Rezolvarea derivatelor pentru manechine: definiție, cum se găsesc, exemple de soluții. Derivată a unei funcții

Când găsiți derivata unei sume de fracții cu puteri și rădăcini, pentru a evita greșelile comune, ar trebui să acordați atenție următoarelor puncte:

  • folosind formula de diferențiere a unui produs și a unui coeficient, determinați clar diferența dintre o constantă, a cărei derivată este egală cu zero și un factor constant, care este pur și simplu scos din semnul derivatei;
  • este necesar să folosiți cu încredere cunoștințele din cursul școlar privind operațiunile cu puteri și rădăcini, de exemplu, ce se întâmplă cu exponenții când se înmulțesc puteri cu aceleași baze;
  • ce se întâmplă cu semnele când derivata unui sumand are un semn opus semnului sumandului însuși.

Exemplul 1. Aflați derivata unei funcții

.

.

Aici cei doi din fața lui X este un factor constant, așa că pur și simplu a fost scos din semnul derivat.

Punând totul împreună:

.

Dacă în soluția finală se cere obținerea unei expresii cu rădăcini, atunci transformăm gradele în rădăcini și obținem derivata dorită:

.

Exemplul 2. Aflați derivata unei funcții

.

Soluţie. Găsim derivata primului termen:

.

Aici primele două din numărătorul expresiei intermediare au fost o constantă, derivata sa este egală cu zero.

Aflați derivata celui de-al doilea termen:

Găsim derivata celui de-al treilea termen:

Aici am aplicat cunoștințele de la cursul școlar despre operații cu fracții, transformarea și reducerea acestora.

Să punem totul cap la cap, acordând atenție faptului că semnele derivatelor primului și al treilea termen sunt opuse semnelor termenilor din expresia originală:

.

Exemplul 3. Aflați derivata unei funcții

.

Soluţie. Găsim derivata primului termen:

Aflați derivata celui de-al doilea termen:

Derivata celui de-al treilea termen - constanta 1/2 - este egala cu zero (se intampla ca elevii sa se incapataneze sa gaseasca o derivata diferita de zero a constantei).

Să punem totul cap la cap, acordând atenție faptului că semnul derivatului celui de-al doilea termen este opus semnului termenului din expresia originală:

Exemplul 4. Aflați derivata unei funcții

.

Soluţie. Găsim derivata primului termen:

Aflați derivata celui de-al doilea termen:

Găsim derivata celui de-al treilea termen:

Să punem totul cap la cap, acordând atenție faptului că semnele derivatelor celui de-al doilea și al treilea termen sunt minusuri:

.

Exemplul 5. Aflați derivata unei funcții

.

Soluţie. Aflați derivata primului termen.

Foarte ușor de reținut.

Ei bine, să nu mergem departe, să luăm imediat în considerare funcția inversă. Care funcție este inversul funcției exponențiale? Logaritm:

În cazul nostru, baza este numărul:

Un astfel de logaritm (adică un logaritm cu bază) se numește „natural” și folosim o notație specială pentru el: scriem în schimb.

Cu ce ​​este egal? Desigur, .

Derivata logaritmului natural este, de asemenea, foarte simplă:

Exemple:

  1. Aflați derivata funcției.
  2. Care este derivata functiei?

Raspunsuri: Logaritmul exponențial și natural sunt funcții unice simple dintr-o perspectivă derivată. Funcțiile exponențiale și logaritmice cu orice altă bază vor avea o derivată diferită, pe care o vom analiza mai târziu, după ce vom parcurge regulile de diferențiere.

Reguli de diferențiere

Reguli de ce? Din nou un nou termen, din nou?!...

Diferenţiere este procesul de găsire a derivatei.

Asta e tot. Ce altceva poți numi acest proces într-un singur cuvânt? Nu derivată... Matematicienii numesc diferenţialul acelaşi increment al unei funcţii la. Acest termen provine din latinescul differentia - diferență. Aici.

Când derivăm toate aceste reguli, vom folosi două funcții, de exemplu, și. Vom avea nevoie și de formule pentru incrementele lor:

Sunt 5 reguli în total.

Constanta este scoasă din semnul derivatului.

Dacă - un număr constant (constant), atunci.

Evident, această regulă funcționează și pentru diferența: .

Să demonstrăm. Lasă-l, sau mai simplu.

Exemple.

Aflați derivatele funcțiilor:

  1. la un punct;
  2. la un punct;
  3. la un punct;
  4. la punct.

