , в нормативах результаты указываются в % согласно расчетам ΔU = ((U max −U min)/U nominal)*100%.

Неустойчивость входного значения

Система качества электроэнергии включает замеры дозы фликера. Этот показатель фиксирует специальный прибор — фликерметр, который снимает амплитудно-частотную характеристику. Полученные результаты сравнивают с кривой чувствительности зрительного органа.

ГОСТом установлены допустимые пределы изменения дозы фликера:

  • Кратковременные колебания показатель не должен быть выше 1,38.
  • Длительные изменения должны укладываться в значение параметра 1,0.

Если речь идет о верхнем пределе показателя цепи ламп накаливания, то требуется, чтобы результат попал в следующие границы:

  • Кратковременные колебания — показатель установлен равным 1,0.
  • Продолжительные изменения параметра — 0,74.

Ощутимые перепады

Измерения качества электроэнергии предусматривают замеры такой составляющей, как импульсы питающего напряжения. Он объясняется резкими спадами и подъемами электричества в пределах выбранного интервала. Причинами такого явления может быть одновременная коммутация большого числа потребителей, влияние электромагнитных помех из-за грозы.

Установлены периоды восстановления напряжения, не влияющие на работу потребителей:

  • Причины перепадов — это гроза и другие природные электромагнитные помехи. Период восстановления равен не более 15 мкс.
  • Если импульсы появились из-за неравномерной коммутации потребителей, то период намного больше и равен 15 мс.

Наибольшее число аварий на подстанциях происходит по причине удара молнии в установку. Сразу страдает изоляция проводников. Величина перенапряжения может достигать сотен киловольт. Для этого предусмотрены защитные приспособления, но иногда они не выдерживают, и наблюдается остаточный потенциал. В эти моменты неисправность не возникает благодаря прочности изоляции.

Продолжительность спада входной величины

Измеренный параметр описывают как провал напряжения, укладывающийся в границы ±0,1U nominal за интервал в несколько десятков миллисекунд. Для сети 220 В изменение показателя допускается до 22 В, если 380 В, то не более 38 В. Глубина спада рассчитывается согласно выражению: ΔU n =(U nominal −U min)/U nominal .

Продолжительность спадла рассчитывается согласно выражению: Δt n =t k −t n , здесь t k — это период, когда напряжение уже восстановилось, а t n — точка начала отсчета, момент когда произошло падение напряжения.

Контроль качества электроэнергии обязывает учитывать частоту появления провалов, определяемую по формуле: Fn=(m(ΔU n ,Δt n)/M)*100%. Здесь:

  • m(ΔU n ,Δt n) определяется как количество спадов в установленное время при глубине ΔU n и продолжительности Δt n .
  • М - общий счет спадов в течение выбранного периода.

Зачем нужна величина спада

Параметр продолжительность спада входной величины требуется для оценки надежности подводящей энергии в количественном выражении. На этот показатель может влиять периодичность аварий на подстанции из-за халатности персонала, молний. Результатом исследования провалов становятся прогнозы по степени отказа в рассматриваемой сети.

Статистика позволяет делать приближенные выводы о стабильности подачи Провайдеру электричества предоставляются рекомендуемые данные для проведения профилактических мероприятий на установках.

Отклонение частоты

Соблюдение частоты в определенных границах относится к необходимому требованию потребителя. При снижении показателя на 1 %, потери составляют более 2 %. Это выражается в экономических затратах, снижение производительности предприятий. Для обычного человека это приводит к повышенным суммам в квитанциях по оплате за электричество.

Скорость вращения асинхронного двигателя напрямую зависит от частоты питающей сети. Нагревающие ТЭНы имеют меньшую производительность при снижении параметра меньше 50 ГЦ. При завышенных значениях может происходить повреждение потребителей либо других механизмов, не рассчитанных на высокий момент вращения.

Отклонение частоты может повлиять на работу электроники. Так на экране телевизора возникают помехи при изменении показателя на ±0,1Гц. Кроме визуальных дефектов, возрастает риск вывода из строя микроэлементов. Методом борьбы с отклонениями качества электроэнергии выступает введение резервных питающих узлов, позволяющих в автоматическом режиме восстанавливать напряжение в установленные промежутки времени.

Коэффициенты

Для нормальной работы питающей сети введен контроль следующих коэффициентов:

  • Несинусоидальности кривой напряжения. Искажение синусоиды происходит за счет мощных потребителей: ТЭНов, конвекционных печей, сварочных аппаратов. При отклонениях этого параметра снижается срок службы обмоток двигателей, нарушается работа релейной автоматики, выходят из строя приводные системы на тиристорном управлении.
  • Временного перенапряжения является количественной оценкой импульсного изменения входной величины.
  • N-ой гармоники является характеристикой синусоидальности получаемой на входе характеристики напряжения. Расчетные значения получают из табличных данных для каждой гармоники.
  • Несимметрия входной величины по обратной или нулевой последовательности важно учитывать для исключения случаев неравномерного распределения фаз. Такие условия возникают чаще при обрыве питающей сети, подключенной по схеме звезды или треугольника.

