Химическая промышленность и экологические проблемы химии. Экологические проблемы химической промышленности и их решение: опыт басф

Причины воздействия на окружающую среду

По интенсивности воздействия на окружающую среду промышленное производство оказывает одно из самых сильных воздействий. Основной причиной являются устаревшие технологии на производстве и чрезмерная концентрация производств на одной территории или в пределах одного предприятия. На большинстве крупных предприятий отсутствует система экологической защиты или она достаточно простая.

Замечание 1

Большая часть отходов промышленного производства возвращается в окружающую среду в виде отходов. В готовой продукции в основном используется 1-2% сырья, остальное выбрасывается в биосферу, загрязняя ее компоненты.

Основные источники загрязнения

В зависимости от характера воздействия промышленности на окружающую среду комплексы промышленного производства делят на:

  • топливно-энергетический,
  • металлургический,
  • химико-лесной
  • строительный

Основное загрязнение атмосферы приходится на газообразный диоксид серы. [Замечание]

Газообразный диоксид серы –это соединение серы с кислородом.

Данный вид загрязнения носит разрушающий характер. В процессе выброса в атмосфере накапливается серная кислота, которая в дальнейшим является результатом возникновения кислотных дождей. Основными источниками загрязнения являются изделия автомобильной промышленности, использующие в своей эксплуатации серосодержащие угли, нефть и газ.

Помимо этого, на окружающую среду огромное воздействие оказывает черная и цветная металлургия, воздействие химической промышленности. В результате выхлопных газов концентрация вредных веществ с каждым годом растет.

По результатам статистических данных доля вредных веществ в США составляет 60% от общего объема всех вредных веществ.

Рост производства достаточно серьезный. С каждым годом индустриализация преподносит человечеству все новые технологии, которые разгоняют промышленные мощности. К сожалению, защитных мероприятий становится недостаточно, чтобы снизить образовывающийся уровень загрязнения.

Меры по предотвращению экологических катастроф

В основном экологические катастрофы происходят либо в результате человеческой халатности, либо в результате износа оборудования. Средства, которые можно было сэкономить от предотвращенных в свое время аварий можно было бы направить на реконструированние топливно-энергетического комплекса. Это в свою очередь существенно снизило бы уровень энергоемкости экономики.

В результате нерационального природопользования наносится непоправимы ущерб природе. Для того, чтобы разобрать ключевые меры предотвращения загрязнений, необходимо в-первую очередь провести взаимосвязь результатов хозяйственной деятельности и показателями экологичности выпускаемой продукции, технологией ее производства.

От производств данное мероприятие требует значительных затрат, которые необходимо закладывать в планируемое производство. На предприятие необходимо разграничить затраты на три составляющие:

  • затраты на производство,
  • затраты на окружающую среду,
  • затраты на производство продукта до экологического качества или замена продукта на более экологичный.

В России основной промышленности является производство нефти и газа. Несмотря на то, что объемы производство на современном этапе имеют тенденцию к снижению, топливно-энергетический комплекс является крупнейшим источником промышленного загрязнения. Проблемы с экологией начинаются уже на стадии добычи сырья и транспортировки.

Каждый год случается больше 20тыс аварий, связанных с разливом нефти, которая попадает в водоемы и сопровождается гибелью флоры и фауны. Помимо этого аварии несут значительные экономические потери.

Для того, чтобы максимально предотвратить распространение экологической катастрофы - транспортировку нефти экологичнее всего распространять по трубопроводам.

Данный вид транспортировки включает в себя не только систему труб, но и насосные станции, компрессоры и много другое.

Замечание 2

Несмотря на экологичность и надежность данной системы не проходит дело без аварий. Так как около 40% системы трубопроводного транспорта изношено и срок эксплуатации давно истек. С годами на трубах проявляются дефекты, происходит коррозия металла.

Так одной из самых серьезных аварий за последнее время является прорыв нефтепровода. В результате данной аварии в реке Белая оказалось около 1000т нефти. По подсчетам статистики ежегодно экология России терпит ущерб от 700 инцидентов, связанных с разливом нефти. Данные аварии приводят к необратимым процессам в окружающей среде.

Производство нефти и буровое оборудование функционирует в достаточно сложных условиях. Перегрузки, статическое, динамическое напряжение, высокое давление приводит к износу оборудования.

Особое внимание стоит уделить устаревшим станкам-качалкам. При использовании многофазных насосов повышается экологическая безопасность и экономическая эффективность. Помимо этого, появляется возможность утилизировать полученный газ более экономичным и экологичным способ. На сегодняшний день газ из скважины сжигают, хотя для химической промышленности данный газ является достаточно ценным сырьем.

По данным ученых за несколько лет нагрузка на окружающую среду выросла в 2-3 раза. Растет потребление чистой воды, которое беспощадно тратят в промышленном производстве и в сельском хозяйстве.

Проблема чистой воды стала настолько острой на современном этапе человеческого развития, что часто уровень обеспеченности водой устанавливает уровень промышленности и рост городов.

Несмотря на неутешительные прогнозы, государства, развивающихся стран стали уделять большое внимание очистке и контролю за экологической безопасностью. Новые производства не получаю допуск без установки и пуска очистительных сооружений.

В вопросах экологии необходим серьезный вопрос государственного регулирования.

Начало XX в. ознаменовалось в химической промышленности большими успехами в деле использования азота воздуха. Развитие промышленности органического синтеза и нефтехимии привели к значительному росту спроса на хлор, поскольку хлорирование пока незаменимая стадия многих процессов. Химическая промышленность из промышленности неорганических веществ (сода, серная кислота, соляная кислота, затем производство удобрений) превратилась в промышленность нефтехимического синтеза. Этот процесс сопровождался изменением сырьевой базы - сперва лишь каменная соль, известняк, пирит, затем чилийская селитра, фосфориты, калийные соли. С развитием органической химии важнейшим сырьем химической промышленности становится уголь. Возникает коксохимическая промышленность. Однако с развитием химической промышленности увеличились проблемы загрязнения окружающей среды, встали вопросы охраны окружающей среды и т.п.

Сырье химической промышленности, связь с охраной окружающей среды. Сырьевая база химической промышленности дифференцируется в зависимости от природных и экономических особенностей отдельных стран и регионов. В одних районах - это уголь, коксовый газ, в других - нефть, сопутствующие нефтяные газы, соли, серный колчедан, газовые отходы черной и цветной металлургии, в третьей - поваренная соль и др.

Сырьевой фактор влияет на специализацию территориальных сочетаний химических производств. Химическое производство по мере совершенствования технологических методов может в свою очередь влиять на сырьевую базу. Химическая промышленность связана со многими отраслями. Она комбинируется с нефтепереработкой, коксованием угля, черной и цветной металлургией, лесной промышленностью.

Химическая промышленность и проблемы охраны окружающей среды. Химические загрязнения - твердые, газообразные и жидкие вещества, химические элементы и соединения искусственного происхождения, которые поступают в биосферу, нарушая установленные природой процессы круговорота веществ и энергии. Наиболее распространенными вредными газовыми загрязнителями являются: оксиды серы (серы) - SO2, SO3; сероводород (Н2S); сероуглерод (СS2); оксиды азота (азота) - Nox; бензпирен; аммиак; соединения хлора; соединения фтора; сероводород; углеводороды; синтетические поверхностно -активные вещества; канцерогены; тяжелые металлы; оксиды углерода - СО, СО2.

К концу XX в. загрязнение окружающей среды отходами, выбросами, сточными водами всех видов промышленного производства, сельского хозяйства, коммунального хозяйства городов приобрело глобальный характер и поставило человечество на грань экологической катастрофы. Современный быт, который в значительной степени изменился благодаря широкому использованию химических продуктов, превратился в опасный источник загрязнения биосферы. Бытовые отходы содержат значительное количество синтетических и искусственных веществ, которые не усваиваются в природе. А значит надолго выбывают из природных геохимических циклов. Сжигание бытовых отходов часто невозможно из-за того, что окружающая среда загрязняется токсичными продуктами сгорания (сажа, полициклические ароматические углеводороды, хлорорганические соединения, соляная кислота и т.д.). Поэтому возникают свалки отработанных автопокрышек и пластиковых упаковок. Такие свалки оказываются хорошими экологическими нишами для крыс и сопутствующих микроорганизмов. Не исключены и случаи пожаров, которые могут превратить целые районы в зону экологического бедствия (снижение прозрачности атмосферы, токсичные продукты горения и т.д.). Поэтому остро стоит проблема создания полимеров, которые в естественных условиях быстро саморазрушаются и возвращаются к нормальному геохимическому круговороту.