Solutii:

  1. (derivata este aceeași în toate punctele, deoarece este o funcție liniară, vă amintiți?);

Derivat al produsului

Totul este similar aici: să introducem o nouă funcție și să găsim incrementul acesteia:

Derivat:

Exemple:

  1. Aflați derivatele funcțiilor și;
  2. Aflați derivata funcției într-un punct.

Solutii:

Derivată a unei funcții exponențiale

Acum cunoștințele tale sunt suficiente pentru a învăța cum să găsești derivata oricărei funcții exponențiale și nu doar exponenți (ai uitat încă ce este asta?).

Deci, unde este un număr.

Știm deja derivata funcției, așa că să încercăm să ne reducem funcția la o nouă bază:

Pentru a face acest lucru, vom folosi o regulă simplă: . Apoi:

Ei bine, a funcționat. Acum încercați să găsiți derivata și nu uitați că această funcție este complexă.

S-a întâmplat?

Iată, verifică-te:

Formula s-a dovedit a fi foarte asemănătoare cu derivata unui exponent: așa cum a fost, rămâne aceeași, a apărut doar un factor, care este doar un număr, dar nu o variabilă.

Exemple:
Aflați derivatele funcțiilor:

Raspunsuri:

Acesta este doar un număr care nu poate fi calculat fără un calculator, adică nu poate fi scris într-o formă mai simplă. Prin urmare, îl lăsăm în această formă în răspuns.

    Rețineți că aici este câtul a două funcții, așa că aplicăm regula de diferențiere corespunzătoare:

    În acest exemplu, produsul a două funcții:

Derivată a unei funcții logaritmice

Este similar aici: cunoașteți deja derivata logaritmului natural:

Prin urmare, pentru a găsi un logaritm arbitrar cu o bază diferită, de exemplu:

Trebuie să reducem acest logaritm la bază. Cum schimbi baza unui logaritm? Sper să vă amintiți această formulă:

Abia acum vom scrie în schimb:

Numitorul este pur și simplu o constantă (un număr constant, fără o variabilă). Derivata se obține foarte simplu:

Derivate ale funcțiilor exponențiale și logaritmice nu se găsesc aproape niciodată în examenul de stat unificat, dar nu va fi de prisos să le cunoaștem.

Derivată a unei funcții complexe.

Ce este o „funcție complexă”? Nu, acesta nu este un logaritm și nu o arctangentă. Aceste funcții pot fi greu de înțeles (deși dacă ți se pare dificil logaritmul, citește subiectul „Logaritmi” și vei fi bine), dar din punct de vedere matematic, cuvântul „complex” nu înseamnă „dificil”.

Imaginați-vă o bandă rulantă mică: două persoane stau și fac niște acțiuni cu unele obiecte. De exemplu, primul învelește un baton de ciocolată într-un ambalaj, iar al doilea îl leagă cu o panglică. Rezultatul este un obiect compozit: un baton de ciocolată înfășurat și legat cu o panglică. Pentru a mânca un baton de ciocolată, trebuie să faceți pașii inversi în ordine inversă.

Să creăm o conductă matematică similară: mai întâi vom găsi cosinusul unui număr, apoi vom pătrat numărul rezultat. Așadar, ni se dă un număr (ciocolată), îi găsesc cosinus (înveliș), iar apoi pătrați ce am primit (legați-l cu o panglică). Ce s-a întâmplat? Funcţie. Acesta este un exemplu de funcție complexă: când, pentru a-i găsi valoarea, executăm prima acțiune direct cu variabila, iar apoi o a doua acțiune cu ceea ce a rezultat din prima.

Cu alte cuvinte, o funcție complexă este o funcție al cărei argument este o altă funcție: .

Pentru exemplul nostru, .

Putem face cu ușurință aceiași pași în ordine inversă: mai întâi îl pătrați, iar apoi caut cosinusul numărului rezultat: . Este ușor de ghicit că rezultatul va fi aproape întotdeauna diferit. O caracteristică importantă a funcțiilor complexe: atunci când ordinea acțiunilor se schimbă, funcția se schimbă.

Al doilea exemplu: (același lucru). .

Acțiunea pe care o facem ultima va fi numită funcția „externă”., iar acțiunea efectuată prima - în consecință funcția „internă”.(acestea sunt nume informale, le folosesc doar pentru a explica materialul într-un limbaj simplu).

