Удельное электрическое сопротивление никеля. Электрическое сопротивление и проводимость


    Удельные сопротивления популярных проводников (металлов и сплавов). Сталь удельное сопротивление

    Удельное сопротивление железа, алюминия и других проводников

    Передача электроэнергии на дальние расстояния требует заботиться о минимизации потерь, происходящих от преодоления током сопротивления проводников, составляющих электрическую линию. Разумеется, это не значит, что подобные потери, происходящие уже конкретно в цепях и устройствах потребления, не играют роли.

    Поэтому важно знать параметры всех используемых элементов и материалов. И не только электрические, но и механические. И иметь в распоряжении какие-то удобные справочные материалы, позволяющие сравнивать характеристики разных материалов и выбирать для проектирования и работы именно то, что будет оптимальным в конкретной ситуации.В линиях передачи энергии, где задачей ставится наиболее продуктивно, то есть с высоким КПД, довести энергию до потребителя, учитывается как экономика потерь, так и механика самих линий. От механики - то есть устройства и расположения проводников, изоляторов, опор, повышающих/понижающих трансформаторов, веса и прочности всех конструкций, включая провода, растянутые на больших расстояниях, а также от выбранных для выполнения каждого элемента конструкции материалов, зависит и конечная экономическая эффективность линии, ее работы и затрат на эксплуатацию. Кроме того, в линиях, передающих электроэнергию, более высоки требования на обеспечение безопасности как самих линий, так и всего окружающего, где они проходят. А это добавляет затрат как на обеспечение проводки электроэнергии, так и на дополнительный запас прочности всех конструкций.

    Для сравнения данные обычно приводятся к единому, сопоставимому виду. Зачастую к таким характеристикам добавляется эпитет «удельный», а сами значения рассматриваются на неких унифицированных по физическим параметрам эталонах. Например, удельное электрическое сопротивление - это сопротивление (ом) проводника, выполненного из какого-то металла (меди, алюминия, стали, вольфрама, золота), имеющего единичную длину и единичное сечение в используемой системе единиц измерения (обычно в СИ). Кроме того, оговаривается температура, так как при нагревании сопротивление проводников может вести себя по-разному. За основу берутся нормальные средние условия эксплуатации - при 20 градусах Цельсия. А там, где важны свойства при изменении параметров среды (температуры, давления), вводятся коэффициенты и составляются дополнительные таблицы и графики зависимостей.

    Виды удельного сопротивления

    Так как сопротивление бывает:

    • активное - или омическое, резистивное, - происходящее от затрат электроэнергии на нагревание проводника (металла) при прохождении в нем электрического тока, и
    • реактивное - емкостное или индуктивное, - которое происходит от неизбежных потерь на создание всякими изменениями тока, проходящего через проводник электрических полей, то и удельное сопротивление проводника бывает двух разновидностей:
  1. Удельное электрическое сопротивление постоянному току (имеющее резистивный характер) и
  2. Удельное электрическое сопротивление переменному току (имеющее реактивный характер).

Здесь удельное сопротивление 2 типа является величиной комплексной, оно состоит из двух компонент ТП - активной и реактивной, так как резистивное сопротивление существует всегда при прохождении тока, независимо от его характера, а реактивное бывает только при любом изменении тока в цепях. В цепях постоянного тока реактивное сопротивление возникает только при переходных процессах, которые связаны с включением тока (изменение тока от 0 до номинала) или выключением (перепад от номинала до 0). И их учитывают обычно только при проектировании защиты от перегрузок.

В цепях же переменного тока явления, связанные с реактивными сопротивлениями, гораздо более многообразны. Они зависят не только от собственно прохождения тока через некоторое сечение, но и от формы проводника, причем зависимость не является линейной.


Дело в том, что переменный ток наводит электрическое поле как вокруг проводника, по которому протекает, так и в самом проводнике. И от этого поля возникают вихревые токи, которые дают эффект «выталкивания» собственно основного движения зарядов, из глубины всего сечения проводника на его поверхность, так называемый «скин-эффект» (от skin - кожа). Получается, вихревые токи как бы «воруют» у проводника его сечение. Ток течет в некотором слое, близком к поверхности, остальная толщина проводника остается неиспользуемой, она не уменьшает его сопротивление, и увеличивать толщину проводников просто нет смысла. Особенно на больших частотах. Поэтому для переменного тока измеряют сопротивления в таких сечениях проводников, где все его сечение можно считать приповерхностным. Такой провод называется тонким, его толщина равна удвоенной глубине этого поверхностного слоя, куда вихревые токи и вытесняют текущий в проводнике полезный основной ток.


Разумеется, уменьшением толщины круглых в сечении проводов не исчерпывается эффективное проведение переменного тока. Проводник можно утончить, но при этом сделать его плоским в виде ленты, тогда сечение будет выше, чем у круглого провода, соответственно, и сопротивление ниже. Кроме того, простое увеличение площади поверхности даст эффект увеличения эффективного сечения. Того же можно добиться, используя многожильный провод вместо одножильного, к тому же, многожилка по гибкости превосходит одножилку, что часто тоже бывает ценно. С другой стороны, принимая во внимание скин-эффект в проводах, можно сделать провода композитными, выполнив сердцевину из металла, обладающего хорошими прочностными характеристиками, например, стали, но невысокими электрическими. При этом поверх стали делается алюминиевая оплетка, имеющая меньшее удельное сопротивление.


Кроме скин-эффекта на протекание переменного тока в проводниках влияет возбуждение вихревых токов в окружающих проводниках. Такие токи называются токами наводки, и они наводятся как в металлах, не играющих роль проводки (несущие элементы конструкций), так и в проводах всего проводящего комплекса - играющих роль проводов других фаз, нулевых, заземляющих.

Все перечисленные явления встречаются во всех конструкциях, связанных с электричеством, это еще более усиливает важность иметь в своем распоряжении сводные справочные сведения по самым разным материалам.

Удельное сопротивление для проводников измеряется очень чувствительными и точными приборами, так как для проводки и выбираются металлы, имеющие самое низкое сопротивление -порядка ом *10-6 на метр длины и кв. мм. сечения. Для измерения же удельного сопротивления изоляции нужны приборы, наоборот, имеющие диапазоны очень больших значений сопротивления - обычно это мегомы. Понятно, что проводники обязаны хорошо проводить, а изоляторы хорошо изолировать.

Таблица

Железо как проводник в электротехнике

Железо - самый распространенный в природе и технике металл (после водорода, который металлом тоже является). Он и самый дешевый, и имеет прекрасные прочностные характеристики, поэтому применяется повсюду как основа прочности различных конструкций.

В электротехнике в качестве проводника железо используется в виде стальных гибких проводов там, где нужна физическая прочность и гибкость, а нужное сопротивление может быть достигнуто за счет соответствующего сечения.

Имея таблицу удельных сопротивлений различных металлов и сплавов, можно посчитать сечения проводов, выполненных из разных проводников.

В качестве примера попробуем найти электрически эквивалентное сечение проводников из разных материалов: проволоки медной, вольфрамовой, никелиновой и железной. За исходную возьмем проволоку алюминиевую сечением 2,5 мм.

Нам нужно, чтобы на длине в 1 м сопротивление провода из всех этих металлов равнялось сопротивлению исходной. Сопротивление алюминия на 1 м длины и 2,5 мм сечения будет равно

, где R – сопротивление, ρ – удельное сопротивление металла из таблицы, S – площадь сечения, L – длина.

Подставив исходные значения, получим сопротивление метрового куска провода алюминия в омах.

После этого разрешим формулу относительно S

, будем подставлять значения из таблицы и получать площади сечений для разных металлов.