Особую группу составляют производство боевых отравляющих веществ, лекарств и средств защиты растений, поскольку это синтез биологически активных веществ. Прежде всего со значительным риском связан сам процесс производства, поскольку персонал постоянно работает в атмосфере с повышенной концентрацией этих веществ. Значительные сложности связаны с хранением, а как теперь выяснилось, и с уничтожением боевых отравляющих веществ. Химические средства защиты растений, или ядохимикаты, предназначенные специально для распыления в биосфере. Общее количество этих ядов трудно назвать, так как постоянно выпускаются новые и прекращается выпуск старых, которые оказались на практике весьма вредными или к ним уже приспособились те виды вредителей, против которых они применяются. Но примерно их количество уже превысило 1000 соединений, в основном хлор-, фосфор-, мышьяк-и ртутьорганических.

Так углеводороды поступают в атмосферу и при сжигании топлива, и от нефтеперерабатывающей промышленности, и от газодобывающей промышленности. Источники загрязняющих веществ разнообразны, также многочисленны виды отходов и характер их влияния на компоненты биосферы. Биосфера загрязняется твердыми отходами, газовыми выбросами и сточными водами металлургических, металлообрабатывающих и машиностроительных заводов. Огромный вред наносят водным ресурсам сточные воды целлюлозно-бумажной, пищевой, деревообрабатывающей, нефтехимической промышленности. Развитие автомобильного транспорта привело к загрязнению атмосферы городов и транспортных коммуникаций тяжелыми металлами и токсичными углеводородами, а постоянный рост масштабов морских перевозок вызвал почти повсеместное загрязнение морей и океанов нефтью и нефтепродуктами. Массовое применение минеральных удобрений и химических средств защиты растений привело к появлению ядохимикатов в атмосфере, почве и природных водах, загрязнению биогенными элементами водоемов, водотоков и сельскохозяйственной продукции (нитраты, пестициды и т.п.). При горных разработках на поверхность земли извлекаются миллионы тонн различных, зачастую фитотоксичних горных пород, образующих терриконы и отвалы, которые пылят и горят.

В процессе эксплуатации химических заводов и тепловых электростанций также образуются огромные количества твердых отходов (огарок, шлаки, золы и т.п.), которые складируются на больших площадях, совершая негативное влияние на атмосферу, поверхностные и подземные воды, почвенный покров (пыль, выделение газов и т.п.). На территории Украины находится 877 химически опасных объектов и 287 000 объектов используют в своем производстве сильнодействующие ядовитые вещества или их производные (в 140 городах и 46 населенных пунктах).

Наращивание химического производства привело также к росту количества промышленных отходов, представляющих опасность для окружающей среды и людей. Химико-технологическое преобразование природы человеком, рядом с механической сменой ландшафтов и структуры земной коры, есть главное средство негативного влияния на биосферу. Поэтому есть потребность в анализе химико-технологической деятельности человечества: выявлении ее историко-культурных форм, масштабов и структуры. Химическая деятельность человечества очень разнообразна и сопровождает его практически с первых шагов знарядийнои практики. Собственно говоря, химическая переработка природы есть неотъемлемая черта всего живого.

Система "человек - окружающая среда" находится в состоянии динамического равновесия, при котором поддерживается экологически сбалансированное состояние природной среды, при котором живые организмы, в том числе человек, взаимодействуют друг с другом и окружающей их абиотической (неживой) средой без нарушения этого равновесия.

В эпоху научно-технической революции возрастающая ролью науки в жизни общества нередко приводит к всевозможным негативным последствиям использования научных достижений в военном деле (химическое оружие, атомное оружие), промышленности (некоторые конструкции атомных реакторов), энергетике (равнинные ГЭС), сельском хозяйстве (засоление почвы, отравление речных стоков), здравоохранении (выпуск лекарств непроверенного действия) и других областях народного хозяйства. Нарушение равновесного состояния между человеком и окружающей его средой может иметь уже в настоящее время глобальные последствия в виде ухудшения среды обитания, разрушения природных экологических систем, изменения генофонда населения. По данным ВОЗ 20-40% здоровья людей зависят от состояния среды, 20-50% - от образа жизни, 15-20% - от генетических факторов.

По глубине реакции окружающей среды различают:

Возмущение, временное и обратимое изменение среды.

Загрязнение, накопление поступающих извне или генерируемых самой средой в результате антропогенного воздействия примесей техногенного характера (веществ, энергии, явлений).

Аномалии, устойчивые, но локальные количественные отклонения среды от состояния равновесия. При длительном антропогенном воздействии могут наступить:

Кризис среды, состояние, при котором параметры ее приближаются к допустимым пределам отклонений.

Разрушение среды, состояние, при котором она становится непригодной для обитания человека или использования в качестве источника природных ресурсов.

Чтобы предотвратить настолько пагубное действие антропогенного фактора, было введено понятие ПДК (предельно допустимые концентрации веществ) - концентрация веществ, которая не оказывает на человека прямого или косвенного влияния, не снижает работоспособности, не сказывается на здоровье и настроении.

ПДК некоторых загрязняющих веществ в воздухе рабочей зоны

Для оценки токсичности определяют свойства вещества (растворимость в воде, летучесть, рН, температурные и другие константы) и свойства среды, куда оно попало (климатические характеристики, свойства водоема и почвы).

Мониторинг - наблюдение (слежение) за состоянием среды с целью обнаружения изменения этого состояния, их динамики, быстроты и направления. Получаемые в результате длительных наблюдений и многочисленных анализов сводные данные позволяют прогнозировать экологическую обстановку на ряд лет вперед и принимать меры для устранения неблагоприятных воздействий и явлений. Этой работой профессионально занимаются специальные организации - биосферные заповедники, санэпидемстанции, экологические стационары и др.

Отбор пробы воздуха.

Биопроба воздуха может быть относительно небольшой;

В лабораторных условиях биопробу из воздуха формируют в жидком состоянии;

Биопробу отбирают, используя улавливающее устройство: аспиратор для отбора проб, поглотительный прибор Рыхтера с поглотительным раствором. Срок хранения отбираемых проб не более 2 суток;

В замкнутом пространстве пробу воздуха забирают в центре комнаты, на высоте 0,75 и 1,5 м. от пола

Отбор пробы воды.

Пробы отбирают при помощи пипеток, бюреток, мерных колб (демонстрация учащимся).

Отбор пробы жидкости из замкнутого объема проводят после ее тщательного перемешивания.

Отбор биопробы гомогенной жидкости из потока производят через определенные интервалы времени и в разных местах.

Биопробы природной воды для получения достоверных результатов необходимо анализировать в течение 1-2 ч после отбора.

Для отбора биопроб на разной глубине используют специальные пробоотборные устройства - батометры, основной частью которых является цилиндрический сосуд вместимостью 1-3 л, снабженный сверху и снизу крышками. После погружения в жидкость на заданную глубину крышки цилиндра закрывают, и сосуд с пробой поднимают на поверхность.

Отбор пробы твердого вещества.

Биопроба твердых веществ должна быть представительной по отношению к исследуемому материалу (содержать максимально возможное разнообразие в составе исследуемого материала‚ например‚ для контроля качества таблеток целесообразно анализировать не отдельную таблетку‚ а смешивать определенное их количество и отбирать из этой смеси пробу‚ соответствующую средней массе одной таблетки).

При отборе пробы стремятся к возможно большей гомогенизации материала‚ достигаемой механическим способом (растирание‚ размельчение).

Биопробы из твердых биосубстратов преобразуют в жидкофазную биопробу.

Для этого используют специальные технологические приемы: подготовка растворов, взвесей, коллоидов, паст и других жидкообразных сред.

Приготовление водной почвенной вытяжки.

Ход работы: пробу почвы тщательно растереть в ступке. Взять 25 г почвы, перенести в колбу на 200 мл и прилить 50 мл дистиллированной воды. Содержимое колбы тщательно взболтать и дать отстоятся в течение 5-10 мин, а затем после кратковременного взбалтывания отфильтровать в колбу на 100 мл через плотный фильтр. Если фильтрат получился мутный, повторить фильтрование через этот же фильтр до получения прозрачного фильтрата.

Определение показателей‚ характеризующих органолептические свойства воды.

Органолептические свойства нормируются по интенсивности их восприятия человеком. Это запах, привкус, цветность, прозрачность, мутность, температура, примеси (пленка, водные организмы).

Опыт № 1. Определение прозрачности воды.

Реактивы: 3 пробы воды (из разных районов г. Пензы).

Оборудование: 3 мерных цилиндра, пластинка из пластмассы, маркер.

