Цифровая фотография. Устройство фотоаппарата

При словах «цифровая фотография» большинство людей представляют себе компактную цифровую «мыльницу» и полученные с неё снимки на экране монитора. Но что же на самом деле представляет собой «цифровая фотография»?

За последние 10 лет произошёл резкий подъём фото-индустрии с развитием цифровой фотографии и глобальным снижением цен на цифровые фотокамеры. Давайте немного окунёмся в историю цифровой фотографии. Она началась ещё в начале 80-х годов с конференции в Токио 25 августа 1981 года, на которой корпорация Sony представила опытный образец компании – камеру Mavica (Magnetic Video Camera). В ней запись изображения производилось на двухдюймовую дискету, SONY назвала её «Mavipak» – на ней помещалось 50 цветных снимков в разрешении 570х490 пикселей. На тот момент это считалось максимальным разрешением телевизора, на котором и просматривались полученные фотографии. Но Mavica была скорее не цифровым фотоаппаратом, а камерой, снимающий видеоряд, и способной делать стоп-кадры. У устройства было только одно значение выдержки, равное 1/60 секунды, а значение чувствительности, оцененное международной организацией стандартизации (ISO), равнялось 200 единиц.

Революция произошла в 1990 году, когда поступила в продажу первая потребительская фотокамера Dycam Model 1 или Logitech FotoMan. Камера имела CCD матрицу с разрешающей способностью 376х240 пикселей и возможностью получения чёрно-белых снимков с 256 оттенками серого. Устройство оснащалось встроенной памятью размером 1 мегабайт, которая позволяла сохранять до 32 снимков и переносить их на персональный компьютер. Но в камере имелся один очень серьёзный недостаток – если садились батарейки, питающие камеру, все снимки с неё пропадали.

Через год после этого компания Kodak представила уже профессиональную фотокамеру DCS-100, спроектированную на базе Nikon F3. Начинка камеры состояла из матрицы с разрешающей способностью в 1,3-мегапиксель (в настоящее время в мобильные телефоны уже устанавливаются матрицы, троекратно превышающие матрицу DCS-100). Изображения в камере хранились на внешнем жёстком диске объёмом 200Mb. Вес всего комплекта составлял почти 25 кг, и стоимость его была около 30000$.

Теперь впору рассмотреть, чем отличается традиционная фотография от цифровой. Принципиальное отличие состоит в способе регистрации и хранения изображения. В классической фотографии изображение фиксируется в аналоговом виде, то есть, проходя сквозь линзы объектива, частички света фиксируются на специальной плёнке, покрытой слоями серебряной эмульсии. Для получения окончательного результата съемки – распечатанного снимка, пленку подвергают химической обработке, то есть проявлению, закреплению, промывке и сушке. В традиционной фотографии плёнка - это промежуточный носитель информации. При этом изображение на фотопленке после проявки становится видимым, но негативным (т.е. белое становится черным, и наоборот) и зеркально обращенным. Через увеличитель или станок для контактной печати негативное изображение проецируется на поверхность светочувствительной фотобумаги. Затем проэкспонированная бумага проявляется, фиксируется, промывается и просушивается, в итоге получается окончательный результат – готовый снимок.

В цифровой же фотографии, лучики света, проходящие сквозь линзы объектива, попадают на сенсор-преобразователь (так называемая матрица камеры), который состоит из нескольких миллионов пикселей-датчиков, чувствительных к зелёному, красному и синему цветам. Изображение создаётся благодаря интерполяции , а чувствительные пиксели придают фотографии тысячу оттенков. Затем сигнал с матрицы обрабатывается процессором камеры и записывается на карту памяти, либо на встроенную flash-память фотоаппарата.

Существует несколько форматов записи полученных снимков:
- JPEG (Joint Photographic Experts Group) – был создан в 1990 году объединённой группой экспертов в области фотографии и на сегодняшний день является самым популярным форматом сжатия изображения. Свою популярность приобрёл благодаря оптимальному соотношению размер-качество. Например, 15 мегабайтный файл можно ужать до 1,2 мегабайта практически без потери качества, т.е. разницу может заметить только натренированный глаз и то только при 100% увеличении изображения. Сжатие происходит по алгоритму Хаффмана .
- TIFF (Tagged Image File Format) – был выпущен в 1986 году компанией Aldus Corporation и был представлен как стандартный формат для хранения изображений, созданных программными пакетами вёрстки и сканерами. Способность к расширению, позволяющая записывать растровые изображения любой глубины цвета, делает этот формат весьма перспективным для хранения и обработки графической информации и широкого применения в полиграфии. TIFF-формат поддерживает несколько параметров сжатия:
– не сжимать изображение;
– использовать простую схему PakBits;
– использовать сжатие T3 и T4 (алгоритм, используемый также в факсимильной связи);
– использовать некоторые дополнительные методы, в том числе LZW и JPEG.
- RAW (от англ. raw – сырой) – формат изображений, являющийся напрямую полученными данными с матрицы фотокамеры без обработки. Данные RAW имеют разрядность 12 или 14 бит на пиксель (у JPEG 8 бит) и содержат гораздо более полную информацию об изображении. Этот формат часто называют «цифровым негативом», и, подобно плёнке в аналоговом формате, существует специальное программное обеспечение для проявки «сырого» формата в понятный для большинства пользователей JPEG.
Расширения формата RAW для некоторых камер:
- .bay - Casio
- .arw,.srf,.sr2 - Sony
- .crw, .cr2 - Canon
- .dcr, .kdc - Kodak
- .erf - Epson
- .mrw - Minolta
- .nef - Nikon
- .raf - Fujifilm
- .orf - Olympus
- .ptx,.pef - Pentax
- .x3f - Sigma.