Так как удельное сопротивление в таблице измерено на проводе длиной в 1 м, в микроомах на 1 мм2 сечения, то у нас и получилось оно в микроомах. Чтобы получить его в омах, нужно умножить значение на 10-6. Но число ом с 6 нулями после запятой нам получать совсем не обязательно, так как конечный результат все равно находим в мм2.

Как видим, сопротивление железа достаточно большое, проволока получается толстая.


Но существуют материалы, у которых оно еще больше, например, никелин или константан.

Похожие статьи:

domelectrik.ru

Таблица удельного электрического сопротивления металлов и сплавов в электротехнике

Главная > у >



Удельное сопротивление металлов.

Удельное сопротивление сплавов.

Значения даны при температуре t = 20° C. Сопротивления сплавов зависят от их точного состава. comments powered by HyperComments

tab.wikimassa.org

Удельное электрическое сопротивление | Мир сварки

Удельное электрическое сопротивление материалов

Удельное электрическое сопротивление (удельное сопротивление) - способность вещества препятствовать прохождению электрического тока.

Единица измерения (СИ) - Ом·м; также измеряется в Ом·см и Ом·мм2/м.

Материал Температура, °С Удельное электрическоесопротивление, Ом·м
Металлы
Алюминий 20 0,028·10-6
Бериллий 20 0,036·10-6
Бронза фосфористая 20 0,08·10-6
Ванадий 20 0,196·10-6
Вольфрам 20 0,055·10-6
Гафний 20 0,322·10-6
Дюралюминий 20 0,034·10-6
Железо 20 0,097·10-6
Золото 20 0,024·10-6
Иридий 20 0,063·10-6
Кадмий 20 0,076·10-6
Калий 20 0,066·10-6
Кальций 20 0,046·10-6
Кобальт 20 0,097·10-6
Кремний 27 0,58·10-4
Латунь 20 0,075·10-6
Магний 20 0,045·10-6
Марганец 20 0,050·10-6
Медь 20 0,017·10-6
Магний 20 0,054·10-6
Молибден 20 0,057·10-6
Натрий 20 0,047·10-6
Никель 20 0,073·10-6
Ниобий 20 0,152·10-6
Олово 20 0,113·10-6
Палладий 20 0,107·10-6
Платина 20 0,110·10-6
Родий 20 0,047·10-6
Ртуть 20 0,958·10-6
Свинец 20 0,221·10-6
Серебро 20 0,016·10-6
Сталь 20 0,12·10-6
Тантал 20 0,146·10-6
Титан 20 0,54·10-6
Хром 20 0,131·10-6
Цинк 20 0,061·10-6
Цирконий 20 0,45·10-6
Чугун 20 0,65·10-6
Пластмассы
Гетинакс 20 109–1012
Капрон 20 1010–1011
Лавсан 20 1014–1016
Органическое стекло 20 1011–1013
Пенопласт 20 1011
Поливинилхлорид 20 1010–1012
Полистирол 20 1013–1015
Полиэтилен 20 1015
Стеклотекстолит 20 1011–1012
Текстолит 20 107–1010
Целлулоид 20 109
Эбонит 20 1012–1014
Резины
Резина 20 1011–1012
Жидкости
Масло трансформаторное 20 1010–1013
Газы
Воздух 0 1015–1018
Дерево
Древесина сухая 20 109–1010
Минералы
Кварц 230 109
Слюда 20 1011–1015
Различные материалы
Стекло 20 109–1013

ЛИТЕРАТУРА

  • Альфа и омега. Краткий справочник / Таллин: Принтэст, 1991 – 448 с.
  • Справочник по элементарной физике / Н.Н. Кошкин, М.Г. Ширкевич. М., Наука. 1976. 256 с.
  • Справочник по сварке цветных металлов / С.М. Гуревич. Киев.: Наукова думка. 1990. 512 с.

weldworld.ru

Удельное сопротивление металлов, электролитов и веществ (Таблица)

Удельное сопротивление металлов и изоляторов

В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18-20° С, выраженные в ом·см. Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно. Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.

Таблица удельное сопротивление металлов

Чистые металлы

104 ρ (ом·см)

Чистые металлы

104 ρ (ом·см)

Алюминий

Дюралюминий

Платинит 2)

Аргентан

Марганец

Манганин

Вольфрам

Константан

Молибден

Сплав Вуда 3)

Сплав Розе 4)

Палладий

Фехраль 6)

Таблица удельное сопротивление изоляторов

Изоляторы

Изоляторы

Дерево сухое

Целлулоид

Канифоль

Гетинакс

Кварц _|_ оси

Стекло натр

Полистирол

Стекло пирекс

Кварц || оси

Кварц плавленый

Удельное сопротивление чистых металлов при низких температурах

В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).

Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К.

В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.

Чистые металлы

Алюминий

Вольфрам

Молибден

Удельное сопротивление электролитов

В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, - М.: 1960.

infotables.ru

Удельное электрическое сопротивление - сталь

Cтраница 1

Удельное электрическое сопротивление стали возрастает с ростом температуры, причем наибольшие изменения наблюдаются при нагреве до температуры точки Кюри. После точки Кюри величина удельного электросопротивления изменяется незначительно и при температурах выше 1000 С практически остается постоянной.  

Ввиду большого удельного электрического сопротивления стали эти iuKii создают НсОольшое замедление в спадании потока. В контакторах на 100 а время отпадания составляет 0 07 сек, а в контакторах 600 а-0 23 сек. В связи с особыми требованиями, предъявляемыми к контакторам серии КМВ, которые предназначены для включения и отключения электромагнитов приводов масляных выключателей, электромагнитный механизм у этих контакторов допускает регулировку напряжения срабатывания и напряжения отпускания за счет регулировки силы возвратной пружины и специальной отрывной пружины. Контакторы типа КМВ должны работать при глубокой посадке напряжения. Поэтому минимальное напряжение срабатывания у этих контакторов может спускаться до 65 % UH. Такое низкое напряжение срабатывания приводит к тому, что при номинальном напряжении через обмотку протекает ток, приводящий к повышенному нагреву катушки.  

Присадка кремния увеличивает удельное электрическое сопротивление стали почти пропорционально содержанию кремния и этим способствует уменьшению потерь на вихревые токи, возникающие в стали при ее работе в переменном магнитном поле.  

Присадка кремния увеличивает удельное электрическое сопротивление стали, что способствует уменьшению потерь на вихревые токи, но одновременно кремний ухудшает механические свойства стали, делает ее хрупкой.  

Ом - мм2 / м - удельное электрическое сопротивление стали.  

Для уменьшения вихревых токов применяются сердечники, выполненные из сортов стали с повышенным удельным электрическим сопротивлением стали, содержащие 0 5 - 4 8 % кремния.  

Для этого на массивный ротор из оптимального сплава СМ-19 был надет тонкий экран из магнитно-мягкой стали. Удельное электрическое сопротивление стали мало отличается от удельного сопротивления сплава, а цг стали примерно на порядок выше. Толщина экрана выбрана по глубине проникновения зубцовых гармоник первого порядка и равна йэ 0 8 мм. Для сравнения приведены добавочные потери, Вт, при базовом короткозамкнутом роторе и двухслойном роторе с массивным цилиндром из сплава СМ-19 и с медными торцевыми кольцами.  

Основным магнитопроводящим материалом является листовая легированная электротехническая сталь, содержащая от 2 до 5 % кремния. Присадка кремния увеличивает удельное электрическое сопротивление стали, в результате чего уменьшаются потери на вихревые токи, сталь становится устойчивой к окислению и старению, но делается более хрупкой. В последние годы широко используется холоднокатаная текстурованная сталь с более высокими магнитными свойствами в направлении проката. Для уменьшения потерь от вихревых токов сердечник магнитопровода выполняется в виде пакета, собранного из листов штампованной стали.  