Ход работы. В мерный цилиндр налить разные пробы воды. На дно каждого цилиндра поместить пластинку из белой пластмассы с нанесенными на нее черным несмывающимся крестом. Перед замером воду взболтать. Прозрачность, зависящая от количества взвешенных частиц определяется высотой столба воды в цилиндре (в см), сквозь, который просматривается контур креста.

Определение запаха воды.

Естественные запахи воды связаны с жизнедеятельностью растений и животных или гниением их остатков‚ искусственные запахи с попаданием производственных или сточных вод.

Различают ароматический, болотный, гнилостный, древесный, землистый, плесневелый, рыбный, сероводородный, травянистый и неопределенный запахи.

Силу запаха определяют по 5-бальной системе:

балл - запаха нет или очень слабый (обычно не замечается).

балла - слабый (обнаруживается, если на него обратить внимание).

балла - заметный (легко замечается и может вызвать неодобрительные отзывы о воде).

балла - отчетливый (способный вызвать воздержание от питья).

баллов - очень сильный (настолько сильный, что вода совершенно непригодна для питья).

Определение цветности воды.

Цветность - это природное свойство воды‚ обусловленное наличием гуминовых веществ‚ которые придают ей окраску от желтоватого до коричневого цвета. Гуминовые вещества образуются при разрушении органических соединений в почве‚ вымываются из неё и поступают в открытые водоёмы. Поэтому цветность свойственна воде открытых водоёмов и резко увеличивается в паводковый период.

Реактивы: пробы воды, дистиллированная вода.

Оборудование: 4 химических стакана, лист белой бумаги.

Ход работы: Определение проводится путем сравнения ее с дистиллированной водой. Для этого берут 4 одинаковых химических стакана, заполняют их водой - один дистиллированной, другие - исследуемой. На фоне листа белой бумаги сравнить наблюдаемый цвет: бесцветная, светло-бурая, желтоватая.

Определение показателей‚ характеризующих химический состав и свойства воды.

Такие показатели, как сухой остаток‚ общая жесткость‚ рН‚ щелочность‚ содержание катионов и анионов: Ca 2+ , Na + , HCO 3 - , Cl - , Mg 2+ характеризуют природный состав воды.

Определение плотности воды.

Определение рН (водородного показателя).

На величину рН влияет содержание карбонатов, гидроокисей, солей, подверженных гидролизу, гуминовых веществ и т.п. Данный показатель является индикатором загрязнения открытых водоемов при выпуске в них кислых или щелочных сточных вод. В результате происходящих в воде химических и биологических процессов и потерь углекислоты рН воды может быстро изменяться, и этот показатель следует определять сразу же после отбора пробы, желательно на месте отбора.

Обнаружение органических веществ.

Ход работы: Возьмите 2 пробирки, в одну из них налейте 5 мл дистиллированной воды‚ в другую - исследуемую. В каждую пробирку прибавьте по капле 5% -ного раствора перманганата калия.

Опыт № 7. Обнаружение хлорид-ионов.

Высокая растворимость хлоридов объясняет широкое распространение их во всех природных водах. В проточных водоемах содержание хлоридов обычно невелико (20-30 мг/л). Незагрязненные грунтовые воды в местах с несолончаковой почвой обычно содержат до 30-50 мг/л хлориона. В водах, фильтрующихся через солончаковую почву, в 1 л могут содержаться сотни и даже тысячи миллиграммов хлоридов. Вода, содержащая хлориды в концентрации более 350 мг/л, имеет солоноватый привкус, а при концентрации хлоридов 500-1000 мг/л неблагоприятно влияет на желудочную секрецию. Содержание хлоридов является показателем загрязнения подземных и поверхностных водоисточников и сточных вод.


Таблица 2. Определение концентрации хлорид-ионов

Концентрацию ионов SО 2- 4 можно определить, сравнивая полученный результат с данными, содержащимися в таблице 3:

Опыт № 9. Определение ионов железа (II) и железа (III).

Высокое содержание железа ухудшает органолептические свойства воды, делает воду непригодной в масло-сыродельном и текстильном производстве, усиливает размножение железоусваивающих микроорганизмов в водопроводных трубах, что ведет к зарастанию труб. В водопроводной воде содержание железа не должно превышать 0,3 мг/л. В некоторых сточных водах железо встречается в больших количествах, например, в стоках травильных цехов, в сточных водах от крашения тканей и др.

Общая жесткость (Н общ ) - это природное свойство воды, обусловленное наличием в ней двухвалентных катионов (главным образом кальция и магния).

Различают общую, карбонатную, постоянную и устранимую жесткость.

Устранимая‚ или временная‚ (Н вр ) и карбонатная (Н к) жесткости обусловлены наличием бикарбонатов (и карбонатов) кальция и магния.

Вода с жесткостью свыше 10 мг-экв/л часто имеет неприятный вкус. Резкий переход при пользовании от мягкой к жесткой воде (а иногда и наоборот) может вызвать у людей диспепсические явления.

Течение почечно-каменной болезни ухудшается при использование очень жесткой воды. Жесткие воды способствуют появлению дерматитов. При повышенном поступлении в организм кальция с питьевой водой на фоне йодной недостаточности чаще возникает зобная болезнь.

При кипячении бикарбонаты переходят в малорастворимые карбонаты и выпадают в осадок, что приводит к образованию накипи, а жесткость воды уменьшается. Но кипячение полностью не разрушает бикарбонаты, и часть их остается в растворе. Устранимая (временная) жесткость определяется экспериментально и показывает, насколько уменьшилась жесткость воды за 1 час кипячения. Устранимая жесткость всегда меньше карбонатной. Неустранимая, постоянная (Н ПОСТ) и некарбонатная жесткость (Н Нк) обусловлены хлористыми, сернокислыми и другими некарбонатными солями кальция и магния. Эти виды жесткости вычисляют по разности:

Н пост. = Н общ - Н вр ; Н нк = Н об. - Н к

Мягкая вода - общая жесткость < 3,5 мг-экв/л.

Вода средней жесткости - общая жесткость от 3,5 до 7 мг-экв/л.

Жесткая вода - общая жесткость от 7 до 10 мг-экв/л.

Очень жесткая вода - общая жесткость > 10 мг-экв/л.

Для питьевых целей предпочитают воду средней жесткости, для хозяйственных и промышленных целей - мягкую воду.

Исходя из этого общая жесткость для воды, не подвергающейся специальной обработке, установлена на уровне 7 мг-экв/л.

Для определения общей жесткости пользуются трилонометрическим методом. Основным рабочим раствором является трилон Б - двунатриевая соль этилендиаминтетрауксусной кислоты:

Определение суммарного содержания ионов кальция и магния основано на способности трилона Б образовывать с этими ионами прочные комплексные соединения в щелочной среде, замещая свободные ионы водорода на катионы Са 2+ и М g 2+ :

Са 2+ + Na 2 H 2 R → Na 2 CaR + 2Н+,

где R - радикал этилендиаминтетрауксускной кислоты.

В качестве индикатора используется хромоген черный, дающий с Mg 2+ соединение винно-красного цвета, при исчезновении М g 2+ он приобретает голубую окраску. Реакция идет при рН-10, что достигается добавлением в пробу аммиачного буферного раствора (NH 4 OH+ NH 4 CI). В первую очередь связываются ионы кальция, а затем магния.

Определению мешают ионы меди (>0,002 мг/л), марганца (>0,05 мг/л), железа (>1,0 мг/л), алюминия (>2,0 мг/л).

Вычисление общей жесткости в мг-экв/л производят по формуле:

Н общ. мг/экв = n∙ N ∙ 1000/V‚

n - количество трилона Б, израсходованное на титрование, в мл;

V - объем пробы, в мл;

N - нормальность трилона Б.

Определение сухого остатка

Сухой остаток - это количество растворенных солей в миллиграммах, содержащееся в 1 л воды.Т. к. масса органических веществ в сухом остатке не превышает 10-15%, сухой остаток дает представление о степени минерализации воды.

Минеральный состав воды на 85% и более обусловлен катионами Са 2+ М g 2+ , Na + и анионами НСО 3 - , CI - , SO 4 2-

Остальная часть минерального состава представлена макроэлементами Na + , K + , РО 4 3 - и др. и микроэлементами Fe 2+ , Fe 3+ , I - , Си 2+ , Mo и др.

Воду с сухим остатком до 1000 мг/л называют пресной, свыше 1000 мг/л - минерализованной. Вода, содержащая избыточное количество минеральных солей, непригодна для питья, т.к имеет соленый или горько-соленый вкус, а ее употребление (в зависимости от состава солей) приводит к различным неблагополучным физиологическим отклонениям в организме. С другой стороны, слабоминерализованная вода с сухим остатком ниже 50-100 мг/л неприятна на вкус, длительное ее употребление также может привести к некоторым неблагоприятным физиологическим сдвигам в организме (уменьшение содержания хлоридов в тканях и др.). Такая вода, как правило, содержит мало фтора и других микроэлементов.