Încercați să determinați singur ce funcție este externă și care este internă:

Raspunsuri: Separarea funcțiilor interioare și exterioare este foarte asemănătoare cu schimbarea variabilelor: de exemplu, într-o funcție

  1. Ce acțiune vom efectua mai întâi? Mai întâi, să calculăm sinusul și abia apoi să-l cubăm. Aceasta înseamnă că este o funcție internă, dar una externă.
    Iar funcția inițială este compoziția lor: .
  2. Intern: ; extern: .
    Examinare: .
  3. Intern: ; extern: .
    Examinare: .
  4. Intern: ; extern: .
    Examinare: .
  5. Intern: ; extern: .
    Examinare: .

Schimbăm variabilele și obținem o funcție.

Ei bine, acum ne vom extrage batonul de ciocolată și vom căuta derivatul. Procedura este întotdeauna inversată: mai întâi căutăm derivata funcției exterioare, apoi înmulțim rezultatul cu derivata funcției interioare. În raport cu exemplul original, arată astfel:

Alt exemplu:

Deci, să formulăm în sfârșit regula oficială:

Algoritm pentru găsirea derivatei unei funcții complexe:

Pare simplu, nu?

Să verificăm cu exemple:

Solutii:

1) Intern: ;

Extern: ;

2) Intern: ;

(Nu încercați să o tăiați până acum! Nu iese nimic de sub cosinus, vă amintiți?)

3) Intern: ;

Extern: ;

Este imediat clar că aceasta este o funcție complexă pe trei niveluri: la urma urmei, aceasta este deja o funcție complexă în sine și, de asemenea, extragem rădăcina din ea, adică efectuăm a treia acțiune (punem ciocolata într-un ambalaj iar cu o panglică în servietă). Dar nu există niciun motiv să ne fie frică: vom „despacheta” această funcție în aceeași ordine ca de obicei: de la sfârșit.

Adică mai întâi diferențiem rădăcina, apoi cosinusul și abia apoi expresia dintre paranteze. Și apoi înmulțim totul.

În astfel de cazuri, este convenabil să numerotați acțiunile. Adică să ne imaginăm ce știm. În ce ordine vom efectua acțiuni pentru a calcula valoarea acestei expresii? Să ne uităm la un exemplu:

Cu cât acțiunea este efectuată mai târziu, cu atât funcția corespunzătoare va fi mai „externă”. Secvența acțiunilor este aceeași ca înainte:

Aici cuibărirea este în general pe 4 niveluri. Să stabilim cursul acțiunii.

1. Exprimarea radicală. .

2. Rădăcină. .

3. Sine. .

4. Pătrat. .

5. Punând totul împreună:

DERIVAT. SCURT DESPRE LUCRURILE PRINCIPALE

Derivată a unei funcții- raportul dintre incrementul funcției și incrementul argumentului pentru o creștere infinitezimală a argumentului:

Derivate de bază:

Reguli de diferentiere:

Constanta este scoasă din semnul derivat:

Derivată a sumei:

Derivatul produsului:

Derivată a coeficientului:

Derivata unei functii complexe:

Algoritm pentru găsirea derivatei unei funcții complexe:

  1. Definim funcția „internă” și găsim derivata ei.
  2. Definim funcția „externă” și găsim derivata ei.
  3. Înmulțim rezultatele primului și celui de-al doilea punct.

Rezolvarea problemelor fizice sau a exemplelor de matematică este complet imposibilă fără cunoașterea derivatei și a metodelor de calcul. Derivata este unul dintre cele mai importante concepte în analiza matematică. Am decis să dedicăm articolul de astăzi acestui subiect fundamental. Ce este o derivată, care este semnificația sa fizică și geometrică, cum se calculează derivata unei funcții? Toate aceste întrebări pot fi combinate într-una singură: cum să înțelegeți derivatul?

Sensul geometric și fizic al derivatului

Să existe o funcție f(x) , specificat într-un anumit interval (a, b) . Punctele x și x0 aparțin acestui interval. Când x se schimbă, funcția în sine se schimbă. Schimbarea argumentului - diferența de valori x-x0 . Această diferență este scrisă ca delta x și se numește increment de argument. O modificare sau o creștere a unei funcții este diferența dintre valorile unei funcții în două puncte. Definiția derivatului:

Derivata unei funcții într-un punct este limita raportului dintre incrementul funcției la un punct dat și incrementul argumentului atunci când acesta din urmă tinde spre zero.