Виды защиты от непредсказуемых изменений в питающей сети

Повышение качества электроэнергии нужно проводить в определенные законом сроки. Но защиту своего оборудования потребитель вправе выстраивать применением следующих средств:

  • Стабилизаторы питания гарантируют поддержание входной величины в указанных границах. Достигается качественная энергия даже при отклонениях входной величины более чем на 35 %.
  • Источники предназначены для поддержания работоспособности потребителя в течение установленного промежутка времени. Питание приборов происходит за счет накопленной энергии в собственной батарее. При отключении электричества, бесперебойники способны поддерживать работоспособность аппаратуры целого офиса в течение нескольких часов.
  • Приборы защиты от скачков напряжения работают по принципу реле. После превышения входной величины установленного предела происходит размыкание цепи.

Все виды защиты приходится комбинировать для обеспечения полной уверенности в том, что дорогостоящая техника останется целой во время аварии на подстанции.

Не рассматривая неизбежные переходные процессы, приведенные на рис. 10.7, отметим, что длительное повышение или понижение питающей сети приводит к сокращению срока службы двигателей и источников питания. Понижение менее желательно из-за значительного роста тока потребления, нарушения и выхода из строя электроники и вычислительной техники. Отрицательное воздействие оказывает полное пропадание питающего напряжения. Кратковременные всплески и провалы вызываются переходными процессами в электрической системе, сопровождаясь высокочастотными помехами, приводящими к сбою электронной аппаратуры. Всплеск может привести к выходу из строя потребителя, если коммутационная и особенно защитная аппаратура не удовлетворяет требованиям по быстродействию и селективности.

Что влияет на качество электроснабжения

Негативное влияние на силовое электрооборудование и измерительные приборы оказывают длительные искажения кривой напряжения, особенно искажения напряжения, имеющие характер «зазубрин», вызванные коммутацией силовых тиристоров и диодов в мощных источниках искажения. Наиболее опасными являются искажения кривой жения через ноль. Эти искажения могут вызвать дополнительные коммутации диодов маломощных источников питания, ускорение старения конденсаторов, сбой компьютеров и принтеров и другой аппаратуры.

Проблема качества в отечественных электрических сетях очень специфична. Во всех промышленно развитых странах подключение мощных нелинейных нагрузок, искажающих форму кривых тока и электрической сети, допускается только при соблюдении требований по обеспечению качества электроэнергии и при наличии соответствующих корректирующих устройств. При этом суммарная мощность вновь вводимой нелинейной нагрузки не должна превышать 3…5% от мощности всей нагрузки энергокомпании. Иная картина наблюдается в нашей стране, где такие потребители подключаются достаточно хаотично.

Выдача технических условий на присоединение во многом формальна из-за отсутствия четких методик и массовых сертифицированных приборов, фиксирующих «кто виноват». При этом промышленностью практически не выпускались необходимые фильтрокомпенсирующие, симметрирующие, многофункциональные оптимизирующие устройства и др.

В результате электрические сети России оказались перенасыщенными искажающим оборудованием.

В отдельных регионах сформировались уникальные по своей мощности и степени искаженности кривых тока и комплексы электрических сетей энергосистем и распределительных сетей потребителей, что существенно обострило проблему электроснабжения потребителей качественной электроэнергией.

Для определения соответствия значений измеряемых показателей качества электроэнергии нормам стандарта, за исключением длительности провала напряжения, импульсного напряжения, коэффициента временного перенапряжения, устанавливается минимальный интервал времени измерений, равный 24 ч, соответствующий расчетному периоду. Общая продолжительность измерений ПКЭ должна быть выбрана с учетом обязательного включения характерных для измеряемых ПКЭ рабочих и выходных дней. Рекомендуемая общая продолжительность измерения составляет 7 сут. Сопоставление ПКЭ с нормами стандарта необходимо производить за каждые сутки общей продолжительности измерений отдельно для каждого ПКЭ. Кроме того, измерения ПКЭ следует проводить по требованию энергоснабжающей организации или потребителя, а также до и после подключения нового потребителя.

Методов повышения качества электроэнергии

Существуют три основные группы методов повышения качества электроэнергии :

  1. рационализация электроснабжения, заключающаяся, в частности, в повышении мощности сети, в питании нелинейных потребителей повышенным напряжением;
  2. улучшение структуры 1УР, например обеспечение номинальной загрузки двигателей, использование многофазных схем выпрямления, включение в состав потребителя корректирующих устройств;
  3. использование устройств коррекции качества - регуляторов одного или нескольких показателей качества электроэнергии или связанных с ними параметров потребляемой мощности.