Слабо минерализованная вода - содержит < 20-100 мг/л солей.

Удовлетворительно минерализованная вода - 100-300 мг/л солей.

Повышенно минерализованная вода - содержит 300-500 мг/л солей.

Определение структуры почвы.

Под структурой почвы понимают способность её распадаться на отдельные частицы, которые называются структурными отдельностями. Они могут иметь различную форму: комки, призмы, пластинки и др.

Неправильное и избыточное внесение минеральных удобрений, способы их хранения являются причиной загрязнения почв и сельхозпродукции. Водорастворимые формы азотных удобрений стекают в пруды, реки, ручьи, достигают грунтовых вод, вызывая повышенное содержание в них нитратов, что неблагоприятно сказывается на здоровье человека.

Очень часто удобрения вносят в почву неочищенными, что является причиной загрязнения почв радиоактивными (например, изотопами калия при использовании калийных удобрений), а также токсическими веществами. Различные формы суперфосфатов, обладая кислой реакцией, способствуют подкислению почвы, что нежелательно для районов, где рН почвы понижена. Избыточное количество фосфорных удобрений, стекая в стоячие и медленно текущие воды, вызывает развитие большого количества водорослей и другой растительности, что ухудшает кислородный режим водоемов и способствует их зарастанию.

Нитраты - неотъемлемая часть всех наземных и водных экосистем, поскольку процесс нитрификации, ведущий к образованию окисленных неорганических соединений азота, носит глобальный характер. В то же время в связи с применением в больших масштабах азотных удобрений поступление неорганических соединений азота в растения возрастает. Избыточное потребление азота удобрений не только ведет к аккумуляции нитратов в растениях, но и способствует загрязнению водоемов и грунтовых вод остатками удобрений, в результате чего территория загрязнения сельхозпродукции нитратами расширяется. Однако накопление нитратов в растениях может происходить не только от переизбытка азотных удобрений, но и при недостатке других их видов (фосфорных, калийных и др.) путем частичной замены недостающих ионов нитрат-ионами при минеральном питании, а также при снижении у ряда растений активности фермента нитратредуктазы, превращающего нитраты в белки.

Ввиду этого наблюдается четкое различие видов и сортов растений по накоплению и содержанию нитратов. Так, накопителями нитратов являются семейства тыквенных, капустных, сельдерейных. Наибольшее их количество содержится в листовых овощах: петрушке, укропе, сельдерее (Приложение 3), наименьшее - в томатах, баклажанах, чесноке, зеленом горошке, винограде, яблоках и др. И между отдельными сортами существуют в этом отношении сильные различия. Так, сорта моркови "Шантэне", "Пионер" отличаются низким содержанием нитратов, а "Нантская", "Лосиноостровская" - высоким. Зимние сорта капусты мало накапливают нитратов по сравнению с летними.

Наибольшее количество нитратов содержится в сосущих и проводящих органах растений - корнях, стеблях, черешках и жилках листьев. У кабачков, огурцов и т.п. плодов нитраты убывают от плодоножки к верхушке (Приложение 4).

В результате употребления продуктов, содержащих повышенное количество нитратов, человек может заболеть метгемоглобинией. При этом заболевании ион NO 3 - взаимодействует с гемоглобином крови, окисляя железо, входящее в гемоглобин, до трехвалентного, а образовавшийся в результате этого метгемоглобин не способен переносить кислород‚ и человек испытывает кислородную недостаточность‚ задыхается при физических нагрузках. В желудочно-кишечном тракте избыточное количество нитратов под действием микрофлоры кишечника превращается в токсичные нитриты, а далее возможно превращение их в нитрозоамины - сильные канцерогенные яды, вызывающие опухоли. В связи с этим при употреблении в пищу растений-накопителей нитратов важно нитраты разбавлять и употреблять в малых дозах. Содержание нитратов можно уменьшить вымачиванием, кипячением продуктов (если отвар не используется), удалением тех частей, которые содержат большое количество нитратов.

Допустимые нормы нитратов (по данным ВОЗ) составляют 5 мг (по нитрат-иону) в сутки на 1 кг массы взрослого человека, т.е. при массе 50-60 кг - это 220-300 мг, а при 60-70 кг - 300-350 мг.

Может также наблюдаться эффект синергизма (усиление) и антагонизма, так как заводы загрязняют биосферу комплексно.

Решение экологических проблем:

1. Изменить технологическую схему производства (прекращение или снижение образования отходов, максимальное выделение промежуточных продуктов и использование их в циклических процессах).

2. Выделить максимальное количество элементов из отходов для других производств.

3. Обезвреживание производственных выбросов.

Методы решения экологических проблем:

Газообразные отходы (гомогенные: оксиды серы и азота, органические вещества в виде газов - и гетерогенные: туман, пыль, аэрозоли).

Источники загрязнения атмосферы.

Атмосфера делится на тропосферу (7-8 км от поверхности земли). Выше - стратосфера - от 8-17 до 50-55 км. Температура воздуха здесь повыше, что связано с наличием здесь озона.

В тропосфере существуют разные формы жизни. Поэтому именно тропосферу относят к биосфере. Загрязнения, попадая в тропосферу, переходят в более высокие слои очень медленно. Основными антропогенными источниками загрязнений являются:

тепловые электростанции, работающие на каменном угле и выбрасывающие в атмосферу сажу, золу и диоксид серы;

металлургические заводы, выбросы которых содержат сажу, пыль, оксид железа, диоксид серы, фториды;

цементные заводы, выделяющие огромное количество пыли;

крупные предприятия по производству продуктов неорганической химии - диоксид серы, фтороводород, оксиды азота, хлор, озон;

заводы по производству целлюлозы, очистке нефти - газообразные отходы (одоранты);

предприятия нефтехимии - служат источником поступления углеводородов и органических соединений других классов, таких, как амины, меркаптаны, сульфиды, альдегиды, кетоны, спирты, кислоты и др.

отработанные газы автомобилей, а также процессы испарения ч топлива - оксид углерода, газообразные углеводороды и не изменившиеся составные части топлива, высококипящие полициклические ароматические углеводороды и сажа, продукты неполного окисления топлива (например, альдегиды), галогеноуглеводороды, тяжелые металлы и оксиды азота, образованию которых способствуют процессы, происходящие при сгорании топлива;

лесные пожары, в результате которых в воздух выделяется значительное количество углеводородов и оксидов углерода.

В зависимости от источника и механизма образования различают первичные и вторичные загрязнители воздуха.

Первичные загрязнители представляют собой вещества, попадающие в воздух непосредственно из стационарных или подвижных источников, в то время как вторичные загрязнители образуются в результате взаимодействий в атмосфере первичных загрязнителей между собой и с присутствующими в воздухе веществами (кислород, озон, аммиак, вода) под действием ультрафиолетового излучения.

Большая часть присутствующих в воздухе твердых частиц и аэрозолей являются вторичными загрязнителями, которые часто оказываются гораздо токсичнее первичных. Выхлопные газы состоят из различных веществ и могут под действием солнечной радиации вступать в атмосфере в фотохимические реакции, приводящие к образованию токсичного смога.

Критериальные загрязнители (для которых вводятся специальные критерии ПДК) - оксид углерода, диоксид серы, оксиды азота, углеводороды, твердые частицы и фотохимические оксиданты

Один из самых вредных среди загрязнителей воздуха - диоксид серы‚ участвующий в образовании фотохимического смога.

Хотя его концентрация в среднем в воздухе больших городов не столь велика по сравнению с другими компонентами, этот оксид считается наиболее опасным для здоровья горожан, вызывая заболевания органов дыхания, общее ослабление организма. В сочетании с другими загрязнителями ведет к сокращению средней продолжительности жизни.

Но вред, приносимый диоксидом серы, нельзя приписывать непосредственно этому соединению. Главный виновник - триоксид серы SO 3 , который образуется в результате реакции: 2SO 2 + O 2 = SO 3

Действие SO 2 сильнее проявляется в темноте, чем на свету. Как вы думаете, с чем это связано?

Всем вам известен оксид СО. Человек, вдыхающий несколько часов воздух с содержанием СО всего в 0,1%, поглощает его столько, что большая часть гемоглобина (60%) связывается с НbСО. Этот процесс сопровождается головной болью и снижением умственной деятельности. При отравлении СО применяются смесь СО 2 и О 2 (объемная доля первого 3 - 5%), называемую карбогеном. Повышенные концентрации этих газов в смеси позволяют вытеснить угарный газ из тканей в крови.