Электротехническая сталь является низкоуглеродистой сталью. Для улучшения магнитных характеристик в нее вводят кремний, который вызывает повышение удельного электрического сопротивления стали. Это приводит к уменьшению потерь на вихревые токи.  

После механической обработки магнитопровод отжигают. Так как в создании замедления участвуют вихревые токи в стали, следует ориентироваться на величину удельного электрического сопротивления стали порядка Рс (Ю-15) 10 - 6 ом см. В притянутом положении якоря магнитная система достаточно сильно насыщена, поэтому начальная индукция в различных магнитных системах колеблется в очень незначительных пределах и составляет для стали марки Э Вн1 6 - 1 7 гл. Указанное значение индукции поддерживает напряженность поля в стали порядка Ян.  

Для изготовления магнитных систем (магнитопроводов) трансформаторов применяются специальные тонколистовые электротехнические стали, имеющие повышенное (до 5 %) содержание кремния. Кремний способствует обезуглероживанию стали, что приводит к увеличению магнитной проницаемости, снижает потери на гистерезис и увеличивает ее удельное электрическое сопротивление. Увеличение удельного электрического сопротивления стали позволяет уменьшить потери в ней от вихревых токов. Кроме того, кремний ослабляет старение стали (увеличение потерь в стали с течением времени), уменьшает ее магнитострикцию (изменение формы и размеров тела при намагничивании) и, следовательно, шум трансформаторов. В то же время наличие кремния в стали приводит к повышению ее хрупкости и затрудняет ее механическую обработку.  

Страницы:      1    2

www.ngpedia.ru

Удельное сопротивление | Викитроника вики

Удельное сопротивление - характеристика материала, определяющая его способность проводить электрический ток. Определяется как отношение электрического поля к плотности тока. В общем случае является тензором, однако для большинства материалов, не проявляющих анизотропных свойств, принимается скалярной величиной.

Обозначение - ρ

$ \vec E = \rho \vec j, $

$ \vec E $ - напряжённость электрического поля, $ \vec j $ - плотность тока.

Единица измерения СИ - ом-метр (ом·м, Ω·m).

Сопротивление цилиндра или призмы (между торцами) из материала длиной l, и сечением S по удельному сопротивлению определяется следующим образом:

$ R = \frac{\rho l}{S}. $

В технике применяется определение удельного сопротивления, как сопротивление проводника единичного сечения и единичной длины.

Удельное сопротивление некоторых материалов, используемых в электротехнике Править

Материал ρ при 300 К, Ом·м ТКС, К⁻¹
серебро 1,59·10⁻⁸ 4,10·10⁻³
медь 1,67·10⁻⁸ 4,33·10⁻³
золото 2,35·10⁻⁸ 3,98·10⁻³
алюминий 2,65·10⁻⁸ 4,29·10⁻³
вольфрам 5,65·10⁻⁸ 4,83·10⁻³
латунь 6,5·10⁻⁸ 1,5·10⁻³
никель 6,84·10⁻⁸ 6,75·10⁻³
железо (α) 9,7·10⁻⁸ 6,57·10⁻³
олово серое 1,01·10⁻⁷ 4,63·10⁻³
платина 1,06·10⁻⁷ 6,75·10⁻³
олово белое 1,1·10⁻⁷ 4,63·10⁻³
сталь 1,6·10⁻⁷ 3,3·10⁻³
свинец 2,06·10⁻⁷ 4,22·10⁻³
дюралюминий 4,0·10⁻⁷ 2,8·10⁻³
манганин 4,3·10⁻⁷ ±2·10⁻⁵
константан 5,0·10⁻⁷ ±3·10⁻⁵
ртуть 9,84·10⁻⁷ 9,9·10⁻⁴
нихром 80/20 1,05·10⁻⁶ 1,8·10⁻⁴
канталь А1 1,45·10⁻⁶ 3·10⁻⁵
углерод (алмаз, графит) 1,3·10⁻⁵
германий 4,6·10⁻¹
кремний 6,4·10²
этанол 3·10³
вода, дистиллированная 5·10³
эбонит 10⁸
бумага твёрдая 10¹⁰
трансформаторное масло 10¹¹
стекло обычное 5·10¹¹
поливинил 10¹²
фарфор 10¹²
древесина 10¹²
ПТФЭ (тефлон) >10¹³
резина 5·10¹³
стекло кварцевое 10¹⁴
бумага вощёная 10¹⁴
полистирол >10¹⁴
слюда 5·10¹⁴
парафин 10¹⁵
полиэтилен 3·10¹⁵
акриловая смола 10¹⁹

ru.electronics.wikia.com

Удельное электрическое сопротивление | формула, объемное, таблица

Удельное электрическое сопротивление является физической величиной, которая показывает, в какой степени материал может сопротивляться прохождению через него электрического тока. Некоторые люди могут перепутать данную характеристику с обыкновенным электрическим сопротивлением. Несмотря на схожесть понятий, разница между ними заключается в том, что удельное касается веществ, а второй термин относится исключительно к проводникам и зависит от материала их изготовления.

Обратной величиной данного материала является удельная электрическая проводимость. Чем выше этот параметр, тем лучше проходит ток по веществу. Соответственно, чем выше сопротивление, тем больше потерь предвидится на выходе.

Формула расчета и величина измерения

Рассматривая, в чем измеряется удельное электрическое сопротивление, также можно проследить связь с не удельным, так как для обозначения параметра используются единицы Ом·м. Сама величина обозначается как ρ. С таким значением можно определять сопротивление вещества в конкретном случае, исходя из его размеров. Эта единица измерения соответствует системе СИ, но могут встречаться и другие варианты. В технике периодически можно увидеть устаревшее обозначение Ом·мм2/м. Для перевода из этой системы в международного не потребуется использовать сложные формулы, так как 1 Ом·мм2/м равняется 10-6 Ом·м.

Формула удельного электрического сопротивления выглядит следующим образом:

R= (ρ·l)/S, где:

  • R – сопротивление проводника;
  • Ρ – удельное сопротивление материал;
  • l – длина проводника;
  • S – сечение проводника.

Зависимость от температуры

Удельное электрическое сопротивление зависит от температуры. Но все группы веществ проявляют себя по-разному при ее изменении. Это необходимо учитывать при расчете проводов, которые будут работать в определенных условиях. К примеру, на улице, где значения температуры зависят от времени года, необходимые материалы с меньшей подверженностью изменениям в диапазоне от -30 до +30 градусов Цельсия. Если же планируется применение в технике, которая будет работать в одних и тех же условиях, то здесь также нужно оптимизировать проводку под конкретные параметры. Материал всегда подбирается с учетом эксплуатации.

В номинальной таблице удельное электрическое сопротивление берется при температуре 0 градусов Цельсия. Повышение показателей данного параметра при нагреве материала обусловлено тем, что интенсивность передвижения атомов в веществе начинает возрастать. Носители электрических зарядов хаотично рассеиваются во всех направлениях, что приводит к созданию препятствий при передвижении частиц. Величина электрического потока снижается.

При уменьшении температуры условия прохождения тока становятся лучше. При достижении определенной температуры, которая для каждого металла будет отличаться, появляется сверхпроводимость, при которой рассматриваемая характеристика почти достигает нуля.

Отличия в параметрах порой достигают очень больших значений. Те материалы, которые обладают высокими показателями, могут использовать в качестве изоляторов. Они помогают защищать проводку от замыкания и ненамеренного контакта с человеком. Некоторые вещества вообще не применимы для электротехники, если у них высокое значение этого параметра. Этому могут мешать другие свойства. Например, удельная электрическая проводимость воды не будет иметь большого значения для данный сферы. Здесь приведены значения некоторых веществ с высокими показателями.