Экономически наиболее предпочтительной является третья группа, так как изменение структуры сети и потребителей ведет к значительным затратам.

Проектирование же новых сетей потребителей необходимо вести с учетом современных требований к качеству, ориентируясь на разработку регуляторов качества электроэнергии различных типов. Целенаправленное воздействие на изменение одного вида искажений вызывает косвенное воздействие на другие виды искажений. Например, компенсация колебаний напряжениявызывает снижение уровней гармоник и приводит к изменению отклонений напряжения.

Отклонения являются медленными и вызываются или изменением уровня в центре питания, или потерями в элементах сети (рис. 10.8). требования по отклонениям для последних электроприемников не выполняются изза значительных потерь в кабельной линии и на шинах питания. суммарные потери л /ц.п, %, определяют по выражению:


Анализируя эпюру (см. рис. 10.8), можно сделать вывод, что обеспечить требования по отклонениям можно за счет регулирования в центре питания (гпп, рп) и путем снижения потерь в элементах сети.


Регулирование реализуется с помощью изменения коэффициента трансформации питающего трансформатора. для этого трансформаторы оснащаются средствами регулирования под нагрузкой (рпн) или имеют возможность переключения отпаек регулировочных ответвлений без возбуждения (пбв), т. е. с отключением их от сети на время переключения ответвлений. трансформаторы с рпн позволяют регулировать в диапазоне от ±10 до ±15 % с дискретностью 1,25…2,50%. трансформаторы с пбв обычно имеют регулировочный диапазон ±5 %.

Снижение потерь в питающих линиях или кабелях может быть реализовано за счет снижения активного и (или) реактивного сопротивления. Снижение сопротивления достигается путем увеличения сечения проводов или применением устройств продольной компенсации (УПК).

Продольная емкостная компенсация параметров линии заключается в последовательном включении конденсаторов в рассечку линии, благодаря чему ее реактивное сопротивление уменьшается: Х’л= XL ХC< Хл.

Колебания в системе электроснабжения промышленного предприятия вызываются набросами реактивной мощности нагрузок. В отличие от отклонений колебания происходят значительно быстрее. Частоты повторения колебаний достигают 10… 15 Гц при скоростях набросов реактивной мощности до десятков и даже сотен мегавар в секунду. Размах колебаний напряжений


Из выражения (10.33) следует, что для снижения bU, необходимо уменьшить Хкз или набросы реактивной мощности нагрузки QH, для снижения которых должны применяться быстродействующие источники реактивной мощности, способные обеспечить скорости набросов реактивной мощности, соизмеримые с характером изменения нагрузки. При этом выполняется условие

Подключение ИРМ приводит к снижению амплитуд колебаний результирующей реактивной мощности, но увеличивает их эквивалентную частоту. При недостаточном быстродействии применение ИРМ может привести даже к ухудшению положения.

Для снижения влияния резкопеременной нагрузки на чувствительные электроприемники применяют способ разделения нагрузок, при котором наиболее часто применяют сдвоенные реакторы, трансформаторы трехобмоточные, с расщепленной обмоткой или питают нагрузки от различных трансформаторов. Эффект использования сдвоенного реактора основан на том, что коэффициент взаимоиндукции между обмотками сдвоенного реактора не равен нулю, а падение напряжения, уменьшающееся на 50…60 % за счет магнитной связи обмоток реактора, в каждой секции определяется по формулам:

где Км - коэффициент взаимоиндукции между обмотками секций реактора; XL - индуктивное сопротивление секции обмотки реактора.

Трансформаторы с расщепленной обмоткой позволяют подключать к одной ветви обмотки низшего резкопеременную нагрузку (источник искажений), а к другой - стабильную. Связь между изменениями в обмотках определяется по выражению


Снижение несимметрии напряжении достигается уменьшением сопротивления сети токам обратной и нулевой последовательностей и снижением значений самих токов. Учитывая, что сопротивления внешней сети (трансформаторов, кабелей, линий) одинаковы для прямой и обратной последовательностей, снизить эти сопротивления возможно лишь путем подключения несимметричной нагрузки к отдельному трансформатору.

Основным источником несимметрии являются однофазные нагрузки. При соотношении между мощностью короткого замыкания в узле сети SK 3 к мощности однофазной нагрузки больше 50 коэффициент обратной последовательности обычно не превышает 2 %, что соответствует требованиям ГОСТ.