Высокие локальные концентрации СО, даже кратковременные, вызванные в больших городах главным образом работой автомобильного транспорта, представляют собой так называемые экологические ловушки. Монооксид углерода - бесцветный не имеющий запаха газ, поэтому его трудно обнаружить нашими органами чувств. Однако первые симптомы отравления им (появление головной боли) возникают у человека, находящегося в среде с концентрацией СО 200 - 220 мг/м 3 , всего лишь за 2 часа.

Таким образом, человек может оказаться жертвой экологической ловушки. Аналогичному воздействию СО подвергаются курильщики.

Следовые количества химических элементов представлены в атмосфере такими высокотоксичными загрязнителями, как мышьяк, бериллий, кадмий, свинец, магний и хром (обычно присутствуют в воздухе в виде неорганических солей, адсорбированных на твердых частицах). Около 60 металлов присутствуют в продуктах сгорания угля и дымовых газах ТЭС. Ежегодно в воздушный бассейн попадает огромное количество свинца. Очень токсичны металлическая ртуть и свинец, а также их металлоорганические соединения.

Скапливаясь в атмосфере, загрязнители взаимодействуют друг с другом, гидролизуются и окисляются под действием влаги и кислорода, а также изменяют свой состав под воздействием радиации Большую опасность представляют также смеси различных загрязнителей, концентрация отдельных компонентов в которых ниже ПДК. Вместе такие смеси могут представлять значительную угрозу всему живому вследствие кумулятивного эффекта. Велика продолжительность пребывания в воздухе малоактивных соединений - постоянных газов (фреоны и диоксид углерода). Из пестицидов, которые распыляют с самолетов, особенно токсичны фосфорорганические пестициды, при фотолизе которых в атмосфере образуются продукты еще более токсичные, чем исходные соединения.

Так называемые абразивные частицы, к которым относятся диоксид кремния и асбесты, при респираторном проникновении в организм вызывают серьезные заболевания.

Экологический смог - комплексное загрязнение атмосферы, обусловленное застаиванием масс воздуха в крупных городах с развитой промышленностью и большим количеством транспорта. Происхождение этого английского слова ясно из следующей схемы: SMОКЕ+FOG=дым туман.

Смог лондонского типа - сочетание газообразных загрязнителей (в основном сернистого газа), пылевых частиц и тумана. Особенно характерен для загрязненной атмосферы над Лондоном, причем главным источником загрязнения воздуха служат продукты сжигания угля и мазута. В декабре 1952 года в Лондоне во время смога, продолжавшегося около двух недель, погибло свыше 4000 человек. Аналогичные последствия смога отмечались в Лондоне в 1873, 1882, 1891, 1948 годах. Такого типа смог наблюдается лишь в осеннее - зимнее время (с октября по февраль), Ю когда резко ухудшалось самочувствие людей, возрастало число простудных заболеваний и пр.

Смог фотохимический (Лос-Анджелеского типа) - возникает в результате фотохимических реакций при наличии в атмосфере высокой концентрации оксидов азота, углеводородов, озона, интенсивной солнечной радиации и безветрия или очень слабого обмена воздушных масс в приземном слое. В отличие от смога лондонского типа, именно в солнечную погоду при значительных концентрациях выхлопных газов автомобилей в атмосфере обнаружен в 30 - х годах 20 - го века в Лос-Анджелесе, а теперь это нередкое явление в крупных городах мира.

Автомобильные двигатели внутреннего сгорания - главный источник этого комплексного загрязнения. В России автотранспорт ежедневно выбрасывает в атмосферу 16,6 млн. тонн загрязняющих веществ. Особенно тяжелая экологическая ситуация сложилась в Москве, Санкт - Петербурге, Томске, Краснодаре.30% заболеваний горожан непосредственно связаны с загрязненностью воздуха выхлопными газами. Автомобильными двигателями выделяются в воздух городов более 95% оксида углерода, около 65% углеводородов и 30% оксидов азота. Характер выделяемых вредных примесей зависит от типа двигателей, которые подразделяются на бензиновые и дизельные. Основными вредными примесями, содержащимися в выхлопных газах, являются: оксиды азота, оксиды углерода, различные углеводороды, включая и канцерогенный бензпирен, альдегиды, оксиды серы. Бензиновые двигатели, кроме того, выделяют продукты, содержащие свинец, хлор, а дизельные - значительные количества сажи и частичек копоти.

1. Метод рассеивания через трубу.

2. Фильтры.

3. Каталитическая очистка газов:

S-> S0 2 - > S0 3 - >H 2 SO 4

СО - > СH 4

4. Химические методы очистки:

а) абсорбционные - поглощение газов жидкости при пониженной температуре и повышенном давлении (вода, органические абсорбенты, перманганат калия, раствор поташа, меркаптоэтанол); Ь) адсорбция (активированный уголь, силикогель, циалиты).

Очистка сточных вод химических предприятий.

Гидросфера служит естественным аккумулятором большинства загрязняющих веществ, поступающих в атмосферу или литосферу. Это связано с большой растворяющей способностью воды, с круговоротом воды в природе, а также с тем, что водоемы являются конечным пунктом на пути движения различных сточных вод.

В результате сброса неочищенных сточных вод предприятиями, коммунальными и сельскохозяйственными объектами происходит изменение естественных свойств воды за счет увеличения вредных примесей неорганической и органической природы. К неорганическим примесям относят тяжелые металлы, кислоты, щелочи, минеральные соли и удобрения с биогенными элементами (азот, фосфор, углерод, кремний). Среди органических примесей выделяют легко окисляемые (органические вещества сточных вод пищевых предприятий и другие биологически мягкие вещества) и трудноокисляемые и поэтому трудно выводимые из воды (нефть и продукты ее переработки, органические остатки, БАВ, пестициды и др.).

Изменение физических параметров воды возможно в результате попадания в нее примесей трех типов: механических ( твердые нерастворимые частицы: песок, глина, шлак, рудные включения); тепловых ( сброс подогретых вод ТЭС, АЭС и промышленных предприятий); радиоактивных ( продукция предприятий по добыче радиоактивного сырья, обогатительные фабрики, АЭС и т.д.) - Влияние механических и радиоактивных примесей на качество воды понятно, а тепловые примеси могут привести к экзотермическим химическим реакциям компонентов, растворенных или взвешенных в воде, и синтезу еще более опасных веществ.

Изменение свойств воды происходит в результате увеличения количества микроорганизмов, растений и животных из внешних источников: бактерий, водорослей, грибов, червей и др. (сброс бытовых сточных вод и отходов некоторых предприятий). Их жизнедеятельность могут сильно активизировать физические загрязнения (особенно тепловые).

Тепловое загрязнение вызывает интенсификацию процессов жизнедеятельности водных организмов, что нарушает равновесие экосистемы.

Минеральные соли опасны для одноклеточных организмов, обменивающихся с внешней средой осмотически.

Взвешенные частицы уменьшают прозрачность воды, снижают фотосинтез водных растений и аэрацию водной среды, способствуют заилению дна в зонах с малой скоростью течения, оказывают неблагоприятное воздействие на жизнедеятельность водных организмов-фильтраторов. На взвешенных частицах могут сорбироваться различные загрязняющие вещества; оседая на дно, они могут стать источником вторичного загрязнения воды.

Загрязнение вод тяжелыми металлами не только оказывает экологический вред, но и наносит значительный экономический ущерб. Источниками загрязнения воды тяжелыми металлами служат гальванические цехи, предприятия горнодобывающей промышленности, черной и цветной металлургии.

При загрязнении воды нефтепродуктами на поверхности образуется пленка, препятствующая газообмену воды с атмосферой. В ней, а также в эмульсии тяжелых фракций накапливаются другие загрязнители, кроме того сами нефтепродукты аккумулируются в водных организмах. Основными источниками загрязнения вод нефтепродуктами является водный транспорт и поверхностный сток с городских территорий. Загрязнение водной среды биогенными элементами ведет к эвтрофированию водоемов.

Органические вещества-красители, фенолы, ПАВ, диоксины, пестициды и др. создают опасность возникновения токсикологической ситуации в водоеме. Особенно токсичными и устойчивыми в окружающей среде являются диоксины. Это две группы хлорсодержащих органических соединений относящихся к дибензодиоксинам и дибензофуранам. Один из них - 2, 3, 7, 8-тетрахлордибензодиоксин (2, 3, 7, 8 - ТХДД) является самым токсичным соединением, известным науке. Токсическое действие различных диоксинов проявляется одинаково, но отличается по интенсивности. Диоксины накапливаются в окружающей среде и концентрация их растет.

Если условно рассечь водную массу вертикальной плоскостью, можно выделить места различной реакционной способности: поверхностную пленку, основную водную массу и донный осадок.