Материалы с высоким удельным сопротивлением ρ (Ом·м)
Бакелит 1016
Бензол 1015...1016
Бумага 1015
Вода дистиллированная 104
Вода морская 0.3
Дерево сухое 1012
Земля влажная 102
Кварцевое стекло 1016
Керосин 1011
Мрамор 108
Парафин 1015
Парафиновое масло 1014
Плексиглас 1013
Полистирол 1016
Полихлорвинил 1013
Полиэтилен 1012
Силиконовое масло 1013
Слюда 1014
Стекло 1011
Трансформаторное масло 1010
Фарфор 1014
Шифер 1014
Эбонит 1016
Янтарь 1018

Более активно в электротехнике применяются вещества с низкими показателями. Зачастую это металлы, которые служат проводниками. В них также наблюдается много различий. Чтобы узнать удельное электрическое сопротивление меди или других материалов, стоит посмотреть в справочную таблицу.

Материалы с низким удельным сопротивлением ρ (Ом·м)
Алюминий 2.7·10-8
Вольфрам 5.5·10-8
Графит 8.0·10-6
Железо 1.0·10-7
Золото 2.2·10-8
Иридий 4.74·10-8
Константан 5.0·10-7
Литая сталь 1.3·10-7
Магний 4.4·10-8
Манганин 4.3·10-7
Медь 1.72·10-8
Молибден 5.4·10-8
Нейзильбер 3.3·10-7
Никель 8.7·10-8
Нихром 1.12·10-6
Олово 1.2·10-7
Платина 1.07·10-7
Ртуть 9.6·10-7
Свинец 2.08·10-7
Серебро 1.6·10-8
Серый чугун 1.0·10-6
Угольные щетки 4.0·10-5
Цинк 5.9·10-8
Никелин 0,4·10-6

Удельное объемное электрическое сопротивление

Данный параметр характеризует возможность пропускать ток через объем вещества. Для измерения необходимо приложить потенциал напряжения с разных сторон материала, изделие из которого будет включено в электрическую цепь. На него подается ток с номинальными параметрами. После прохождения измеряются данные на выходе.

Использование в электротехнике

Изменение параметра при разных температурах широко применяется в электротехнике. Наиболее простым примером является лампа накаливания, где используется нихромовая нить. При нагревании она начинает светиться. При прохождении через нее тока она начинает нагреваться. С ростом нагрева возрастает и сопротивление. Соответственно, ограничивается первоначальный ток, который нужен был для получения освещения. Нихромовая спираль, используя тот же принцип, может стать регулятором на различных аппаратах.

Широкое применение коснулось и благородных металлов, которые обладают подходящими характеристиками для электротехники. Для ответственных схем, которым требуется быстродействие, подбираются серебряные контакты. Они обладают высокой стоимостью, но с учетом относительно небольшого количества материалов их применение вполне оправданно. Медь уступает серебру по проводимости, но обладает более доступной ценой, благодаря чему ее чаще используют для создания проводов.

В условиях, где можно использовать предельно низкие температуры, применяются сверхпроводники. Для комнатной температуры и уличной эксплуатации они не всегда уместны, так как при повышении температуры их проводимость начнет падать, поэтому для таких условий лидерами остаются алюминий, медь и серебро.

На практике учитывается много параметров и этот является одним из наиболее важных. Все расчеты проводятся еще на стадии проектирования, для чего и используются справочные материалы.

14.04.2018

В качестве токопроводящих частей в электроустановках применяют проводники из меди, алюминия, их сплавов и железа (стали).

Медь является одним из лучших токопроводящих материалов. Плотность меди при 20°С 8,95 г/см 3 , температура плавления 1083° С. Медь химически мало активна, но легко растворяется в азотной кислоте, а в разбавленной соляной и серной кислотах растворяется только в присутствии окислителей (кислорода). На воздухе медь быстро покрывается тонким слоем окиси темного цвета, но это окисление не проникает в глубь металла и служит защитой от дальнейшей коррозии. Медь хорошо поддается ковке и прокатке без нагрева.

Для изготовления применяется электролитическая медь в слитках, содержащих 99,93% чистой меди.

Электропроводность меди сильно зависит от количества и рода примесей и в меньшей степени от механической и термической обработки. при 20° С составляет 0,0172-0,018 ом х мм2/м.

Для изготовления проводников применяют мягкую, полутвердую или твердую медь с удельным весом соответственно 8,9, 8,95 и 8,96 г/см 3 .

Для изготовления деталей токоведущих частей широко используется медь в сплавах с другими металлами . Наибольшее применение получили следующие сплавы.

Латуни - сплав меди с цинком, с содержанием в сплаве не менее 50% меди, с присадкой других металлов. латуни 0,031 - 0,079 ом х мм2/м. Различают латунь - томпак с содержанием меди более 72% (обладает высокой пластичностью, антикоррозионным и антифрикционными свойствами) и специальные латуни с присадкой алюминия, олова, свинца или марганца.

Контакт из латуни

Бронзы - сплав меди с оловом с присадкой различных металлов. В зависимости от содержания в сплаве главного компонента бронзы называют оловянистыми, алюминиевыми, кремниевыми, фосфористыми, кадмиевыми. Удельное сопротивление бронзы 0,021 - 0,052 ом х мм 2 /м.

Латуни и бронзы отличаются хорошими механическими и физико-химическими свойствами. Они легко обрабатываются литьем и давлением, устойчивы против атмосферной коррозии.

Алюминий - по своим качествам второй после меди токопроводящий материал. Температура плавления 659,8° С. Плотность алюминия при температуре 20° - 2,7 г/см 3 . Алюминий легко отливается и хорошо обрабатывается. При температуре 100 - 150° С алюминий ковок и пластичен (может быть прокатан в листы толщиной до 0,01 мм).

Электропроводность алюминия сильно зависит от примесей и мало от механической и тепловой обработки. Чем чище состав алюминия, тем выше его электропроводность и лучше противодействие химическим воздействиям. Обработка, прокатка и отжиг значительно влияют на механическую прочность алюминия. При холодной обработке алюминия увеличивается его твердость, упругость и прочность на растяжение. Удельное сопротивление алюминия при 20° С 0,026 - 0,029 ом х мм 2 /м.

При замене меди алюминием сечение проводника должно быть увеличено в отношении проводимостей, т. е. в 1,63 раза.

При равной проводимости алюминиевый проводник будет в 2 раза легче медного.

Для изготовления проводников применяют алюминий, содержащий не менее 98% чистого алюминия, кремния не более 0,3%, железа не более 0,2%

Для изготовления деталей токоведущих частей используют алюминиевые сплавы с другими металлами , например: Дюралюмины - сплав алюминия с медью и марганцем.

Силумин - легкий литейный сплав из алюминия с примесью кремния, магния, марганца.

Алюминиевые сплавы обладают хорошими литейными свойствами и высокой механической прочностью.

Наибольшее применение в электротехнике получили следующие алюминиевые сплавы :

Алюминиевый деформируемый сплав марки АД, имеющий алюминия не менее 98,8 и прочих примесей до 1,2.

Алюминиевый деформируемый сплав марки АД1 , имеющий алюминия не менее 99,3 н прочих примесей до 0,7.

Алюминиевый деформируемый сплав марки АД31 , имеющий алюминия 97,35 - 98,15 и прочих примесей 1,85 -2,65.

Сплавы марок АД и АД1 применяются для изготовления корпусов и плашек аппаратных зажимов. Из сплава марки АД31 изготовляют профили и шины, применяемые для электрических токопроводов.

Изделия из алюминиевых сплавов в результате термической обработки приобретают высокие пределы прочности н текучести (ползучести).

Железо - температура плавления 1539°С. Плотность железа - 7,87. Железо растворяется в кислотах, окисляется галогенами и кислородом.

В электротехнике применяют стали различных марок, например:

Углеродистые стали - ковкие сплавы железа с углеродом и с другими металлургическими примесями.