Снизить несимметрию можно, увеличив SK3 на зажимах нагрузки. Это достигается, например, подключением мощных однофазных нагрузок через собственный трансформатор на шины 110 - 220 кВ. Снижение систематической несимметрии в сетях низкого осуществляется рациональным распределением однофазных нагрузок между фазами с таким расчетом, чтобы сопротивления этих нагрузок были примерно равны между собой. Если несимметрию не удается снизить с помощью схемных решений, то применяются специальные устройства.

В качестве таких симметрирующих устройств применяют несимметричное включение конденсаторных батарей (рис. 10.9, а) или специальные схемы симметрирования (рис. 10.9, б) однофазных нагрузок.


Если несимметрия меняется по вероятностному закону, тодля ее снижения применяются автоматические симметрирующие устройства, в схемах которых конденсаторы и реакторы набираются из нескольких небольших параллельных групп и подключаются в зависимости от изменения тока или обратной последовательности (недостаток - дополнительные потери в реакторах). Ряд устройств основан на базе применения трансформаторов, например трансформаторов с вращающимся магнитным полем, представляющим собой несимметричную нагрузку, или трансформаторов, позволяющих осуществить пофазное регулирование напряжения.

Как уменьшить несинусоидальность напряжения

Снижение несинусоидального достигается:

  • схемными решениями: выделение нелинейных нагрузок на отдельную систему шин; рассредоточение нагрузок по различным узлам питания с подключением параллельно им электродвигателей; группировка преобразователей по схеме умножения фаз; подключение нагрузки к системе с большей мощностью SK 3;
  • использованием фильтровых устройств: включение параллельно нагрузке узкополосных резонансных фильтров; включение фильтрокомпенсирующих устройств; применение фильтросимметрирующих устройств; применение ИРМ, содержащих фильтрокомпенсирутощие устройства;
  • применением специального оборудования, характеризующегося пониженным уровнем генерации высших гармоник: использование «ненасыщающихся» трансформаторов; применение многофазных преобразователей с улучшенными энергетическими показателями.

Развитие современной базы силовой электроники и методов высокочастотной модуляции привело к созданию устройств, улучшающих качество электроэнергии - активных фильтров, подразделяемых на последовательные и параллельные, на источники тока и напряжения. Это привело к получению четырех базовых схем (рис. 10.10).


В качестве накопителя энергии в преобразователе, служащем источником тока, используется индуктивность, а в преобразователе, служащем источником напряжения, используется емкость. Схема замещения силового резонансного фильтра приведена на рис. 10.11.

Сопротивление фильтра Z на частоте со равно При XL = Хс на частоте со наступает резонанс напряжений, означающий, что сопротивление фильтра для гармонической составляющей с частотой со равно 0.

При этом гармонические составляющие с частотой со будут поглощаться фильтром и не будут проникать в сеть. На этом явлении основан принцип построения резонансных фильтров.


В сетях с нелинейными нагрузками возникают, как правило, гармоники канонического ряда, порядковый номер которых v = 3, 5, 7,… Уровни гармоник с таким порядковым номером обычно убывают с увеличением частоты. Поэтому на практике применяют цепочки из параллельно включенных фильтров, настроенных на 3, 5, 7 и 11ю гармоники. Такие устройства называются узкополосными резонансными фильтрами. Если XL и Хс - сопротивление реактора и конденсаторной батареи на основной частоте, то, используя выражение (10.38), получаем

Фильтр, который помимо фильтрации гармоники будет генерировать реактивную мощность и компенсировать потери мощности в сети и напряжения, называется фильтрокомпенсирующим (ФКУ).

Если устройство помимо фильтрации высших гармоник выполняет функции симметрирования напряжения, то такое устройство называется филыросимметрирующим (ФСУ). Конструктивно ФСУ представляют собой несимметричный фильтр, включенный на линейное сети. Выбор линейных напряжений, на которые подключаются фильтрующие цепи ФСУ, а также соотношения мощностей конденсаторов*, включенных в фазы фильтра, определяются условиями симметрирования напряжения.

Таким образом, устройства типа ФКУ и ФСУ воздействуют одновременно на несколько показателей (несинусоидальность, несимметрия, отклонения напряжения). Такие устройства для повышения качества электрической энергии получили название многофункциональных оптимизирующих устройств (рис. 10.12). Целесообразность их разработки заключается в том, что резкопеременные нагрузки типа ДСП вызывают одновременное искажение по ряду показателей, что и потребовало комплексного решения проблемы.

К категории таких устройств относятся быстродействукшше статические источники реактивной мощности. По принципу регулирования реактивной мощности их можно подразделить на ИРМ прямой и косвенной компенсации. Такие устройства, обладая высоким быстродействием, позволяют снижать колебания напряжения. Пофазное регулирование и наличие фильтров обеспечивают симметрирование и снижение уровней высших гармоник.