Отдельно следует остановиться на DNG (Digital Negative Specification) – формате изображений, именуемым цифровым негативом. Был разработан компанией Adobe и анонсирован в 2004 году с целью стандартизации формата цифровых негативов. Спецификации формата DNG компания предоставляет бесплатно, поэтому любой производитель цифровой фототехники может включить поддержку данного формата. В настоящее время компании Leica, Pentax, Hasselblad, Ricoh, Sinar включили поддержку DNG в свои новые камеры наряду с собственными RAW файлами. DNG также требует «проявки» и прекрасно переводится в другие форматы с помощью, например, Adobe DNG converter.

С появлением цифровой фотографии заметно упростилась процедура получения готового снимка на фотобумаге. Теперь не надо «колдовать» в тёмной комнате при красном свете лампы с химическими растворами, а достаточно подключить фотокамеру к персональному фотопринтеру и на понравившемся снимке нажать кнопку «Печать». Также снизилась стоимость на приобретение расходных материалов, к примеру, стоимость плёнки на 36 кадров составляет примерно 100рублей, а стоимость карточки формата SD на 4Gb составляет около 400 рублей, но в отличие от плёнки, на карточку помещается порядка 1500 снимков, при разрешающей способности фотокамеры 5 мегапикселей. Если учесть, что карточка может использоваться долгие годы, то экономия очевидна! А сколько надо взять плёнок при поездке в отпуск? На цифровом фотоаппарате, даже если место на карте памяти закончилось можно сразу удалить менее интересные кадры и продолжить снимать новые, интересные сюжеты! А на плёнке результат можно будет увидеть только вернувшись из отпуска и проявив плёнки, что позволяет неопытным фотографам больше экспериментировать и добиваться скорейшего прогресса. Эти, и многие другие факторы, упростившие жизнь фотографа, с появлением цифровой фотографии способствовали массовому увлечению фотографией среди современной молодёжи, а также гораздо упростили жизнь профессиональным фотографам.

Цифровая фотография на сегодняшний день практически вытеснила свою «плёночную» предшественницу и не останавливается на своём развитии. Каждый месяц мы становимся свидетелями анонса новых цифровых камер, разрешающая способность некоторых из них уже перешагнула отметку в 20 мегапикселей и реалистичность полученной картинки уже соответствует лучшим плёночным «зеркалкам». Для кого-то цифровая фотография – это возможность запечатлеть радостные минуты жизни близких и друзей, а для кого-то - это средство самореализации и возможность перевести свои самые невероятные идеи в мир единичек и нулей.

Анатолий Шишкин ©

Цифровая фотография входила в жизнь постепенно, шаг за шагом. Национальное аэрокосмическое агентство США приступило к использованию цифровых сигналов в 1960-х годах, вместе с полетами на Луну (например, для создания карты лунной поверхности) - как известно, аналоговые сигналы могут при передаче теряться, а цифровые данные подвержены ошибкам гораздо меньше. Первая сверхточная обработка изображений была разработана именно в тот период,поскольку Национальным аэрокосмическим агентством для обработки и улучшения космических изображений использовалась вся мощь компьютерных технологий. Холодная война, в процессе которой применялись самые разнообразные шпионские спутники и секретные системы обработки изображений, также способствовала ускорению развития цифровой фотографии.

Первая электронная камера без пленки была запатентована компанией Texas Instruments в 1972 году. Главный недостаток этой системы заключался в том, что фотографии можно было просматривать только по телевизору. Аналогичный подход был реализован и в устройстве Mavica компании Sony, которое было анонсировано в августе 1981 года в качестве первой коммерческой электронной камеры. Камеру Mavica можно уже было подключить и к цветному принтеру. В то же время она не являлась настоящей цифровой камерой - это была скорее видеокамера, с помощью которой можно снять и показать отдельные снимки. Камера Mavica (Magnetic Video Camera) позволяла записывать до пятидесяти изображений на двухдюймовых гибких дисках с помощью ПЗС-датчика размером 570х490 пикселей, что соответствовало стандарту ISO 200. Она имела одну выдержку, равную 1/60-й секунды, ручную регулировку диафрагмы и три сменных объектива: 25-миллиметровый широкоугольный, 50-миллиметровый обычный и объектив с переменным фокусным расстоянием 16–65 мм. В настоящее время такая система может показаться примитивной, однако не стоит забывать, что Mavica была разработана почти 25 лет назад!

В 1992 году фирма Kodak объявила о выпуске первой профессиональной цифровой фотокамеры DCS 100 на основе фотоаппарата Nikon F3. В фотокамеру DCS 100 был встроен датчик изображения на ПЗС с разрешением 1,3 Мб, а также переносной жесткий диск для хранения 156 зафиксированных изображений. Следует отметить, что этот диск весил около 5 кг, сама фотокамера стоила $25 тыс., а получаемые изображения годились по качеству лишь для печати на страницах газет. Поэтому такой фотоаппаратурой целесообразно было пользоваться лишь в тех случаях, когда сроки получения изображений были важнее, чем их качество.