Донный осадок и поверхностная пленка являются зонами концентрирования загрязняющих веществ. На дно оседают нерастворимые в воде соединения, а осадок является хорошим сорбентом для многих веществ.

В воду могут попадать неразлагаемые загрязняющие вещества. Но они способны реагировать с другими химическими соединениями, образуя устойчивые конечные продукты, которые накапливаются в биологических объектах (планктоне, рыбах и т.д.) и через пищевую цепь попадают в организм человека.

При выборе места отбора пробы воды учитываются все обстоятельства, которые могут оказать влияние на состав взятой пробы.

Различают две основные пробы: разовую и среднюю. Разовую пробу получают путем отбора требуемого объема воды за один раз. Средняя проба получается смешением равных объемов проб, отобранных через равные промежутки времени. Средняя проба тем точнее, чем меньше интервалы между отдельно взятыми составляющими ее пробами.

Воду на анализ отбирают в чистую посуду, предварительно 2-3 раза сполоснув ее исследуемой водой. С открытых водоемов пробы отбирают в фарватере реки с глубины 50 см. Бутыль с грузом опускают на глубину, после чего пробку открывают с помощью прикрепленного к ней держателя. Лучше для этой цели использовать специальные приборы - батометры, которые позволяют применять посуду разной формы и емкости. Батометр состоит из зажима, плотно обхватывающего посуду, и приспособления для открывания пробки на нужной глубине.

При длительном стоянии пробы могут произойти существенные изменения в составе воды, поэтому, если нельзя начать анализ воды сразу после отбора или через 12 часов после отбора, ее консервируют для стабилизации химического состава. Универсального консервирующего средства не существует.

Выделяют 3 группы показателей, определяющих качество воды (подробно и экспериментально разберем на практикуме):

А - показатели, характеризующие органолептические свойства;

Б - показатели, характеризующие химический состав воды;

В - показатели, характеризующие эпидемическую безопасность воды.

Для того, чтобы человек мог использовать воду для питья, её сначала очищают.

Стадии очистки воды:

Отстаивание

Фильтрование

Обеззараживание

Для обеззараживания применяют газы - хлор и озон.

Используют и химико-биологическую очистку воды. Отстойники заселяют хлореллой. Это одноклеточное растение, быстро размножаясь, поглощает из воды СО 2 и некоторые вредные вещества. В результате вода очищается, а хлореллу используют в качестве корма для скота.

Подготовка питьевой воды.

Река, озеро или резервуар - отделение крупных примесей - предварительное хлорирование - выпадение хлопьев - осаждение примесей отстаиванием - фильтрование через песок - хлорирование - дополнительная обработка - в городскую систему водоснабжения.

Чтобы выжить, человеку требуется около 1,5 л воды в сутки. Но каждый гражданин ежегодно расходует на бытовые нужды до 600 л воды. Много воды потребляет промышленность.

Например, для выпуска 1 кг бумаги требуется 20 000 л пресной воды. Основной загрязнитель воды - сельское хозяйство. Для повышения урожайности на поле вносят различные удобрения. Это может привести к повышению концентрации различных соединений в продуктах питания и питьевой воде, а это опасно для здоровья. Среди других загрязняющих веществ наиболее заметны нефть и нефтепродукты, попадающие в природные воды при эксплуатации нефтяных танкеров.

По данным ВОЗ 80% от всех инфекционных болезней в мире связано неудовлетворительным качеством питьевой воды и нарушениями санитарно - гигиенических норм водоснабжения. В мире 2 млрд. человек имеют хронические заболевания в связи с использованием загрязненной воды (Приложение 2, таблица 1).

По оценке экспертов ООН, до 80% химических соединений рано или поздно попадают в водоисточники. Ежегодно в мире сбрасывается более 420 км 3 сточных вод, которые делают непригодными около 7 тыс. км 3 воды. Серьезную опасность для здоровья населения представляет химический состав воды. В природе она никогда не встречается в виде химически чистого соединения. Она постоянно несет в себе большое количество различных элементов и соединений, соотношение которых определяется условиями формирования воды, составом водородных пород.

Методы очистки воды в быту.

Самый простой и доступный для всех метод - отстаивание водопроводной воды. При этом улетучивается остаточный свободный хлор. Под действием гравитационных сил происходит осаждение относительно крупных суспензионных и коллоидных частиц, находящихся во взвешенном состоянии. Осадок может пожелтеть Как вы думаете, о чем это будет свидетельствовать? (выпадение осадка Fe (OH) 3).

Кипячение.

Основное предназначение этого метода - обеззараживание воды. В результате термического воздействия гибнут вирусы и бактерии. Кроме того происходит дегазация воды - удаление всех растворенных в ней газов, в том числе и полезных. Каких? (О 2 , СО 2). Эти газы улучшают органолептические свойства воды.

Объясните, почему кипяченая вода безвкусна и малополезна для кишечной флоры?

Метод вымораживание воды.

Используется гораздо реже. Основан на разности температур замерзания чистой воды и рассолов (раствор минеральных солей). Сначала замерзает чистая вода, а в оставшемся объеме концентрируются соли. Существует мнение, что такая вода обладает целебными свойствами за счет особой структуры водных кластеров - групп взаимно ориентированных молекул воды.

Очистка сточных вод

Технология очистки включает несколько этапов.

Таблица 2. Обезвреживание сточных вод.

Обезвреживаемый продукт

ПДК (мг/л)

Способ очистки

Степень очистки,%

Ароматические органические соединения

Адсорбция на угольных фильтрах

Биохимическое окисление

Грубодисперсные примеси

Отстаивание

Железа (III) гидроксид

Фильтрование через слой вспомогательных материалов

Железа (II) соли

Хлорирование

Фильтрование через песок. Улавливание в нефтеловушках. Биохимическое окисление.

Сероводород

Отдувка воздухом из воды

Экстракция.

Озонирование.

Биохимическое окисление.

Сначала сточные воды очищают от нерастворимых примесей. Крупные предметы удаляют фильтрованием (вспомните, что такое фильтрование) воды через решетки и сетки.

Затем вода идет в отстойник, где постепенно оседают мелкие частицы.

Для удаления растворенных органических веществ (NH 3 и катионов аммония) их окисляют с помощью бактерий. Процесс протекает более интенсивно в условиях аэрации. Что такое аэробные условия? Аэрация? (насыщение воды кислородом воздуха)

Нитраты превращаются в газообразный азот с использованием особых микроорганизмов. Соединения фосфора осаждают в виде малорастворимого ортофосфата кальция.

Затем проводят:

повторное отстаивание;

поглощение оставшихся примесей активированным углем;

дезинфекция.

Только после этого воду можно возвращать в природные водоемы.

Сброс сточных вод в окружающую среду не прекращается. Почти 1/3 попадает в природные водоемы без какой-либо очистки. Это не только опасно для жизни организмов, но и приводит к ухудшению качества питьевой воды. Предотвращение загрязнения воды остается одной из самых важных задач охраны окружающей среды и сохранение здоровья людей.

1. Фильтрование.

2. Отстаивание и фильтрование.

3. Флотация.

4. Дистилляция.

5. Ионный обмен.

6. Биохимические (для нефти).

7. Микроорганизмы для вод с повышенным содержанием азота, фосфора и ПАВ.

8. Создание водооборотных циклов.

Заболевания, возникающие при токсическом воздействии химических элементов и субстанций находящихся в питьевой воде


Таблица 1.

Возбуждающий фактор

Мышьяк, бор, фтор, медь, цианиды, трихлорэтен.

Заболевания пищеварительного тракта

а) повреждения

б) боли в желудке

в) функциональные расстройства

Мышьяк, бериллий, бор, хлороформ, динитрофенолы.

Ртуть, пестициды

Болезни сердца:

а) повреждение сердечной мышцы

б) нарушение функционирования сердца

в) сердечно - сосудистые изменения

г) трахикардия

д) тахикордия

Бор, цинк, фтор, медь, свинец, ртуть

Бензол, хлороформ, цианиды

Трихлорэтилен

Галоформы, трипалометаны, альдрин (инсектицид) и его производные

Динитрофенолы

Облысение

Бор, ртуть

Цирроз печени

Хлор, магний, бензол, хлороформ, тяжелые металлы.

Злокачественные опухоли почек

Мышьяк, галоформы

Злокачественные опухоли легких

Мышьяк, бензопирен

Злокачественные опухоли кожи

Мышьяк, бензопирен, продукты дистилляции нефти (масла)

Мышьяк, свинец, ртуть

Бронхиальная астма

Лейкемия

Хлорированные фенолы, бензол.