При разработке стратегии повышения качества электроэнергии в электрических сетях и обеспечения условий электромагнитной совместимости следует учитывать, что для исправления положения необходимы значительные материальные ресурсы и достаточно продолжительный период времени. Разработка всего комплекса мероприятий требует технической и экономической оценки последствий пониженного качества, что затруднено в силу следующих обстоятельств:

  • воздействие качества электроэнергии на качество и количество выпускаемой продукции, а также на сроки службы электроприемников носит интегральный характер; изменения большинства показателей качества во времени являются стохастическими в силу их за висимости от режимов работы большого числа электроприемников;
  • последствия пониженного качества электроэнергии часто проявляются в окончательном продукте, на качественные и количественные характеристики которого воздействуют и другие факторы;
  • отсутствие данных отчетного характера, позволяющих установить причинноследственные связи между реальными показателями качества, с одной стороны, и работой электрооборудования и качеством выпускаемой продукции - с другой;
  • слабая оснащенность отечественных электрических сетей средствами измерения показателей качества электроэнергии.

Тем не менее для обеспечения требуемых ГОСТ 13109 - 97 показателей необходимо выполнение комплекса организационных и технических мероприятий, направленных на установление причин и источников нарушений и заключающихся в индивидуальном и централизованном подавлении помех с обеспечением повышенной помехозащищенности чувствительных к искажениям электроприемников.

Проблеме обеспечения качества электрической энергии (КЭ) в электроэнергетических системах России всегда уделялось большое внимание . Разработано много методик составления общих схем замещения систем электроснабжения с несинусоидальной и несимметричной нагрузкой с учетом взаимного влияния энергопотребителей .

В настоящее время практического решения этой проблемы не наблюдается в связи с отсутствием рычагов управления на законодательном уровне. До сих пор в стране не утвержден регламент по качеству электрической энергии. Сертификация электрической энергии в России по двум показателям (установившееся отклонение напряжения и отклонение частоты) не способна решить задачу обеспечения качества в сетях электроснабжения даже в малой степени. Во многом это является принудительным и затратным мероприятием для сетевых организаций, а неплатежи абонентов еще более осложняют эту задачу.

Вместе с тем уже сейчас можно сделать значительный шаг в направлении обеспечения требуемого уровня КЭ сетевых энергосистем (СЭС), затрачивая при этом со стороны сетевых компаний незначительные средства. Речь идет о постепенном переходе к принципам экономической заинтересованности всех сторон в обеспечении требуемого КЭ, которая определяется степенью искажения напряжения электрической сети за счет помех, вносимых как энергоснабжающей организацией, так и потребителями.

Ключевыми здесь являются следующие моменты:

Практическое введение договорных обязательств о разделении взаимной ответственности за КЭ между поставщиками и потребителями электроэнергии;

Разработка системы мер экономического поощрения или наказания в зависимости от воздействия субъекта СЭС на КЭ в сети;

Разработка технических средств измерения и их серийного производства, которые позволят инструментально реализовывать принятые экономические меры;
- введение обязательной сертификации всех вновь присоединяемых и реконструируемых потребителей и электрических станций по допустимому вкладу (эмиссии) в искажения напряжения.

Для обеспечения качества электроэнергии в системах электроснабжения необходимо решить основные задачи:

1.Необходимо разработать и официально утвердить методику определения виновника искажений ПКЭ

2.Обеспечить применение средств учета электроэнергии при одновременном непрерывном контроле ее качества.

Принятая в настоящее время система скидок и надбавок является, по существу, поощрительной и на практике, насколько нам известно, еще не применялась. Одной из основных причин здесь является то, что в настоящее время отсутствуют приборы, которые измеряли бы показатели качества электроэнергии (ПКЭ) на достаточно длительных интервалах времени (не менее месяца) с одновременным учетом потребленной электроэнергии и определением виновника вносимых искажений. Ключевую роль в этом вопросе должно сыграть широкое применение счетчика электрической энергии, который осуществляет расчет за потребленную (отпущенную) электроэнергию в зависимости от показателей ее качества. Такой прибор должен иметь высокую точность (класс 0,5) и измерять одновременно активные и реактивные мощности (в том числе и мощности искажений) во всех квадрантах.

Качество электроэнергии проявляется через качество работы каждого электроприемника. Современные электрические приборы в том числе и бытовые обязательно оснащены стабилизирующим блоком питания (холодильник, кондиционер, стиральная, посудомоечная машина, компьютер и телевизор), они призваны стабилизировать показатели качества электрической энергии с целью максимально продлить срок службы самого прибора. Но формируя пригодные показатели для питания приборов, они неминуемо портят кривые тока и напряжения в сети 220В из-за генерации ими высших гармоник. Это происходит даже на режиме холостого хода, когда телевизор включен в сеть, но не работает.