Перспективы цифровой фотографии стали более ясными с появлением в 1994 году двух новых типов цифровых фотокамер. Компания Apple Computer впервые выпустила фотокамеру Apple QuickTake 100, имевшую странную форму бутерброда и способную фиксировать 8 изображений с разрешением 640 х 480 пикселей. Это была первая цифровая фотокамера для массового потребителя, доступная по отпускной цене $749. Изображения, получавшиеся с ее помощью, также были неважного качества, не позволявшего их как следует напечатать, а поскольку Интернет тогда находился на начальной стадии своего развития, данная фотокамера не нашла широкого применения.

Вторая фотокамера, выпущенная в том же году фирмой Kodak совместно с агентством новостей Associated Press, предназначалась для фоторепортеров. Ее модели NC2000 и NC200E сочетали в себе внешний вид и функциональные возможности пленочных фотокамер с мгновенным доступом к изображениям и удобствами их фиксации, характерными для цифровых фотокамер. Модель NC 2000 получила широкое распространение во многих редакциях новостей, что послужило толчком для перехода с пленочной на цифровую технологию.

Начиная со средины 90-х годов XX века цифровые фотокамеры стали более совершенными, компьютеры - более быстродействующими и менее дорогими, а программное обеспечение - более развитым. В своем развитии цифровые фотокамеры прошли путь от чужеродного вида устройств, которые могли быть дороги лишь их создателям, до универсальной, простой в употреблении фотоаппаратуры, встраиваемой даже в вездесущие сотовые телефоны и обладающей такими же техническими характеристиками, как и самые последние модели полноформатных (35 мм) цифровых фотокамер. А по качеству получаемых изображении такая фотоаппаратура превосходит пленочные фотоаппараты.

Перемены, постоянно происходящие в технологии цифровых фотокамер, весьма примечательны.

Несмотря на обилие фотографов, зачастую самоиспечённых, мало кто сможет детально поведать об истории фотокадров. Именно этим мы сегодня и займёмся. Прочитав статью, вы узнаете: что такое камера обскура, какой материал стал основой для первого фотоснимка и как появилась моментальная фотография.

С чего всё начиналось?

О химических свойствах солнечного света люди знали очень давно. Ещё в древности любой человек мог сказать, что солнечные лучи делают цвет кожи более тёмным, догадывались о воздействии света на вкус пива и искрение драгоценных камней. История насчитывает более тысячи лет наблюдений за поведением тех или иных предметов под воздействием ультрафиолетового излучения (именно такой вид излучения характерен для солнца).

По-настоящему применять первый аналог фотографии стали ещё в X веке нашей эры.

Применение это заключалось в так называемой камере обскура. Представляет она собой полностью тёмное помещение, одна из стен которого имела круглое отверстие, пропускающей свет. Благодаря ему на противоположной стене появлялась проекция изображения, которое художники того времени «дорабатывали» и получали красивые рисунки.

Изображение на стенах было перевёрнутым, но это не делало его менее красивым. Открыл такое явление арабский учёный из Басры по имени Альгазен. Он на протяжении долгого времени занимался наблюдением за световыми лучами, а явление камеры обскура впервые было замечено им на затемнённой белой стене своей палатки. Использовал учёный её для наблюдения за затемнениями солнца: уже тогда понимали, что смотреть на солнце напрямую очень опасно.

Первая фотография: предпосылки и успешные попытки.

Главной предпосылкой можно назвать доказательство Иоганном Генрихом Шульцем в 1725 году того, что именно свет, а не тепло, заставляет серебряную соль становиться тёмной. Сделал он это случайно: пытаясь создать светящееся вещество, он перемешал мел с азотной кислотой, и c небольшой долей растворённого серебра. Он заметил, что под влиянием солнечных лучей белый раствор темнеет.

Это натолкнуло учёного на ещё один эксперимент: он попытался получить изображение букв и цифр, вырезая их на бумаге и прикладывая к освещаемой стороне сосуда. Изображение он получил, но у него даже мыслей не было о его сохранении. На основе работ Шульца, учёный Гротгус установил, что поглощение и излучение света происходит под влиянием температуры.

Позднее, в 1822 году, было получено первое в мире изображение, более-менее привычное для современного человека. Получил его Жозеф Ньсефор Ньепс, но кадр, который он получил, не сохранился должным образом. Из-за этого он продолжил работу с большим усердством и получил 1826 году, полноценный кадр, названный «Вид из окна». Именно он вошёл в историю как первая полноценная фотография, хоть и до привычного нам качества было ещё далеко.

Применение металлов – существенное упрощение процесса.

Спустя несколько лет, в 1839 году ещё один француз Луи-Жак Дагер опубликовал новый материал для получения фотографий: медные пластины, покрытые серебром. После этого, пластину обдавали парами йода, из-за чего создавался слой светочувствительного йодида серебра. Именно он был ключевым для будущей фотографии.

После обработки слой подвергался 30-минутному экспонированию в освещённом солнечным светом помещении. Далее пластину относили в тёмную комнату и обрабатывали парами ртути, а закреплялся кадр при помощи поваренной соли. Именно Дагера принято считать создателем первого более-менее качественного фотоснимка. Такой способ хоть и был далёк от «простых смертных», но уже был существенно проще первого.

Цветная фотография – прорыв своего времени.

Многие думают, что цветная фотография появилась только с созданием плёночных фотоаппаратов. Это вовсе не так. Годом создания первого цветного фотоснимка принято считать 1861, именно тогда Лжеймс Максвелл получил изображение, позже названое «Тартановой лентой». Для создания использовался метод трёхцветной фотографии или метод цветоделения, тут уж как кому больше нравится.