Твердые отходы (непрореагировавшее сырье, фильтры и катализаторы).

1. Извлечение полезных компонентов путем экстракции (благородные металлы из отработанных катализаторов).

2. Термические методы.

3. Санитарные засыпки.

4. Закапывание в океане.

В XIX и XX столетиях взаимодействие человека с окружающей средой или антропогенная деятельность реализуется в форме крупномасштабного материального производства.

Загрязнение окружающей среды - это нежелательное изменение ее свойств, которое приводит или может привести к вредному воздействию на человека или природные комплексы. Наиболее известный вид загрязнения - химическое (поступление в окружающую среду вредных веществ и соединений), но не меньшую потенциальную угрозу несут и такие виды загрязнений, как радиоактивное, тепловое (неконтролируемый выброс тепла в окружающую среду может привести к глобальным изменениям климата природы), шумовое. В основном загрязнение окружающей среды связано с хозяйственной деятельностью человека (антропогенное загрязнение окружающей среды), однако возможно загрязнение в результате природных явлений, например извержений вулканов, землетрясений, падения метеоритов и др. Загрязнению подвергаются все оболочки Земли.

На всех стадиях своего развития человек был тесно связан с окружающим миром. Но с тех пор как появилось высокоиндустриальное общество, опасное вмешательство человека в природу резко усилилось, расширился объём этого вмешательства, оно стало многообразнее и сейчас грозит стать глобальной опасностью для человечества. Расход невозобновимых видов сырья повышается, все больше пахотных земель выбывает из экономики, так на них строятся города и заводы. Человеку приходится все больше вмешиваться в хозяйство биосферы — той части нашей планеты, в которой существует жизнь. Биосфера Земли в настоящее время подвергается нарастающему антропогенному воздействию. При этом можно выделить несколько наиболее существенных процессов, любой из которых не улучшает экологическую ситуацию на планете.

Наиболее масштабным и значительным является химическое загрязнение окружающей среды несвойственными ей веществами химической природы. Среди них — газообразные и аэрозольные загрязнители промышленно-бытового происхождения. Прогрессирует и накопление углекислого газа в атмосфере. Дальнейшее развитие этого процесса будет усиливать нежелательную тенденцию в сторону повышения среднегодовой температуры на планете. Вызывает тревогу у экологов и продолжающееся загрязнение Мирового океана нефтью и нефтепродуктами, достигшее уже 1/5 его общей поверхности. Нефтяное загрязнение таких размеров может вызвать существенные нарушения газо- и водообмена между гидросферой и атмосферой. Не вызывает сомнений и значение химического загрязнения почвы пестицидами и ее повышенная кислотность, ведущая к распаду экосистемы. В целом все рассмотренные факторы, которым можно приписать загрязняющий эффект, оказывают заметное влияние на процессы, происходящие в биосфере.

Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 70% ежегодно добываемого твердого и жидкого топлива. Основными вредными примесями пирогенного происхождения являются следующие:

Оксид углерода . Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 1250 млн. т. Оксид углерода является соединение, активно реагирующим с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.

Сернистый ангидрид . Выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд (до 170 млн. т в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 65 % от общемирового выброса.

Серный ангидрид . Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 11 км от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

Сероводород и сероуглерод . Поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.

Оксиды азота . Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество оксидов азота, поступающих в атмосферу, составляет 20 млн. т в год.

Соединения фтора . Источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторосодержащие вещества поступают в атмосферу в виде газообразных соединений — фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.

Соединения хлора . Поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлорсодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией. В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на 1 т предельного чугуна выделяется кроме 12,7 кг сернистого газа и 14,5 кг пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода.

Аэрозольное загрязнение атмосферы . Аэрозоли — это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц составляет 1-5 мкм. В атмосферу Земли ежегодно поступает около 1 куб. км пылевидных частиц искусственного происхождения. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей. Сведения о некоторых источниках техногенной пыли приведены в таблице 1.

Таблица 1 – Источники техногенной пыли

Производственный процесс

Выброс пыли, т/год

Сжигание каменного угля

93,600

Выплавка чугуна

20,210

Выплавка меди (без очистки)

6,230

Выплавка цинка

0,180

Выплавка олова (без очистки)

0,004

Выплавка свинца

0,130

Производство цемента

53,370

Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже — оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест. Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Она образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях. Постоянными источниками аэрозольного загрязнения являются промышленные отвалы — искусственные насыпи из переотложенного материала, преимущественно вскрышных пород, образуемых при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС. Источником пыли и ядовитых газов служат массовые взрывные работы. Так, в результате одного среднего по массе взрыва (250-300 тонн взрывчатых веществ) в атмосферу выбрасывается около 2 тыс. куб. м условного оксида углерода и более 150 т пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств — измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов всегда сопровождается выбросами пыли и других вредных веществ в атмосферу. К атмосферным загрязнителям относятся углеводороды — насыщенные и ненасыщенные, включающие от 1 до 13 атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы часто в виде аэрозольных частиц. При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха.

Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия — расположения слоя более холодного воздуха под теплым, что препятствует воздушным массам и задерживает перенос примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана.

Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ.

Такие условия создаются чаще в июне-сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота — в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги — нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной системы и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

С позиций медицины труда черная металлургия характеризуется наличием многочисленных источников образования профессиональных вредностей: пыли, газообразных токсических веществ (триоксида железа, бензола, хлористого водорода, марганца, свинца, ртути, фенола, формальдегида, триоксида хрома, диоксида азота, оксида углерода и др.), лучистого и конвекционного тепла, шума, вибрации, электромагнитных и магнитных полей, высокой тяжести и напряженности труда.

Всякий водоем или водный источник связан с окружающей его внешней средой. На него оказывают влияние условия формирования поверхностного или подземного водного стока, разнообразные природные явления, индустрия, промышленное и коммунальное строительство, транспорт, хозяйственная и бытовая деятельность человека. Последствием этих влияний является привнесение в водную среду новых, несвойственных ей веществ — загрязнителей, ухудшающих качество воды. Загрязнения, поступающие в водную среду, классифицируют по-разному, в зависимости от подходов, критериев и задач. Так, обычно выделяют химическое, физическое и биологические загрязнения. Химическое загрязнение представляет собой изменение естественных химических свойств воды за счет увеличения содержания в ней вредных примесей как неорганической (минеральные соли, кислоты, щелочи, глинистые частицы), так и органической природы (нефть и нефтепродукты, органические остатки, поверхностноактивные вещества, пестициды).

2.НОРМИРУЕМЫЕ В ВОДЕ И ПИЩЕ ИОНЫ ЭЛЕМЕНТОВ

При оценке качества воды в первую очередь необходимо обращать внимание на концентрации биологически активных (эссенциальных) элементов, которые участвуют во всех физиологических процессах. Отрицательное влияние малых концентраций эссенциальных элементов в питьевой воде. Повышенное содержание в пищевом рационе любого элемента вызывает различные отрицательные последствия. Однако низкие содержания целого ряда элементов также представляют опасность для организма человека.

Среди наиболее распространенных заболеваний, связанных с низким содержанием микроэлементов в питьевой воде, можно назвать эндемический зоб (низкое содержание йода), кариес (низкое содержание фтора), железодефицитные анемии (низкое содержание железа и меди). Среди наиболее распространенных заболеваний, связанных с низким содержанием микроэлементов в питьевой воде, можно назвать эндемический зоб (низкое содержание йода), кариес (низкое содержание фтора), железодефицитные анемии (низкое содержание железа и меди). В качестве примера можно привести результаты работы советско-финской экспедиции, которая обнаружила, что из-за низкого содержания в воде и почве селена населению ряда районов Читинской области угрожает селенодефицитная кардиопатия — болезнь Кешана. Среди макрокомпонентного состава воды особенно негативное влияние на организм человека оказывает низкое содержание в питьевой воде кальция и магния. Так, например, результаты санитарно-эпидемиологических обследований населения, проводимых по программам ВОЗ, показывают, что низкое содержание в питьевой воде Ca и Mg приводит к увеличению числа сердечно-сосудистых заболеваний . В результате исследований в Англии было выбрано шесть городов с самой жесткой и шесть с самой мягкой питьевой водой. Смертность от сердечно-сосудистых заболеваний в городах с жесткой водой оказалась ниже нормы, в то время как в городах с мягкой водой — выше. Более того, у населения, живущего в городах с жесткой водой, параметры деятельности сердечно-сосудистой системы лучше: ниже общее кровяное давление, ниже частота сокращений сердца в покое, а также содержания холестерина в крови. Курение, социально-экономические и другие факторы не влияли на эти корреляции. В Финляндии более высокая смертность от сердечно-сосудистых заболеваний, повышенное кровяное давление и содержание холестерина в крови в восточной части страны по сравнению с западной, по всей видимости, также связаны с использованием мягкой воды, так как другие параметры (диета, физическая нагрузка и т.д.) населения этих групп практически не различаются.