Удельное сопротивление углеродистых сталей 0,103 - 0,204 ом х мм 2 /м.

Легированные стали - сплавы с дополнительно вводимыми в углеродистую сталь присадками хрома, никеля и других элементов.

Стали обладают хорошими.

В качестве добавок в сплавы, а также для изготовления припоев и осуществления токопроводящих металлов широко применяют:

Кадмий - ковкий металл. Температура плавления кадмия 321°С. Удельное сопротивление 0,1 ом х мм 2 /м. В электротехнике кадмий применяется для приготовления легкоплавких припоев и для защитных покрытий (кадмировання) поверхности металлов. По своим антикоррозийным свойствам кадмий близок к цинку, но кадмиевые покрытия менее пористы и наносятся более тонким слоем, чем цинковые.

Никель - температура плавления 1455°С. Удельное сопротивление никеля 0,068 - 0,072 ом х мм 2 /м. При обычной температуре не окисляется кислородом воздуха. Никель применяется в сплавах и для защитного покрытия (никелирования) поверхности металлов.

Олово - температура плавления 231,9°С. Удельное сопротивление олова 0,124 - 0,116 ом х мм 2 /м. Олово применяется для пайки защитного покрытия (лужения) металлов в чистом виде и в виде сплавов с другими металлами.

Свинец - температура плавления 327,4°С. Удельное сопротивление 0,217 - 0,227 ом х мм 2 /м. Свинец применяется в сплавах с другими металлами как кислотоупорный материал. Добавляется в паяльные сплавы (припои).

Серебро - очень ковкий, тягучий металл. Температура плавления серебра 960,5°С. Серебро - лучший проводник тепла и электрического тока . Удельное сопротивление серебра 0,015 - 0,016 ом х мм 2 /м. Серебро применяется для защитного покрытия (серебрения) поверхности металлов.

Сурьма - блестящий хрупкий металл, температура плавления 631°С. Сурьма применяется в виде добавок в паяльные сплавы (припои).

Хром - твердый, блестящий металл. Температура плавления 1830°С. На воздухе при обычной температуре не изменяется. Удельное сопротивление хрома 0,026 ом х мм 2 /м. Хром применяется в сплавах и для защитного покрытия (хромирования) металлических поверхностей.

Цинк - температура плавления 419,4°С. Удельное сопротивление цинка 0,053 - 0,062 ом х мм 2 /м. Во влажном воздухе цинк окисляется, покрываясь слоем окиси, являющимся защитным по отношению к последующим химическим воздействиям. В электротехнике цинк применяется в качестве добавок в сплавы и припои, а также для защитного покрытия (цинкования) поверхностей металлических деталей.

Как только электричество покинуло лаборатории учёных и стало широко внедряться в практику повседневной жизни, встал вопрос о поиске материалов, обладающих определёнными, порой совершенно противоположными, характеристиками по отношению к протеканию через них электрического тока.

Например, при передаче электрической энергии на дальнее расстояние, к материалу проводов предъявлялись требования минимизации потерь из-за джоулева нагрева в сочетании с малыми весовыми характеристиками. Примером тому являются всем знакомые высоковольтные линии электропередач, выполненные из алюминиевых проводов со стальным сердечником.

Или, наоборот, для создания компактных трубчатых электронагревателей требовались материалы с относительно высоким электрическим сопротивлением и высокой термостойкостью. Простейшим примером прибора, в котором применяются материалы с подобными свойствами, может служить конфорка обыкновенной кухонной электроплиты.

От проводников, используемых в биологии и медицине в качестве электродов, зондов и щупов, требуется высокая химическая устойчивость и совместимость с биоматериалами в сочетании с малым контактным сопротивлением.

К разработке такого ныне привычного всем прибора, как лампа накаливания, свои усилия приложила целая плеяда изобретателей из разных стран: Англии, России, Германии, Венгрии и США. Томас Эдисон, проведя более тысячи опытов проверки свойств материалов, подходящих на роль нитей накала, создал лампу с платиновой спиралью. Лампы Эдисона, хотя и имели высокий срок эксплуатации, но не были практичными из-за высокой стоимости исходного материала.

Последующие работы русского изобретателя Лодыгина, предложившего использовать в качестве материалов нити относительно дешёвые тугоплавкие вольфрам и молибден с более высоким удельным сопротивлением, нашли практическое применение. К тому же Лодыгин предложил откачивать из баллонов ламп накаливания воздух, заменяя его инертными или благородными газами, что привело к созданию современных ламп накаливания. Пионером массового производства доступных и долговечных электрических ламп стала компания General Electric, которой Лодыгин переуступил права на свои патенты и далее успешно работал в лабораториях компании долгое время.

Этот перечень можно продолжать, поскольку пытливый человеческий ум настолько изобретателен, что порой для решения определённой технической задачи ему нужны материалы с невиданными доселе свойствами или с невероятными сочетаниями этих свойств. Природа уже не успевает за нашими аппетитами и учёные всех стран мира включились в гонку создания материалов, не имеющих природных аналогов.

Оно представляет собой преднамеренное соединение кожуха или корпуса электроустройств с защитным заземляющим устройством. Обычно заземление выполняется в виде зарытых в землю на глубину более 2,5 метра стальных или медных полос, труб, стержней или уголков, которые в случае аварии обеспечивают протекание тока по контуру устройство - корпус или кожух - земля - нулевой провод источника переменного тока. Сопротивление этого контура должно быть не более 4 Ом. В этом случае напряжение на корпусе аварийного устройства снижается до безопасного для человека величин, а автоматические устройства защиты электрической цепи тем или иным способом производят отключение аварийного устройства.

При расчёте элементов защитного заземления существенную роль играет знание удельного сопротивления грунтов, которое может варьироваться в широких пределах.

Сообразуясь с данными справочных таблиц, выбирается площадь заземляющего устройства, по ней вычисляется количество заземляющих элементов и собственно конструкция всего устройства. Соединение элементов конструкции устройства защитного заземления производится сваркой.

Электротомография

Электроразведка изучает приповерхностную геологическую среду, применяется для поиска рудных и нерудных полезных ископаемых и других объектов на основе исследования различных искусственных электрических и электромагнитных полей. Частным случаем электроразведки является электротомография (Electrical Resistivity Tomography) - метод определения свойств горных пород по их удельному сопротивлению.

Суть метода заключается в том, что при определённом положении источника электрического поля проводятся замеры напряжения на различных зондах, затем источник поля перемещают в другое место или переключают на другой источник и повторяют измерения. Источники поля и зонды-приёмники поля размещают на поверхности и в скважинах.

Затем полученные данные обрабатываются и интерпретируются с помощью современных компьютерных методов обработки, позволяющих визуализировать информацию в виде двухмерных и трёхмерных изображений.

Являясь очень точным методом поиска, электротомография оказывает неоценимую помощь геологам, археологам и палеозоологам.

Определение формы залегания месторождений полезных ископаемых и границ их распространения (оконтуривание) позволяет выявить залегание жильных залежей полезных ископаемых, что существенно снижает затраты на их последующую разработку.

Археологам этот метод поиска даёт ценную информацию о расположении древних захоронений и наличия в них артефактов, тем самым сокращая затраты на раскопки.

Палеозоологи с помощью электротомографии ищут окаменевшие останки древних животных; результаты их работ можно увидеть в музеях естественных наук в виде поражающих воображение реконструкций скелетов доисторической мегафауны.

Кроме того, электротомография применяется при возведении и при последующей эксплуатации инженерных сооружений: высотных зданий, плотин, дамб, насыпей и других.

Определения удельного сопротивления на практике

Порой для решения практических задач перед нами может встать задача определения состава вещества, например, проволоки для резака пенополистирола. Имеем два мотка проволоки подходящего диаметра из различных неизвестных нам материалов. Для решения задачи необходимо найти их удельное электрическое сопротивление и далее по разнице найденных значений или по справочной таблице определить материал проволоки.