Для получения этого кадра было использовано три камеры, каждая из которых оснащалась специальным фильтром, составляющие основные цвета: красный, зелёный и синий. Как итог, получалось три изображения, которые объединялись в одно, но такой процесс нельзя было назвать простым и быстрым. Чтобы упростить его велись бурные исследования светочувствительных материалов.

Первым шагом к упрощению было выявление сенсибилизаторов. Их открыл Герман Фогель, учёный из Германии. Спустя некоторое время, ему удалось получить слой, чувствительный к зелёному цветовому спектру. Позднее, его ученик Адольф Мите создал сенсибилизаторы, чувствительные к трём основным цветам: красному, зелёному и синему. Своё открытие он продемонстрировал в 1902 году на берлинской научной конференции вместе с первым цветным проектором.

Один из первых в России учёных-фотохимиков Сергей Прокудин-Горский, ученик Мите, разработал более чувствительный к красно-оранжевому спектру сенсибилизатор, что позволило ему превзойти учителя. Также он сумел уменьшить выдержку, сумел сделать снимки более массовыми, то есть создал все возможности для тиражирования фотографий. На основе изобретений этих учёных были созданы специальные фотопластины, которые, несмотря на недостатки, были крайне востребованы среди рядовых потребителей.

Моментальная фотография – очередной шаг к ускорению процесса.

Вообще, годом появления такого вида фотографии принято считать 1923, когда был зафиксирован патент на создание «моментального фотоаппарата». Толку от такого аппарата было мало, комбинация из камеры и фотолаборатории была крайне громоздкой и не сильно уменьшало время получения кадра. Понимание проблемы пришло немного позже. Заключалось оно в неудобстве процесса получения готового негатива.

Именно в 30-х годах впервые появились сложные светочувствительные элементы, позволяющие получать готовый позитив. Их разработкой на первых парах занималась фирма Agfa, а массово ими занялись ребята из Polaroid. Первые фотоаппараты компании позволяли получать моментальные фотографии сразу после съёмки кадра.

Немногим позднее похожие идеи пытались реализовать и в СССР. Здесь создавались фотокомплекты «Момент», «Фотон», однако популярности они не сыскали. Главная причина – отсутствие уникальных светочувствительных плёнок для получения позитива. Именно принцип, заложенный этими аппаратами, стал одним из ключевых и самых популярных в конце XX – начале XXI века, особенно в Европе.

Цифровая фотография – резкий скачок в развитии индустрии.

По-настоящему зародился такой вид фотографии совсем недавно – в 1981 году. Основателями смело можно считать японцев: компания Sony показала первый аппарат, в котором матрица заменила фотоплёнку. Все же знают, чем цифровая камера отличается от плёночной, верно? Да, он не мог называться качественным цифровым фотоаппаратом в современном понимании, но первый шаг был на лицо.

В дальнейшем, похожую концепцию развивало множество компаний, но первый цифровой аппарат, каким его привыкли видеть, создала компания Kodak. Серийно камеру начали выпускать в 1990 году, и она почти сразу стала супер популярной.

В 1991 году компания Kodak совместно с Nikon выпускают профессиональный цифровой зеркальный фотоаппарат Kodak DSC100 на основе фотокамеры Nikon F3. Весил такой аппарат 5 килограмм.

Стоит отметить, что с приходом именно цифровых технологий стала более обширна сфера применения фотографии.
Современные же камеры, как правило, подразделяются на несколько категорий: профессиональные, любительские и мобильные. В целом, они между собой отличаются только размером матрицы, оптикой и алгоритмами обработки. Из-за малого количества различий, грань между любительскими и мобильными камерами постепенно стирается.

Применение фотографии

Ещё в середине прошлого столетия сложно было представить, что чёткие изображения в газетах и журналах станут обязательным атрибутом. Особенно ярко бум фотографии проявился с появлением цифровых камер. Да, многие скажут, что плёночные фотоаппараты были лучше и популярнее, но ведь именно цифровые технологии позволили избавить фотоиндустрию от таких проблем, как закончившаяся плёнка или наложение кадров друг на друга.

Более того, современная фотография переживает крайне интересные изменения. Если раньше, к примеру, для получения фотографии в паспорте нужно было отстоять длинную очередь, сделать снимок и ждать ещё несколько дней до его печати, то сейчас достаточно просто сфотографировать себя на белом фоне с определёнными требованиями на телефон и напечатать снимки на специальной бумаге.

Художественная фотография тоже шагнула далеко вперёд. Раньше было сложно получить высоко детализированный кадр горного пейзажа, сложно было обрезать ненужные элементы или сделать качественную обработку фотографии. Сейчас замечательные кадры получают даже мобильные фотографы, готовые без особых проблем составить конкуренцию карманным цифровым камерам. Конечно, конкурировать с полноценными камерами, типа Canon 5D смартфоны не могут, но это тема для отдельного разговора.

Цифровая зеркалка для новичка 2.0 — для ценителей NIKON.

Моя первая ЗЕРКАЛКА — для ценителей CANON.

Итак, дорогой читатель, теперь вы знаете немного больше об истории фотографии. Надеюсь, этот материал станет полезным для вас. Если это так, то почему бы не подписаться на обновление блога и друзьям про него не рассказать? Тем более вас ждёт ещё масса интересных материалов, которые позволят вам стать более грамотными в вопросах фотографии. Удачи вам и спасибо за уделённое внимание.

Искренне ваш, Тимур Мустаев.