Altfel se poate scrie asa:

Ce rost are să găsești o astfel de limită? Și iată ce este:

derivata unei funcții într-un punct este egală cu tangentei unghiului dintre axa OX și tangentei la graficul funcției într-un punct dat.


Sensul fizic al derivatului: derivata traseului în raport cu timpul este egală cu viteza mișcării rectilinie.

Într-adevăr, încă din timpul școlii, toată lumea știe că viteza este o cale anume x=f(t) si timpul t . Viteza medie pe o anumită perioadă de timp:

Pentru a afla viteza de mișcare la un moment dat t0 trebuie să calculați limita:

Prima regulă: setați o constantă

Constanta poate fi scoasă din semnul derivatului. Mai mult, acest lucru trebuie făcut. Când rezolvați exemple la matematică, luați-o ca regulă - Dacă puteți simplifica o expresie, asigurați-vă că o simplificați .

Exemplu. Să calculăm derivata:

Regula a doua: derivata sumei functiilor

Derivata sumei a doua functii este egala cu suma derivatelor acestor functii. Același lucru este valabil și pentru derivata diferenței de funcții.

Nu vom oferi o dovadă a acestei teoreme, ci mai degrabă luăm în considerare un exemplu practic.

Aflați derivata funcției:

Regula trei: derivata produsului de funcții

Derivata produsului a doua functii diferentiabile se calculeaza prin formula:

Exemplu: găsiți derivata unei funcții:

Soluţie:

Este important să vorbim aici despre calcularea derivatelor funcțiilor complexe. Derivata unei functii complexe este egala cu produsul derivatei acestei functii fata de argumentul intermediar si derivata argumentului intermediar fata de variabila independenta.

În exemplul de mai sus întâlnim expresia:

În acest caz, argumentul intermediar este de 8x față de a cincea putere. Pentru a calcula derivata unei astfel de expresii, mai întâi calculăm derivata funcției externe în raport cu argumentul intermediar și apoi înmulțim cu derivata argumentului intermediar însuși față de variabila independentă.

Regula a patra: derivată a câtului a două funcții

Formula pentru determinarea derivatei coeficientului a două funcții:

Am încercat să vorbim despre derivate pentru manechine de la zero. Acest subiect nu este atât de simplu pe cât pare, așa că fiți atenți: există adesea capcane în exemple, așa că aveți grijă când calculați derivatele.

Cu orice întrebări pe acest subiect și pe alte subiecte, puteți contacta serviciul studenți. În scurt timp, vă vom ajuta să rezolvați cel mai dificil test și să înțelegeți sarcinile, chiar dacă nu ați mai făcut niciodată calcule derivate.

Originea calculului diferențial este cauzată de necesitatea de a rezolva anumite probleme fizice. Se presupune că o persoană cu calcul diferențial poate lua derivate ale diferitelor funcții. Știi cum să iei derivat dintr-o funcție exprimată ca fracție?

Instrucțiuni

1. Orice fracție are un numărător și un numitor. În procesul de găsire a derivatului lui fractii va trebui găsită separat derivat numărător și derivat numitor.

2. Pentru a descoperi derivat din fractii , derivatînmulțiți numărătorul cu numitorul. Scădeți din expresia rezultată derivat numitorul înmulțit cu numărătorul. Împărțiți totalul la numitorul pătrat.

3. Exemplul 1’ = /cos? (x) = /cos? (x) = /cos? (x) = 1/cos? (X).

4. Rezultatul rezultat nu este altceva decât valoarea tabelară a derivatei funcției tangente. Este clar, raportul dintre sinus și cosinus este, prin definiție, o tangentă. Rezultă că tg (x) = ’ = 1 / cos? (X).

5. Exemplul 2[(x? - 1) / 6x]’ = [(2x 6x - 6 x?) / 6?] = / 36 = 6x? / 36 = x? / 6.

6. Un caz special fractii este o fracție al cărei numitor este unul. Descoperi derivat din acest fel fractii Este mai simplu: imaginați-vă doar ca un numitor cu un grad (-1).

7. Exemplu(1 / x)’ = ’ = -1 · x^(-2) = -1 / x?.

Notă!
O fracție poate conține mai multe fracții. În acest caz, este mai convenabil să găsiți mai întâi derivatele fracțiilor „primare” separat.

Sfaturi utile
Când căutați derivate ale numitorului și numărătorului, aplicați regulile de diferențiere: sumă, produs, funcții dificile. Este util să ținem cont de derivatele celor mai simple funcții tabelare: liniare, exponențiale, de putere, logaritmice, trigonometrice etc.