Генерируемые гармоники оказывают стимулирующий эффект на счетчики электроэнергии, они «разгоняют» счетчик, заставляют его работать в пределах своей погрешности, но в диапазоне завышения значений.

Почему же так важно для потребителя обращать внимание на класс точности? Какую погрешность счетчика выбрать выгоднее?

При сравнении, разница показаний в погрешностях между классом точности 0,5 и 1,0 электросчетчика составляет 3,0%. Годовая переплата за погрешность в измерениях электрической энергии составит около 30% от стоимости счётчика, за три года такая покупка полностью окупит себя.

С учетом постоянного роста стоимости электрической энергии, использование счётчика с классом точности 0,5 позволит точно учитывать потребление и экономить свой бюджет.

Наилучшим решением для потребителя по замене электронного прибора по учёту электрической энергии будет счётчик с классом точности 0,5.

ЛИТЕРАТУРА

1. ГОСТ 13109-97. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. – Минск: Межгос. совет по стандартизации, метрологии и сертификации, 1998.

2. РД 153-34.0-15.502-2002. Методические указания по контролю и анализу качества электрической энергии в системах электроснабжения общего назначения.– М.: Энергосервис, 2002.

3. Г.С. Кудряшев, А.Н. Третьяков, О.Н. Шпак, Рахмет Халымийн // Актуальные проблемы эксплуатации машинно-тракторного парка, технического сервиса, энергетики и экологической безопасности в АПК.– Иркутск: ИрГСХА, 2007.

УДК 621.311

Развитие полупроводниковой технологии обеспечило нам невероятные преимущества, однако следует учитывать тот факт, что микроэлектроника, лежащая в основе данной технологии, требует качественного электропитания. Увеличение быстродействия и использование все более низкого напряжения приводит к постоянному повышению требований к качеству электроэнергии.

К вопросам качества электроэнергии относятся различные аспекты: возмущения напряжения (провалы, всплески, утечки и переходные процессы), гармонические токи, наличие проводки и заземления высокого класса. Симптомами низкого качества электроэнергии являются периодические блокировки и перезагрузки оборудования, повреждение данных, преждевременный выход оборудования из строя, перегрев компонентов без видимых причин и т.д. Все это ведет к простоям оборудования, снижению производительности и раздражает ваших работников.

Начальный осмотр в точке, где присутствуют неисправности

Одним из подходов к диагностике неисправностей, связанных с качеством электроэнергии, является проверка в точке, которая расположена максимально близко к потребителю, испытывающему проблемы. Данный потребитель обычно является электронным устройством, чувствительным к качеству электроэнергии и испытывающим некоторые неполадки. Возможная причина заключается в низком качестве электроэнергии, однако частью вашей работы является отделить данную причину от других возможных причин (неисправность оборудования, сбой программного обеспечения и т.д.) Подобно детективу, вам необходимо начать работу с осмотра "места преступления". Такой подход, как проверка в восходящем направлении может отнять много времени. Он основан на внимательности и выполнении измерений основных параметров.

Альтернативным методом является движение от ввода в электросистему здания к точке возникновения неисправностей, используя трехфазный контрольный прибор. Подобный подход имеет максимальную эффективность, если причина неисправности находится в сети электроснабжения.

Тем не менее, на основе многочисленных проверок был сделан вывод, что причины подавляющего большинства проблем с качеством электроэнергии находятся на предприятиях (в зданиях). Как правило, наилучшее качество электроэнергии наблюдается на входе в электрическую систему здания (в точке подключения к коммунальным сетям электропитания). По мере движения по распределительной системе качество электроэнергии постепенно снижается. Это связано с проблемами, источником которых являются потребители, расположенные в здании. Другим характерным фактом является то, что 75 % всех проблем с качеством электроэнергии связано с проводкой и заземлением!

По этой причине многие службы, контролирующие качество электроэнергии, считают, что процесс диагностики неисправностей необходимо начинать с электрической системы здания, а затем, при необходимости, использовать контрольные приборы в точке подключения к коммунальным сетям. Ниже приведена процедура диагностики неисправности, основанная на восходящем подходе и призванная помочь вам выполнить данную работу.

Первый этап

1. Используйте схему: найдите или нарисуйте однолинейную электрическую схему

Выполнить диагностику качества электроэнергии будет затруднительно, если не ознакомиться с системой, используемой в месте, где вы проводите работы. Можно начать работу с поиска готовой схемы или создания однолинейной электрической схемы. На однолинейной схеме будут указаны источники питания переменного тока и обслуживаемые ими потребители. Вам нужна исходная схема электрической системы.

Упрощенная схема электрической распределительной системы, которая является типичной для коммерческих и промышленных зданий.