Цифрова́я фотогра́фия - раздел , связанный с получением , хранимого в цифровом формате. Цифровая фотография, в отличие от плёночной, использует для записи изображения, то есть электрические сигналы вместо химических процессов. В настоящее время цифровая фотография применяется все шире, продажи цифровых фотоаппаратов в большинстве стран уже превысили продажи плёночных камер. Все шире технологии получения цифровых изображений применяются и в устройствах, ранее для этого не предназначенных, например, в или в .

Сейчас в цифровой фототехнике применяются несколько типов сенсора. По элементрной базе:

  • (CCD)
  • (CMOS)
  • DX-матрица (гибрид КМОП и ПЗС)

По технологии цветоотделения:

  • матрицы с
  • матрицы

Многофункциональность

Исключая самые дешёвые варианты () и самые дорогие профессиональные устройства, цифровой фотоаппарат записывает снятые изображения на электро-магнитный носитель, в основном, Flash-карты и мини-диски, хотя ранее выпускались аппараты, использующие для этих целей и .

Многие цифровые фотоаппараты вместе с фотографиями позволяют записывать видео- и аудиофрагметны. Отдельные устройства можно использовать в качестве веб-камер, многие позволяют подключать их напрямую к для печати или к для просмотра фотографий.

Сравнение с плёнкой

Достоинства цифровой фотографии

  • Оперативный просмотр снятых кадров позволяет быстро понять ошибки и переснять неудавшийся кадр;
  • Вы платите только за печать готовых фотографий;
  • Долгое хранение фотографий на электронных носителях (при своевременном копировании на свежие носители в соответствии со сроком службы носителя) не приводит к ухудшению их качества;
  • Изображения готовы для обработки и тиражирования на , их не надо сканировать;
  • Большинство цифровых фотокамер компактнее плёночных аналогов;
  • Многие цифровые фотоаппараты позволяют проводить съёмку в инфракрасных лучах, используя лишь , в то время как для классической фотографии требуется специальная ;
  • Возможность гибкого управления , в то время как цветные фотоплёнки бывают всего двух видов - для дневной съёмки и для съёмки при электрическом освещении.

Достоинства плёночной фотографии

  • В большинстве любительских плёночных фотоаппаратов применяются широко доступные стандартные батареи питания, в отличие от специализированных в большинстве цифровых камер (в основном - ради компактности камеры).
  • Время использования комплекта батарей в плёночной камере намного больше;
  • Простые механические камеры вообще не требуют электрического питания и могут использоваться в экстремальных условиях;
  • Фотоплёнка, особенно негативная, имеет намного большую , чем цифровые матрицы, что позволяет без потери деталей снимать сюжеты с большим диапазоном ;
  • На очень длинных при плохой уровень заметно превышает зернистость плёнки;
  • Плёночная черно-белая фотография с использованием компенсационных светофильтров более предпочтительна, чем последующая обработка в похожей манере цифровых фотографий благодаря заметно лучшему качеству изображения;
  • Цифровые камеры пока стоят намного дороже плёночных аналогов;
  • Перспектива длительного хранения цифровых носителей пока неясна. Фотографии приходится периодически копировать на новые носители.

Равные возможности

  • Зернистость плёнки имеет свою аналогию в виде . Чем плёнка или чем больше эквивалентное число ISO цифрового кадра, тем сильнее уровень шума или зернистость;
  • Быстродействие современных цифровых фотокамер сравнялось с быстродействием аналогичных плёночных моделей, за исключением времени срабатывания затвора () в моделях, использующих систему контрастного (большинство обычных незеркальных моделей);

Сравнение форматов кадра

В большинстве цифровых фотоаппаратов соотношение сторон кадра равно 1,33 (4:3), равное соотношению сторон большинства компьютерных мониторов и телевизоров. В плёночной фотографии используется отношение сторон 1,5 (3:2). Некоторые цифровые фотоаппараты позволяют снимать фотографии с плёночным соотношением сторон, включая большинство цифровых зеркальных аппаратов, в целях обеспечения преемственности и совместимости аксессуаров от плёночных камер.

Заключение

В заключение можно сказать, что сегодня цифровая фотография однозначно более предпочтительна для любителей и большинства профессионалов, исключая фотографов с очень специфическими требованиями, или снимающих на большой и средний формат.

Параметры цифрового фотоаппарата

Качество изображения, даваемого цифровым фотоаппаратом, складывается из многих составляющих, которых намного больше, чем в плёночной фотографии. В их числе:

  • Качество оптики, в том числе уровень
  • Тип матрицы: или
  • Физический размер матрицы
  • Качество встроенных обработки, в том числе подавление шума
  • Количество пикселей матрицы

Количество пикселей матрицы

Количество пикселей матрицы сейчас составляет несколько миллионов и измеряется мегапикселами. Количество мегапикселей матрицы указывается в паспорте фотоаппарата производителем. Хотя зачастую производители лукавят, скрывая способ подсчёта этих данных. Например, для фотоаппаратов, использующих матрицы с (а это подавляющее большинство современных камер), производитель указывает количество пикселей в готовом файле, хотя в матрице каждая из ячеек воспринимает только одну составляющую цвета, а получение остальных составляющих производится математически на основе данных соседних ячеек. А, например, для фотоаппаратов на основе сенсора , оно указывается втрое больше, чем реальных, хотя с формальной точки зрения ошибки здесь нет, так как каждая ячейка такой матрицы состоит из трёх слоёв, каждый из которых воспринимает свой цвет. Исходя из вышеизложенного, сравнивать эти две технологии только по количеству мегапикселей некорректно.