Отмерим рулеткой и отрежем по 2 метра проволоки от каждого образца. Определим диаметры проволок d₁ и d₂ микрометром. Включив мультиметр на нижний предел измерения сопротивлений, измеряем сопротивление образца R₁. Повторяем процедуру для другого образца и также измеряем его сопротивление R₂.

Учтём, что площадь поперечного сечения проволок рассчитывается по формуле

S = π ∙ d 2 /4

Теперь формула для расчёта удельного электрического сопротивления будет выглядеть следующим образом

ρ = R ∙ π ∙ d 2 /4 ∙ L

Подставляя полученные значения L, d₁ и R₁ в формулу для расчёта удельного сопротивления, приведенную в статье выше, вычисляем значение ρ₁ для первого образца.

ρ 1 = 0,12 ом мм 2 /м

Подставляя полученные значения L, d₂ и R₂ в формулу, вычисляем значение ρ₂ для второго образца.

ρ 2 = 1,2 ом мм 2 /м

Из сравнения значений ρ₁ и ρ₂ со справочными данными вышеприведенной Таблицы 2, делаем вывод, что материалом первого образца является сталь, а второго - нихром, из которого и изготовим струну резака.

Называют возможность металла пропускать сквозь себя заряженный ток. В свою очередь, сопротивлением называется одна из характеристик материала. Чем больше электрическая резистентность при заданном напряжении, тем меньшей будет Оно характеризует силу противодействия проводника направленному вдоль него движению заряженных электронов. Поскольку свойство пропускания электричества - это величина, обратная сопротивлению, значит выражаться в виде формул оно будет как отношение 1/R.

Удельное сопротивление всегда зависит от качества материала, который используют при изготовлении устройств. Его измеряют, отталкиваясь от параметров проводника, обладающего длиной 1 метр, а также площадью сечения 1 квадратный миллиметр. Например, свойство удельной резистентности для меди всегда равно 0,0175 Ом, для алюминия - 0,029, железа - 0,135, константана - 0,48, нихрома - 1-1,1. Удельное сопротивление стали равно числу 2*10-7 Ом.м

Противодействие току прямо пропорционально длине проводника, по которому он движется. Чем больше длина устройства, тем выше показатель сопротивления. Усвоить эту зависимость будет проще, если представить две воображаемых пары сообщающихся между собой сосудов. У одной пары приборов соединяющая трубка пусть остаётся тоньше, а у другой - толще. При заполнении водой обеих пар переход жидкости в по толстой трубке получится гораздо быстрее, потому что она окажет меньшее сопротивление перетеканию воды. По этой аналогии для ему проще пройти вдоль толстого проводника, чем тонкого.

Удельное сопротивление, как единица СИ, измеряется показателем Ом.м. Проводимость зависит от средней длины свободного пролёта заряженных частиц, которая характеризуется структурой материала. Металлы без примесей, у которых наиболее правильная имеют наименьшие значения противодействия. И наоборот, примеси искажают решётку, чем увеличивают его показатели. Удельное сопротивление металлов расположено в узком диапазоне значений при нормальной температуре: от серебра с 0,016 и до 10 мкОм.м (сплавы железа и хрома с алюминием).

На особенности движения заряженных

электронов в проводнике оказывает влияние температура, поскольку при её увеличении возрастает амплитуда волновых колебаний существующих ионов и атомов. В результате электронам остаётся меньше свободного пространства для нормального хода в кристаллической решётке. А это означает, что препятствие упорядоченному передвижению возрастает. Удельное сопротивление любого проводника по обыкновению линейно возрастает с ростом температуры. А для полупроводников, наоборот, характерно уменьшение с увеличением градусов, так как из-за этого высвобождается много зарядов, создающих непосредственно электрический ток.

Процесс охлаждения некоторых металлических проводников заведомо до нужной температуры доводит их удельное сопротивление до скачкообразного состояния и падает до нуля. Такое явление открыли в 1911 году и назвали сверхпроводимостью.

Для каждого проводника существует понятие удельного сопротивления. Эта величина состоит из Омов, умножаемых на квадратный миллиметр, далее, делимое на один метр. Иными словами, это сопротивление проводника, длина которого составляет 1 метр, а сечение - 1 мм 2 . То же самое представляет собой и удельное сопротивление меди - уникального металла, получившего широкое распространение в электротехнике и энергетике.

Свойства меди

Благодаря своим свойствам этот металл одним из первых начал применяться в области электричества. Прежде всего, медь является ковким и пластичным материалом с отличными свойствами электропроводимости. До сих пор в энергетике нет равноценной замены этому проводнику.

Особенно ценятся свойства специальной электролитической меди, обладающей высокой чистотой. Этот материал позволил выпускать провода с минимальной толщиной в 10 микрон.

Кроме высокой электропроводности, медь очень хорошо поддается лужению и другим видам обработки.

Медь и ее удельное сопротивление

Любой проводник оказывает сопротивление, если через него пропустить электрический ток. Значение зависит от длины проводника и его сечения, а также от действия определенных температур. Поэтому, удельное сопротивление проводников зависит не только от самого материала, но и от его определенной длины и площади поперечного сечения. Чем легче материал пропускает через себя заряд, тем ниже его сопротивление. Для меди, показатель удельного сопротивления составляет 0,0171 Ом х 1 мм 2 /1 м и лишь немного уступает серебру. Однако, использование серебра в промышленных масштабах экономически невыгодно, поэтому, медь является лучшим проводником, используемым в энергетике.

Удельное сопротивление меди связано и с ее высокой проводимостью. Эти величины прямо противоположны между собой. Свойства меди, как проводника, зависят и от температурного коэффициента сопротивления. Особенно, это касается сопротивление, на которое оказывает влияние температура проводника.

Таким образом, благодаря своим свойствам, медь получила широкое распространение не только в качестве проводника . Этот металл используется в большинстве приборов, устройств и агрегатов, функционирование которых связано с электрическим током.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать "Сопротивление проводника равно 15 Ом", можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 ом сантиметр [Ом·см] = 0,01 ом метр [Ом·м]

Исходная величина

Преобразованная величина

ом метр ом сантиметр ом дюйм микроом сантиметр микроом дюйм абом сантиметр статом на сантиметр круговой мил ом на фут ом кв. миллиметр на метр

Подробнее об удельном электрическом сопротивлении

Общие сведения

Как только электричество покинуло лаборатории учёных и стало широко внедряться в практику повседневной жизни, встал вопрос о поиске материалов, обладающих определёнными, порой совершенно противоположными, характеристиками по отношению к протеканию через них электрического тока.

Например, при передаче электрической энергии на дальнее расстояние, к материалу проводов предъявлялись требования минимизации потерь из-за джоулева нагрева в сочетании с малыми весовыми характеристиками. Примером тому являются всем знакомые высоковольтные линии электропередач, выполненные из алюминиевых проводов со стальным сердечником.

Или, наоборот, для создания компактных трубчатых электронагревателей требовались материалы с относительно высоким электрическим сопротивлением и высокой термостойкостью. Простейшим примером прибора, в котором применяются материалы с подобными свойствами, может служить конфорка обыкновенной кухонной электроплиты.

От проводников, используемых в биологии и медицине в качестве электродов, зондов и щупов, требуется высокая химическая устойчивость и совместимость с биоматериалами в сочетании с малым контактным сопротивлением.

К разработке такого ныне привычного всем прибора, как лампа накаливания, свои усилия приложила целая плеяда изобретателей из разных стран: Англии, России, Германии, Венгрии и США. Томас Эдисон, проведя более тысячи опытов проверки свойств материалов, подходящих на роль нитей накала, создал лампу с платиновой спиралью. Лампы Эдисона, хотя и имели высокий срок эксплуатации, но не были практичными из-за высокой стоимости исходного материала.