60 — 80% суточной потребности Ca и Mg у человека удовлетворяется за счет пищи. Но значение Ca и Mg в суточном рационе можно оценить, если учесть, что требования ВОЗ к содержанию этих катионов в воде для Ca составляют 80 — 100 мг/л (около 120-150 мг в сутки), а для Mg — до 150 мг/л (около 200 мг в сутки) при общей суточной потребности, например, Ca, равной 500 мг. Показано, что Ca и Mg из воды всасываются в кишечнике полностью, а из продуктов, в которых он связан с белком, — только на 1/3.

Уровень Ca в клетке является универсальным фактором регуляции всех клеточных функций независимо от типа клеток. Недостаток Ca в воде сказывается на увеличении всасывания и токсического действия тяжелых металлов (Cd, Hg, Pb, Al и др.). Тяжелые металлы конкурируют с Ca в клетке, так как используют его метаболические пути для проникновения в организм и замещают ионы Ca в важнейших регуляторных белках, нарушая таким образом их нормальную работу.

К настоящему времени можно с уверенностью утверждать, что мягкая питьевая вода, характерная для северных регионов планеты, с низким содержанием жизненно важных для организма двухвалентных катионов (Ca и Mg) является существенным экологическим фактором риска сердечно-сосудистой патологии и других широко рапространенных Ca-Mg-зависимых региональных заболеваний.

Таким образом, при разработке требований к качеству воды, используемой для питьевых целей, необходимо нормировать и нижний предел содержания целого ряда компонентов.

При более детальном анализе влияния содержащихся в воде биологически активных элементов на здоровье человека необходимо также учитывать форму их нахождения в растворе. Так, фтор в ионном виде, будучи токсичным для человека при концентрациях более 1,5 мг/л, перестает быть токсичным, находясь в растворе в виде комплексного соединения BF4-. Экспериментально установлено, что введение в организм человека значительного количества фтора в виде указанного комплексного соединения исключает опасность заболевания человека флюорозом, так как, будучи устойчивым в кислых средах, это соединение не усваивается организмом. Поэтому, говоря об оптимальных концентрациях фтора, следует учитывать возможность его нахождения в воде в виде комплексных соединений, поскольку и положительное воздействие на человека в определенных концентрациях оказывает именно ион F-.

Как известно, аналитический (определяемый в лаборатории) химический состав природных вод не соответствует реальному составу. Большинство растворенных в воде компонентов, участвуя в реакциях комплексообразования, гидролиза и кислотно-основной диссоциации, объединены в разные устойчивые ионные ассоциации — комплексные ионы, ионные пары и т.д. Современная гидрогеохимия называет их миграционными формами. Химический анализ дает лишь валовую (или брутто-) концентрацию компонента, например, меди, тогда как реально медь может почти целиком находиться в виде карбонатных, хлоридных, сульфатных, фульватных или гидроксо-комплексов, что зависит от общего состава данной воды (биологически активными же и, соответственно, токсичными в больших концентрациях, как известно, являются незакомплексованные ионы Сu2+).

Предприятия химической промышленности расположены в большинстве регионов Российской Федерации и выпускают боль­шой спектр продукции для удовлетворения нужд всех отраслей промышлен­ности, сельского хозяйства и населения. Химический комплекс РФ включает 26 отраслей химической, нефтехимической, агрохимической и микробиоло­гической промышленности. Многообразие продукции, применяемых техно­логий и видов сырья определяет широкий спектр загрязнителей атмосферно­го воздуха, водных бассейнов и почв. Ряд выбросов, сбросов и отходов про­изводства характеризуется существенными объемами, высокой токсичностью и образования отходов. В некоторых населенных пунктах воздействие предприятий химического комплекса на окружающую среду является доми­нирующим.

В последние годы объемы выбросов, сбросов и образования отходов существенно уменьшились, что в большей степени объясняется спадом про­изводства и в меньшей - осуществлением природоохранных мер.

Из-за разнообразия технологических процессов химическая промыш­ленность является одной из самых трудных для подавления выбросов.

Основными источниками вредных выбросов в атмосферу в промышлен­ности являются производство кислот (серной, соляной, азотной, фосфорной и др.), производство резинотехнических изделий, фосфора, пластических масс, красителей и моющих средств, искусственного каучука, минеральных удобрений, растворителей (толуола, ацетона, фенола, бензола), крекинг нефти.

Решение экологических проблем в отрасли осложнено эксплуатацией значительного числа морально и физически устаревшего оборудования, из которого 60% эксплуатируется более 10 лет, до 20% - свыше 20 лет, 10% - более 30 лет.

Следует отметить, что в данной промышленности сохраняется высокий уровень очистки выбросов вредных веществ (более 90%). Структура выбро­сов характеризуется следующими данными: твердые вещества (зола мазут­ная, угольная, белок пыли БВК, пыль неорганическая) - 13,4% общего ко­личества выбросов, жидкие и газообразные вещества - 86,6%, в том числе оксид углерода - 32,6%, летучие органические соединения -г- 24,4; диоксид серы - 19,3, оксиды азота - 8,8, углеводороды - 4,8%. Выбросы диокси­дов серы, оксидов азота, оксидов углерода в большей степени связаны с ра­ботой ТЭЦ и котельных, входящих в состав предприятий комплекса.

Основное количество оксидов азота и диоксидов серы выбрасывается предприятиями агрохимической промышленности, оксида углерода - содо­вой промышленностью, мазутной золы - микробиологической промышлен­ностью, сероуглерода и сероводорода - промышленностью химических волокон, аммиака - агрохимической промышленностью, хлорорганики - хлорной промышленностью, олефинов- промышленностью синтетического каучука, бензина - шинной промышленностью.



Кроме того, для производств химии и нефтехимии характерными явля­ются выбросы металлической ртути, которые составляют около половины общего объема выброса этого вещества промышленностью России, а также оксида ванадия (V) и шестивалентного хрома, относящихся к веществам I класса опасности.

Из общего объема использования предприятиями химического комплек­са воды 62% приходится на химическую промышленность, 29,2% на нефте­химическую и 9,8% на микробиологическую. Экономия свежей воды за счет использования оборотных систем составила 90% (от 96% в промышленности синтетического каучука до 64% в микробиологической).

Сброс загрязненных сточных вод в 1994 г. составил 1,62 км 3 , сточными водами сбрасываются нефтепродукты, взвешенные сульфаты, фосфор об­щий, цианиды, роданиды, кадмий, кобальт, марганец, медь, никель, ртуть, свинец, хром, цинк, сероводород, сероуглерод, спирты, бензол, формальде­гид, фурфурол, фенол, ПАВ, пестициды.

В химической и нефтехимической промышленности ежегодно образует­ся 125 млн. т отходов, из которых используется около 30%. Ежегодно на предприятиях отрасли не используется более 90 млн. т отходов, из которых уничтожается (сжигается и вывозится на свалки) более 30 млн. т (серная и соляная кислоты, растворители, кубовые остатки) и более 50 млн. т (шлам дистиллированной суспензии, фосфогипс, известковые и гипсовые отходы) складируются в специально отведенных местах.

Свыше 7,8 млн. т отходов, или 73% общего их количества по химиче­скому комплексу, образовалось в агрохимической промышленности. В по­давляющей части это отходы IV класса опасности, основные виды которых - фосфогипс, производство фосфорной кислоты и галитовые отвалы флотаци­онного обогащения хлорида кальция. Складировано 86 и 105 млн. т соответ­ственно. Хранение связано с отчуждением значительных площадей и закис-лением почв. Апробированные технологии промышленной переработки фосфогипса распространения не нашли: спрос на получаемые строительные материалы оказался ограниченным.

По данным Госкомстата РФ, предприятия химической и нефтехимиче­ской промышленности вносят небольшой валовой вклад в загрязнение атмо­сферного воздуха России - Хз всех выбросов в России от стационарных источников. Такую же долю составляют выбросы жидких и газообразных веществ. Вместе с тем наиболее существенна доля отрасли по выбросам ме­таллической ртути (около половины общероссийского объема).

На долю отрасли приходится менее 5% объема используемой свежей воды в РФ и 6% объема сброса сточных вод в поверхностные водоемы.

Отрасли имеют определенное значение в объеме сброса загрязнения сточных вод в природные водные объекты России - X общепромышленно­го сброса сточных вод этой категории. Практически таков же вклад отрасли по объему сброса нормативно-очищенных сточных вод.