Форматы файлов

Большинство современных цифровых фотоаппаратов записывают изображения в следующих форматах:

  • - формат, осуществляющий сжатие с потерями информации. Компромисс между качеством и размером файла. Позволяет задать степень сжатия (и качество соответственно). Есть на подавляющем большинстве цифровых камер.
  • - формат без сжатия или со сжатием без потерь ( компрессия). Как правило, реализуется только в претендующих на профессиональность камерах. В профессиональных зеркальных камерах TIFF почти никогда не используется и даже не реализована его поддержка, поскольку с одной стороны в максимальном качестве дает удовлетворительное качество, а если необходимо большее, то формат RAW и меньше по объёму, чем и содержит больше данных. Размер файла (если он без сжатия) легко определить, перемножив разрешение матрицы по вертикали и горизонтали с количеством байт на пиксел. Обычно применяется только, когда невозможно использовать RAW, а JPEG не устраивает из-за потери данных. Формат TIFF может использовать глубину 8 или 16 бит на цвет.
  • RAW - файл этого формата представляет собой «полуфабрикат» изображения - информацию, считанную с матрицы без обработки (или с минимальной обработкой). Назначение такого формата - дать фотографу возможность полного влияния на процесс съемки изображения с возможностью последующей коррекции параметров съемки (цветовой баланс, ) и степени необходимых преобразований (коррекция контраста, резкости, насыщенности, подавление шума и т. п.), в т. ч. для исправления ошибок фотографа. В RAW-формата данные содержатся с той точностью и динамическим диапазоном, на который способна матрица камеры, обычно около 12 бит на цвет в линейной шкале. В то время как в форматах TIFF или JPEG чаще всего испольузется 8 бит на цвет в гамма-компенсированой шкале (в JPEG также присутсвуют потери сжатия). Кроме того, данные в TIFF или JPEG хранятся с уже применёнными "внутри камеры" фильтрами (резкости, контраста и др. используемых при съемке). Кроме того, компьютер может сделать необходимые преобразования более точно и качественно, чем процессор камеры. Формат файла RAW специфичен для каждой камеры, может иметь различные расширения (CRW, CR2, NEF и др.), и поддерживается меньшим числом программ для обработки изображений. Для получения изображения из формата RAW, используются специальная программа (RAW-конвертор) или соответствующий , «понимающие» такой формат. Формат RAW, как правило, реализуется в любительских и профессиональных камерах. По размеру файл RAW обычно меньше или равен файлу формата TIFF, размеры файлов различны поскольку используются технологии сжатия без потерь.

К изображениям дописывается дополнительная информация о параметрах съёмки в формате .

Носители данных

Большинство современных цифровых фотоаппаратов производят запись снятых кадров на Flash-карты следующих форматов:

  • (CF-I или CF-II)
  • (модификаций PRO, Duo, PRO Duo)
  • (MMC)

Также возможно подключение большинства камер напрямую к компьютеру, используя стандартные интерфейсы - и (FireWire). Ранее использовалось и подключение через последовательный , однако сейчас оно уже не применяется.

Цифровые задники

Цифровые задники применяются в профессиональной студийной фотосъёмке. Они представляют собой устройства, содержащие светочувствительную матрицу, процессор, память и интерфейс с компьютером. Цифровой задник устанавливают на профессиональные среднеформатные фотоаппараты вместо кассет с плёнкой. Самые продвинутые современные цифровые задники содержат до 39 мегапикселей в матрице.

Размер матрицы и угол изображения

Разметы матриц большинства цифровых фотоаппаратов по размеру меньше стандартного кадра 35-мм плёнки. В связи с этим возникает понятие эквивалентного фокусного расстояния и кроп-фактора .

Эквивалентное фокусное расстояние - это такого объектива, использование которого при съёмке на 35-мм фотоплёнку даст такой же , что и сравниваемый цифровой фотоаппарат. Соотношение между реальным фокусным расстоянием и эквивалентным называется кроп-фактором.

Учёт кроп-фактора особенно важен при использовании цифровых фотоаппаратов со сменными . Если мы, например, используем объектив с фокусным расстоянием 50 мм с цифровым фотоаппаратом, кроп-фактор которого равен 1,6, то мы получим угол изображения, эквивалентный 80-мм объективу при съёмке на фотоплёнку. Следует отметить, что при установке объективов на цифровые фотоаппараты не происходит увеличения фокусного расстояния, как думают многие. Физически происходит лишь отсечение части кадра, не попадающего на матрицу, то есть меняется именно , а не . При этом влияние на перспективу изображения остается соответствующим 50 мм объективу. Благодаря этому, кадр, снятый таким цифровым фотоаппаратом через 50 мм объектив не будет полностью эквивалентен кадру, снятому 80 мм объективом на плёнку именно с точки зрения влияния на перспективу. У 80 мм объектива перспектива будет больше «сжата».

Достоинства

Быстрое получение результатов

Полученное изображение можно увидеть значительно быстрее, чем при традиционном фотопроцессе. Как правило, камеры позволяют просмотреть изображение на встроенном или присоединённом мониторе сразу после съёмки (а в незеркальных и некоторых зеркальных камерах - даже до съёмки). Кроме того, изображение можно довольно быстро загрузить на компьютер, а уже там рассмотреть во всех деталях.

Быстрое получение результатов способствует раннему выявлению неустранимых ошибок (и пересъёмке) и лёгкому обучению. Что удобно как начинающим, так и любителям/профессионалам.