Последующие работы русского изобретателя Лодыгина, предложившего использовать в качестве материалов нити относительно дешёвые тугоплавкие вольфрам и молибден с более высоким удельным сопротивлением, нашли практическое применение. К тому же Лодыгин предложил откачивать из баллонов ламп накаливания воздух, заменяя его инертными или благородными газами, что привело к созданию современных ламп накаливания. Пионером массового производства доступных и долговечных электрических ламп стала компания General Electric, которой Лодыгин переуступил права на свои патенты и далее успешно работал в лабораториях компании долгое время.

Этот перечень можно продолжать, поскольку пытливый человеческий ум настолько изобретателен, что порой для решения определённой технической задачи ему нужны материалы с невиданными доселе свойствами или с невероятными сочетаниями этих свойств. Природа уже не успевает за нашими аппетитами и учёные всех стран мира включились в гонку создания материалов, не имеющих природных аналогов.

Одной из важнейших характеристик как природных, так и синтезированных материалов является удельное электрическое сопротивление. Примером электрического прибора, в котором в чистом виде применяется это свойство, может служить плавкий предохранитель, защищающий нашу электро- и электронную аппаратуру от воздействия тока, превышающего допустимые значения.

При этом надо заметить, что именно самодельные заменители стандартных предохранителей, выполненные без знаний удельного сопротивления материала, порой служат причиной не только выгорания различных элементов электрических схем, но и возникновения пожаров в домах и возгорания проводки в автомобилях.

То же самое относится и к замене предохранителей в силовых сетях, когда вместо предохранителя меньшего номинала устанавливается предохранитель с большим номиналом тока срабатывания. Это приводит к перегреву электропроводки и даже, как следствие, к возникновению пожаров с печальными последствиями. Особенно это присуще каркасным домам.

Историческая справка

Понятие удельного электрического сопротивление появилось благодаря трудам известного немецкого физика Георга Ома, который теоретически обосновал и в ходе многочисленных экспериментов доказал связь между силой тока, электродвижущей силой батареи и сопротивлением всех частей цепи, открыв таким образом закон элементарной электрической цепи, названным затем его именем. Ом исследовал зависимость величины протекающего тока от величины приложенного напряжения, от длины и формы материала проводника, а также от рода материала, используемого в качестве проводящей среды.

При этом надо отдать должное работам сэра Гемфри Дэви, английского химика, физика и геолога, который первым установил зависимости электрического сопротивления проводника от его длины и площади поперечного сечения, а также отметил зависимость электропроводности от температуры.

Исследуя зависимости протекания электрического тока от рода материалов, Ом обнаружил, что каждый доступный ему проводящий материал обладал некоторой присущей только ему характеристикой сопротивления протеканию тока.

Надо заметить, что во времена Ома один из самых обыкновенных ныне проводников - алюминий - имел статус особо драгоценного металла, поэтому Ом ограничился опытами с медью, серебром, золотом, платиной, цинком, оловом, свинцом и железом.

В конечном итоге Ом ввёл понятие удельного электрического сопротивления материала как фундаментальной характеристики, совершенно ничего не зная ни о природе протекания тока в металлах, ни о зависимости их сопротивления от температуры.

Удельное электрическое сопротивление. Определение

Удельное электрическое сопротивление или просто удельное сопротивление - фундаментальная физическая характеристика проводящего материала, которая характеризует способность вещества препятствовать похождению электрического тока. Обозначается греческой буквой ρ (произносится как ро) и рассчитывается исходя из эмпирической формулы для расчёта сопротивления, полученной Георгом Омом.

или, отсюда

где R - сопротивление в Омах, S - площадь в м²/, L - длина в м

Размерность удельного электрического сопротивления в Международной системе единиц СИ выражается в Ом м.

Это сопротивление проводника длиной в 1 м и площадью поперечного сечения в 1 м²/ величиной в 1 Ом.

В электротехнике, для удобства расчётов, принято пользоваться производной величины удельного электрического сопротивления, выражаемой в Ом мм²/м. Значения удельного сопротивления для наиболее распространённых металлов и их сплавов можно найти в соответствующих справочниках.

В таблицах 1 и 2 приведены значения удельных сопротивлений различных наиболее распространённых материалов.

Таблица 1. Удельное сопротивление некоторых металлов

Таблица 2. Удельное сопротивление распространенных сплавов

Удельные электрические сопротивления различных сред. Физика явлений

Удельные электрические сопротивления металлов и их сплавов, полупроводников и диэлектриков

Сегодня, вооружённые знаниями, мы в состоянии заранее просчитать удельное электрическое сопротивление любого, как природного, так и синтезированного материала исходя из его химического состава и предполагаемого физического состояния.

Эти знания помогают нам лучшим образом использовать возможности материалов, порой весьма экзотические и уникальные.

В силу сложившихся представлений, с точки зрения физики твёрдые тела подразделяются на кристаллические, поликристаллические и аморфные вещества.

Проще всего, в смысле технического расчёта удельного сопротивления или его измерения, дело обстоит с аморфными веществами. Они не имеют выраженной кристаллической структуры (хотя и могут иметь микроскопические включения таковых веществ), относительно однородны по химическому составу и проявляют характерные для данного материала свойства.

У поликристаллических веществ, образованных совокупностью относительно мелких кристаллов одного химического состава, поведение свойств не очень отличается от поведения аморфных веществ, поскольку удельное электрическое сопротивление, как правило, определяется как интегральное совокупное свойство данного образца материала.

Сложнее дело обстоит с кристаллическими веществами, особенно с монокристаллами, которые имеют различное удельное электрическое сопротивление и другие электрические характеристики относительно осей симметрии их кристаллов. Это свойство называется анизотропией кристалла и широко используется в технике, в частности, в радиотехнических схемах кварцевых генераторов, где стабильность частоты определяется именно генерацией частот, присущих данному кристаллу кварца.

Каждый из нас, являясь обладателем компьютера, планшета, мобильного телефона или смартфона, включая владельцев наручных электронных часов вплоть до iWatch, одновременно является обладателем кристаллика кварца. По этому можно судить о масштабах использования в электронике кварцевых резонаторов, исчисляемых десятками миллиардов.

Помимо прочего, удельное сопротивление многих материалов, особенно полупроводников, зависит от температуры, поэтому справочные данные обычно приводятся с указанием температуры измерения, обычно равной 20 °С.

Уникальные свойства платины, имеющей постоянную и хорошо изученную зависимость удельного электрического сопротивления от температуры, а также возможность получения металла высокой чистоты послужили предпосылкой создания на её основе датчиков в широком диапазоне температур.

Для металлов разброс справочных значений удельного сопротивления обусловлен способами изготовления образцов и химической чистотой металла данного образца.

Для сплавов более сильный разброс справочных значений удельного сопротивления обусловлен способами изготовления образцов и непостоянством состава сплава.

Удельное электрическое сопротивление жидкостей (электролитов)

В основе понимания удельного сопротивления жидкостей лежат теории термической диссоциации и подвижности катионов и анионов. Например, в самой распространённой жидкости на Земле – обыкновенной воде, некоторая часть её молекул под воздействием температуры распадается на ионы: катионы Н+ и анионы ОН– . При подаче внешнего напряжения на электроды, погружённые в воду при обычных условиях, возникает ток, обусловленный перемещением вышеупомянутых ионов. Как выяснилось, в воде образуются целые ассоциации молекул - кластеры, порой соединяющимися с катионами Н+ или анионами ОН–. Поэтому передача ионов кластерами под воздействием электрического напряжения происходит так: принимая ион в направлении приложенного электрического поля с одной стороны, кластер «сбрасывает» аналогичный ион с другой стороны. Наличие в воде кластеров прекрасно объясняет тот научный факт, что при температуре около 4 °C вода имеет наибольшую плотность. Большая часть молекул воды при этом находится в кластерах из-за действия водородных и ковалентных связей, практически в квазикристаллическом состоянии; термодиссоциация при этом минимальна, а образование кристаллов льда, который имеет более низкую плотность (лёд плавает в воде), ещё не началось.