Если вы работаете на данном предприятии или в этом здании, то, возможно, вы четко представляете себе схему электрической системы, однако для облегчения вашей работы и работы других людей рекомендуется нанести схему на бумагу. Если вы впервые пришли на данную рабочую площадку, необходимо получить наиболее свежую схему электрической системы, на которой указаны новые потребители и недавние изменения, внесенные в систему. Для чего это нужно? Электрические системы не являются статическими, со временем в них вносятся изменения, зачастую незапланированные и достаточно опасные. Кроме того, несмотря на то, что некоторые неисправности носят локальный характер, существует множество проблем, вызванных взаимодействием между различными частями системы. Ваша работа заключается в том, чтобы обнаружить данные взаимодействия в системе.

Однако верным является и то, что предприятия, испытывающие наибольшее количество проблем, обычно не склонны вести точные записи об изменениях системы. Множество консультантов зарабатывают свой гонорар тем, что обновляют полученную документацию в соответствии с реальным состоянием электрической системы. Таким образом, первое правило звучит достаточно просто: старайтесь получить наиболее полную документацию, но не рассчитывайте, что она имеется в наличии.

2. Проведите обход объекта

Иногда визуальный осмотр позволяет найти признаки неисправностей:

· Перегревающийся трансформатор

· Изменившийся вследствие перегрева цвет проводки или соединений

· Многочисленные удлинители, подключенные к одной электрической розетке

· Сигнальные провода, уложенные в один кабелепровод с силовыми кабелями

· Нежелательные соединения нейтрали с землей в промежуточных распределительных щитах.

· Провода заземления, подключенные к трубам, которые заканчиваются в воздухе.

Как минимум, вы получите представление о схеме, состоянии проводки и типах потребителей, используемых на объекте.

3. Поговорите с персоналом, который испытывает проблемы с оборудованием, и запишите время возникновения неисправностей

Поговорите с людьми, которые работают на проблемном оборудовании. Вы получите описание проблемы и, возможно, неожиданные подсказки к ее решению. Также рекомендуется записать время возникновения неисправностей и их признаки. Это особенно важно для проблем, имеющих периодический характер. Нужно постараться найти какую-то систему, которая поможет установить связь между возникновением неисправности и одновременным событием в другой части системы. Обычно, ведение журнала неисправностей должно являться обязанностью оператора, работающего рядом с оборудованием, на котором возникают неисправности.

Перечень причин ухудшения качества электроэнергии

От коммунальных сетей электропитания до электрической розетки

Молнии

Молнии могут носить чрезвычайно разрушительный характер при отсутствии соответствующей системы защиты от перенапряжений. При далеком ударе молнии могут возникать провалы напряжения и наблюдаться пониженное напряжение в коммунальной сети электропитания. При близких ударах молнии возникают всплески напряжения и повышенное напряжение. Но, по здравом рассуждении, молнии являются всего лишь природным явлением, и не относятся к категории проблем, которые люди создают себе сами.

Повторное срабатывание автоматических выключателей в коммунальной сети

Вызывает кратковременные провалы и пропадания напряжения, однако, это лучше, чем долговременные перебои электропитания.

Переключение конденсаторов в коммунальной сети

Вызывает резкие отклонения напряжения (проявляются в виде колебательных переходных процессов на линии кривой напряжения). Если блок конденсаторов расположен рядом с объектом, то переходные процессы могут распространиться на всю электрическую систему здания.

Коммерческие высотные здания, не оснащенные распределительными трансформаторами достаточной мощности

Попытки сэкономить средства в неподходящих случаях за счет установки распределительных трансформаторов с напряжением 208 В в зданиях выше 20 этажей никоим образом не ведут к улучшению качества электроэнергии.

Генераторные установки, не соответствующие гармоническим нагрузкам

Чрезмерные искажения напряжения влияют на электронные цепи управления. При наличии в системе потребителей, оснащенных преобразователями с полупроводниковыми выпрямителями, искажение напряжения может повлиять на цепи коррекции частоты.

Применение конденсаторов коррекции коэффициента мощности без обеспечения компенсации гармоник

Гармоники и конденсаторы несовместимы друг с другом. Наличие подобных конденсаторов требует немедленного вмешательства.

Пусковые токи от высокомоментных электродвигателей, использующих прямой пуск

Вызывают провалы напряжения при слишком большой нагрузке или слишком большом полном сопротивлении источника питания. Применение ступенчатого запуска двигателей поможет устранить проблемы.

Нейтральные провода с недостаточным сечением в распределительном щите

При наличии 3-й гармоники на нейтральных проводах может присутствовать ток, значение которого равно или превышает значение тока в фазном проводе. Недостаточное сечение нейтральных проводов приводит к их перегреву, повышает опасность возгорания и увеличивает напряжение "нейтраль-земля".