Готовность для применения на компьютере

Цифровая фотография является самым быстрым и дешёвым способом получения изображений для последующего использования на компьютере - в веб-дизайне, загрузке изображений (фотографий людей и объектов) в базы данных, создания художественных работ на базе фотографии, измерений и т. п.

Наример, при подготовке загранпаспортов современного образца человек фотографируется цифровой камерой. Его фото и распечатывается на паспорте, и заносится в базу данных .

При традиционном фотопроцессе, перед обработкой на компьютере необходима изображения, требующая дополнительных средств.

Экономичность и простота

Процесс цифровой съёмки не требует расходных материалов (пленки) и средств/материалов для фотопроцесса (проявления изображения на пленке). Поэтому неудачные кадры, если не учитывать трудозатраты, не стоят фотографу ни копейки. Точнее, стоят очень мало, так как цифровые носители, в основном, являются многоразовыми с большим ресурсом перезаписи.

Более того, весь процесс от съёмки до получения отпечатков (или превью) может быть проделан, не выходя из дома или студии, и всего лишь требует наличия компьютера и фотопринтера. Возможности и качество отпечатков (по сравнению с обработкой в лаборатории), в этом случае, будет зависеть только от возможностей техники и умения оператора.

Всё большее распространение получают студии моментальной фотографии, состоящие из цифрового фотоаппарата, компьютера и цифровой фотолаборатории. Фотографии, сделанные в такой студии, лучше и по качеству изображения, и по долговечности, чем традиционное моментальное фото типа Polaroid.

Некоторые камеры и принтеры позволяют получать отпечатки без компьютера (камеры и принтеры с возможностью прямого подключения или принтеры, печатающие с карт памяти), но этот вариант, как правило, исключает возможность коррекции снимка и имеет другие ограничения.

Гибкое управление параметрами съёмки

Цифровая съёмка позволяет гибко управлять некоторыми параметрами, которые, в традиционном фотопроцессе, жёстко привязаны к фотоматериалу пленки - светочувствительностью и цветовым балансом (также, называемым балансом белого ).

Светочувствительность (в единицах ISO по аналогии с фотоматериалами) может быть выставлена вручную, или быть определена камерой автоматически, применительно к снимаемой сцене.

В традиционном фотопроцессе используют два вида плёнки разного цветового баланса (для дневного света и электрического освещения), и корректирующие светофильтры.

Цифровая камера может изменять цветовой баланс очень гибко - его можно выбрать согласно освещению, позволить камере определить автоматически или точно настроить по серому образцу.

Широкие возможности постпроцесса

В отличие от традиционного фотопроцесса, в цифровой фотографии существуют очень широкие возможности коррекции и внесения дополнительных эффектов уже после съёмки.

Вы можете поворачивать, кадрировать, монтировать, изменять параметры изображения (целиком или на отдельном участке), производить ручную или автоматическую коррекцию дефектов несравненно проще и качественней, чем при съёмке на плёнку.

Преимущества цифрового представления

Так как оригинал изображения при цифровой съемке является массивом чисел, то хранение, копирование, передача на произвольное расстояние не изменяет его - любая копия является идентичной оригиналу. Во всяком случае, недостоверность данных можно довольно просто установить, и сделать повторную копию/передачу всего массива или его фрагмента (или его восстановление по избыточной информации). Копия же с пленки, в особенности, при последовательном копировании, будет отличаться от оригинала.

Разумеется, цифровой носитель может выйти из строя, но информация, при ее правильном хранении (с достаточной избыточностью и периодической заменой носителей) может быть сохранена неизменной произвольный период времени.

Компактность

Большинство цифровых камер компактнее плёночных «собратьев», т. к. в их конструкции нет необходимости выделять место для плёнки и механики фильмового канала.

Возможность миниатюризации элементов цифровых камер позволяет производить ультракомпактные варианты камер и камеры встроенные во всевозможные устройства, изначально не предназначенные для фотографирования - , плееры и т. п.

Разумеется, уменьшенные геометрические размеры (в особенности, размеры оптики), вносят в снимки свои особенности:

  • высокую (встраиваемые варианты, как правило, вообще, не имеют механизмов фокусировки)
  • невысокое оптическое разрешение («мягкость») снимков
  • бо́льшее количество шума - сенсор маленького размера обладает меньшей чувствительностью и сигнал с него нуждается в дополнительном усилении, которое, кроме сигнала, повышает и шумовой фон

Количество кадров

Цифровые камеры, как правило, позволяют делать бо́льшее количество кадров, чем плёночные, потому что (если не учитывать ёмкости аккумуляторов) ограничены только ёмкостью цифровых носителей, а последние отличаются более широким ассортиментом, нежели фотоплёнка. Правда, фактическое количество фотографий, которое можно записать на носитель, зависит от характеристик камеры (разрешения изображения) и формата записи.

Кроме этого, при цифровой съёмке при желании/необходимости количество снимков можно увеличить за счёт снижения параметров изображения - разрешения, формата записи и/или качества изображения.

  • Разрешение обычно можно снизить в 2-4 раза или привести к стандартным разрешениям (640×480, 1024×768, 1600×1200)
  • Форматы записи отличаются количеством сохраняемой информации, видом сжатия и т. п.
  • Под качеством принято понимать степень сжатия с потерей информации (как правило, при сохранении в формате ) - при низком качестве изображение теряет в оттенках, но занимает меньше места.

При наличии времени также можно удалять с носителя неудачные кадры, освобождая место для новых, сгружать кадры на компьютер или карманные устройства хранения для больших объемов информации.