В целом проявляется более сильная зависимость удельного сопротивления жидкостей от температуры, поэтому эта характеристика всегда измеряется при температуре в 293 K, что соответствует температуре 20 °C.

Помимо воды имеется большое число других растворителей, способных создавать катионы и анионы растворяемых веществ. Знание и измерение удельного сопротивления таких растворов также имеет большое практическое значение.

Для водных растворов солей, кислот и щелочей существенную роль в определении удельного сопротивления раствора играет концентрация растворённого вещества. Примером может служить следующая таблица, в которой приведены значения удельных сопротивлений различных растворённых в воде веществ при температуре 18 °С:

Таблица 3. Значения удельных сопротивлений различных растворённых в воде веществ при температуре 18 °С

Данные таблиц взяты из Краткого физико-технического справочника, Том 1, - М.: 1960

Удельное сопротивление изоляторов

Огромное значение в отраслях электротехники, электроники, радиотехники и робототехники играет целый класс различных веществ, имеющий относительно высокое удельное сопротивление. Вне зависимости от их агрегатного состояния, будь оно твёрдое, жидкое или газообразное, такие вещества называются изоляторами. Такие материалы используются для изолирования отдельных частей электрических схем друг от друга.

Примером твёрдых изоляторов может служить всем знакомая гибкая изолента, благодаря которой мы восстанавливаем изоляцию при соединении различных проводов. Многим знакомы фарфоровые изоляторы подвески воздушных линий электропередач, текстолитовые платы с электронными компонентами, входящими в состав большинства изделий электронной техники, керамика, стекло и многие другие материалы. Современные твёрдые изоляционные материалы на базе пластмасс и эластомеров делают безопасным использование электрического тока различных напряжений в самых разнообразных устройствах и приборах.

Помимо твёрдых изоляторов широкое применение в электротехнике находят жидкие изоляторы с высоким удельным сопротивлением. В силовых трансформаторах электросетей жидкое трансформаторное масло предотвращает межвитковые пробои из-за ЭДС самоиндукции, надёжно изолируя витки обмоток. В масляных выключателях масло используется для гашения электрической дуги, которая возникает при переключении источников тока. Конденсаторное масло используется для создания компактных конденсаторов с высокими электрическими характеристиками; помимо этих масел в качестве жидких изоляторов используются природное касторовое масло и синтетические масла.

При нормальном атмосферном давлении все газы и их смеси являются с точки зрения электротехники отличными изоляторами, но благородные газы (ксенон, аргон, неон, криптон) в силу их инертности обладают более высоким удельным сопротивлением, что широко используется в некоторых областях техники.

Но самым распространённым изолятором служит воздух, в основном состоящий из молекулярного азота (75% по массе), молекулярного кислорода (23,15% по массе), аргона (1,3% по массе), углекислого газа, водорода, воды и некоторой примеси различных благородных газов. Он изолирует протекание тока в обычных бытовых выключателях света, переключателях тока на основе реле, магнитных пускателях и механических рубильниках. Необходимо отметить, что снижение давления газов или их смесей ниже атмосферного приводит к росту их удельного электрического сопротивления. Идеальным изолятором в этом смысле является вакуум.

Удельное электрическое сопротивление различных грунтов

Одним из важнейших способов защиты человека от поражающего действия электрического тока при авариях электроустановок является устройство защитного заземления.

Оно представляет собой преднамеренное соединение кожуха или корпуса электроустройств с защитным заземляющим устройством. Обычно заземление выполняется в виде зарытых в землю на глубину более 2,5 метра стальных или медных полос, труб, стержней или уголков, которые в случае аварии обеспечивают протекание тока по контуру устройство - корпус или кожух - земля - нулевой провод источника переменного тока. Сопротивление этого контура должно быть не более 4 Ом. В этом случае напряжение на корпусе аварийного устройства снижается до безопасного для человека величин, а автоматические устройства защиты электрической цепи тем или иным способом производят отключение аварийного устройства.

При расчёте элементов защитного заземления существенную роль играет знание удельного сопротивления грунтов, которое может варьироваться в широких пределах.

Сообразуясь с данными справочных таблиц, выбирается площадь заземляющего устройства, по ней вычисляется количество заземляющих элементов и собственно конструкция всего устройства. Соединение элементов конструкции устройства защитного заземления производится сваркой.

Электротомография

Электроразведка изучает приповерхностную геологическую среду, применяется для поиска рудных и нерудных полезных ископаемых и других объектов на основе исследования различных искусственных электрических и электромагнитных полей. Частным случаем электроразведки является электротомография (Electrical Resistivity Tomography) - метод определения свойств горных пород по их удельному сопротивлению.

Суть метода заключается в том, что при определённом положении источника электрического поля проводятся замеры напряжения на различных зондах, затем источник поля перемещают в другое место или переключают на другой источник и повторяют измерения. Источники поля и зонды-приёмники поля размещают на поверхности и в скважинах.

Затем полученные данные обрабатываются и интерпретируются с помощью современных компьютерных методов обработки, позволяющих визуализировать информацию в виде двухмерных и трёхмерных изображений.

Являясь очень точным методом поиска, электротомография оказывает неоценимую помощь геологам, археологам и палеозоологам.

Определение формы залегания месторождений полезных ископаемых и границ их распространения (оконтуривание) позволяет выявить залегание жильных залежей полезных ископаемых, что существенно снижает затраты на их последующую разработку.

Археологам этот метод поиска даёт ценную информацию о расположении древних захоронений и наличия в них артефактов, тем самым сокращая затраты на раскопки.

Палеозоологи с помощью электротомографии ищут окаменевшие останки древних животных; результаты их работ можно увидеть в музеях естественных наук в виде поражающих воображение реконструкций скелетов доисторической мегафауны.

Кроме того, электротомография применяется при возведении и при последующей эксплуатации инженерных сооружений: высотных зданий, плотин, дамб, насыпей и других.

Определения удельного сопротивления на практике

Порой для решения практических задач перед нами может встать задача определения состава вещества, например, проволоки для резака пенополистирола. Имеем два мотка проволоки подходящего диаметра из различных неизвестных нам материалов. Для решения задачи необходимо найти их удельное электрическое сопротивление и далее по разнице найденных значений или по справочной таблице определить материал проволоки.

Отмерим рулеткой и отрежем по 2 метра проволоки от каждого образца. Определим диаметры проволок d₁ и d₂ микрометром. Включив мультиметр на нижний предел измерения сопротивлений, измеряем сопротивление образца R₁. Повторяем процедуру для другого образца и также измеряем его сопротивление R₂.

Учтём, что площадь поперечного сечения проволок рассчитывается по формуле

S = π · d 2 /4

Теперь формула для расчёта удельного электрического сопротивления будет выглядеть следующим образом

ρ = R · π · d 2 /4 · L

Подставляя полученные значения L, d₁ и R₁ в формулу для расчёта удельного сопротивления, приведенную в статье выше, вычисляем значение ρ₁ для первого образца.

ρ 1 = 0,12 ом мм 2 /м

Подставляя полученные значения L, d₂ и R₂ в формулу, вычисляем значение ρ₂ для второго образца.

ρ 2 = 1,2 ом мм 2 /м

Из сравнения значений ρ₁ и ρ₂ со справочными данными вышеприведенной Таблицы 2, делаем вывод, что материалом первого образца является сталь, а второго - нихром, из которого и изготовим струну резака.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.