Близкое расположение силовых и сигнальных кабелей

В данном случае сигнальный кабель исполняет роль однопроводной вторичной обмотки трансформатора, а силовой кабель - первичной обмотки. Количество последствий подобного взаимодействия является бесконечным.

Ослабленные соединения проводов и недостаточные характеристики провода заземления

Приводят к разрыву цепи заземления или к высокому полному сопротивлению данной цепи. Подобная ситуация негативно влияет на качество электроэнергии и на безопасность.

Изолированный стержень заземления может вызывать замыкания через заземление.

Стандартная проблема для станков с ЧПУ.

Общий нейтральный провод в ответвленных цепях является причиной взаимодействия потребителей и перегрузки нейтралей.

Лазерные принтеры и копировальные аппараты, установленные в одной цепи с потребителями, чувствительными к качеству электроэнергии

Неизбежные периодические провалы напряжения и переходные процессы при переключении.

Неправильное подключение электрических розеток (перепутаны подключения к нейтрали и земле)

Трудно поверить, но подобных случаев не так уж мало. При этом неизбежно возникновение обратных токов в проводе заземления и помех на "земле".

Кабели данных, каждый конец которых подключен к разным соединениям с "землей"

При этом возникает напряжение между корпусом оборудования и разъемом кабеля данных.

Высокочастотные помехи

Наиболее эффективной технологией заземления высокочастотных помех является использование опорной сетки сигналов ( SRG ).

Классы

Изолированные заземляющие стержни (см. ниже)

Представляют собой высокую опасность, так как земля является проводником с высоким полным сопротивлением, что не позволит току с достаточным для отключения значением дойти до автоматического выключателя. При этом также возникают замыкания через заземление (в конце концов, каждый электрон должен вернуться туда, откуда он начал свой путь). Одной из величайших тайн для консультантов по качеству электроэнергии является тот факт, что некоторые производители оборудования могут настаивать на прекращении гарантии на свое оборудование, если не установлен изолированный заземляющий стержень.

Недопустимые соединения между нейтралью и землей

Обеспечивают неизбежное появление в контуре заземления обратных токов. Это проблема не только качества электропитания, но и водоснабжения. Циркулирующие токи на землю вызывают коррозию водопроводных труб.

Международные стандарты безопасности для измерительного оборудования

Краткое описание

CAT IV *

Три фазы в точке подключения к коммунальным сетям электропитания, все провода наружной установки (ниже 1000 В)

CAT III

Распределение трехфазного тока (ниже 1000 В), включая однофазные системы освещения и распределительные щиты

CAT II

Нагрузки, подключаемые к однофазным электрическим розеткам

CAT I

Электроника

*Характеристики устройств категории CAT IV еще не определены в стандарте.

Стандарт IEC 61010 устанавливает международные требования по безопасности для электрического оборудования низкого (1000 В или меньше) напряжения для выполнения измерений, регулировок или лабораторного использования. Распределительные системы низкого напряжения делятся на 4 категории в соответствии с удаленностью от источника питания. Внутри каждой категории есть подгруппы по напряжению – 1000 В, 600 В, 300 В и т.д.

Основным критерием является тот факт, что вы должны использовать измерительные приборы с максимальной категорией и максимальным напряжением, которое присутствует на объекте. Таким образом, консультанты по качеству электроэнергии должны использовать приборы категории CAT III 600 В или CAT III 1000 В (характеристики категории CAT IV еще не определены IEC ). Мы не рекомендуем использовать измерительные приборы, индикаторы, измерительные провода и щупы категории CAT II в контурах, соответствующих категории CAT III . На входах напряжения приборов необходимо нанести маркировку категории CAT . Измерительные приборы, изготовленные в соответствии с предыдущей версией стандарта, IEC 348, обычно не отвечают более жестким требованиям по безопасности стандарта IEC 61010 CAT III 600/1000 В.

Стандарт IEC 61010 требует повышенной защиты от переходных перенапряжений. Переходные процессы могут вызвать дуговой пробой внутри прибора, не имеющего соответствующей защиты. При возникновении дугового пробоя в зоне с высоким напряжением, например в трехфазной питающей линии, может произойти опасный дуговой разряд. В связи с этим существует опасность серьезных травм персонала и повреждения прибора.

Независимые испытания и сертификация

Производители могут самостоятельно выполнить сертификацию на соответствие стандарту IEC 61010, однако для конечных пользователей процесс сертификации представляет очевидные трудности. Сертификация, выполненная независимыми лабораториями, даст гарантию того, что приборы соответствуют требованиям IEC .

Посмотрите на символ и порядковый номер маркировки независимой испытательной лаборатории: UL , CSA , T ? V , VDE , и т.д. Так, например, UL 3111, означает соответствие стандарту IEC 61010.