Разумеется, также, можно использовать несколько носителей, но эта возможность доступна и для плёночных камер.

Проблемы

Разрешение изображения

При цифровой съёмке изображение представляется дискретным массивом точек (). Детали изображения размером меньше одного пикселя не сохраняются. получаемого изображения (число или размеры матрицы пикселей) определяется базовым разрешением сенсора камеры, а также её текущими настройками.

Вместе с тем фотоплёнка также имеет свою дискретность. Изображение на плёнке образовано чёрными или пигментными доменами («зерном») разного размера, осаждёнными во время фотопроцесса.

Исходя из среднего размера зерна фотоплёнки, аналогичным разрешением для цифрового изображения принято считать разрешение 12-16 мегапикселей на кадр. Такое, или большее разрешение имеют профессиональные камеры.

Однако, реальное разрешение получаемого изображения (то есть степень различимости деталей), кроме пиксельного разрешения сенсора зависит от оптического разрешения объектива и устройства сенсора.

Оптическое разрешение объектива

Разрешение изображения не может быть выше объектива. Оптическое разрешение, достаточное для получения четкого изображения с разрешением 12-16 мегапикселей, может обеспечить только съемная полупрофессиональная оптика. Объективы большинства компактных камер обеспечивают разрешение на уровне 2-4 (иногда 6) мегапикселей.

В сравнение с плёночными камерами, цифровые камеры одного класса имеют одинаковые объективы или объективы меньшего размера (и, следовательно, потенциально, меньшего разрешения).

В зеркальных камерах применяются одни и те же объективы, но модели с неполноформатными сенсорами фиксируют только часть кадра, и следовательно имеют меньшее разрешение относительно размера кадра.

Влияние устройства сенсора

Разрешение изображения, также, может ограничить устройство сенсора. (см. раздел ).

Цифровой шум

Цифровые фотографии, в той или иной степени, содержат . Количество шума зависит от технологических особенностей сенсора (линейного размера пикселя, применяемой технологии ССD/CMOS, и др.).

Шум в большей степени проявляется в изображения. Шум возрастает с увеличением светочувствительности съёмки, а также, с увеличением времени экспозиции.

Цифровой шум в чём-то эквивалентен зернистости изображения на фотоплёнке. Зернистость повышается с увеличением чувствительности плёнки, точно также как и цифровой шум. Однако, зернистость и цифровой шум имеют разную природу и различаются по внешнему виду:

свойство зернистость цифровой шум
Является … … ограничением разрешения пленки, отдельное зерно повторяет форму и размер светочувствительного кристалла эмульсии … шумовыми отклонения привнесенными электроникой камеры, шум образуется пикселями (или пятнами 2-3 пикселя, при интерполяции цветовых плоскостей) одинакового размера.
Проявляется … … нелинейной яркостной и, в меньшей степени, цветовой текстурой, ломаными линиями резких переходов яркости и цвета … шумовой текстурой из девиаций яркости и цвета по всему снимку, снижающей различимость деталей, создающих неоднородности на однотонных участках
В целом запечатлевает … … точные яркости и цвета, отклонения несут позиционный характер … яркости и цвета со статистическим отклонением к серому цвету, хроматические девианты имеют цвета несвойственные объекту съемки (что раздражает восприятие снимка), отклонения несут амплитудный характер
С повышением чувствительности … … увеличивается максимальный размер зерна
С повышением экспозиции … … не изменяется … увеличивается уровень шума (степень девиаций)
На белых участках … … проявляется слабо
На чёрных участках… … практические не проявляется … проявляется наиболее сильно

В отличии от цифрового шума, изменяющегося от камеры к камере, степень зернистости плёнки не зависит от применяемой камеры - самый дорогой профессиональный аппарат и дешёвая компактная камера на одной и той же плёнке дадут изображение с одинаковой зернистостью.

Цифровой шум начинает подавляться еще при считывании с сенсора (вычитанием «нулевого» уровня каждого пикселя из считанного потенциала), продолжается при обработке изображения камерой (или конвертером RAW-файла). При необходимости шум также может быть дополнительно подавлен в программах обработки изображений.

Муар

При цифровой съемке происходит изображения, поэтому если в изображении присутствует другой растр (фактурные ткани, линейные узоры, экраны мониторов и телевизоров) близкий по размеру к растру сенсора, может возникнуть - биение растров образующее зоны усиления и ослабления яркости, которые сливаются в линии и текстуры, которых нет на объекте съемки.

Муар усиливается с приближением частот и уменьшением угла между растрами. Последнее свойство означает, что муар можно уменьшить, снимая сцену под некоторым углом, подобранным опытным путем. Нормальную ориентацию сцены можно вернуть в графическом редакторе (ценой потери краёв, и некоторой потери четкости).

Муар очень ослабляется при расфокусировке - в том числе «смягчающими» светофильтрами (которые применяются в портретной съемке) или оптикой относительно невысокого разрешения, неспособной сфокусировать точку, соизмеримую с линией растра сенсора (то есть, оптика невысокого разрешения или сенсор с пикселями маленького размера).

В сенсорах, представляющих собой прямоугольную матрицу светочувствительных датчиков, имеется как минимум два растра - горизонтальный, который образуют строки пикселей и, перпендикулярный ему, вертикальный. К счастью, большинство современных камер имеют достаточно низкое оптическое разрешение (или высокое разрешение сенсора), чтобы хорошо сфокусировать растр близкой частоты, и возникающий муар довольно слаб.

Статические дефекты сенсоров

Отдельные светочувствительные элементы сенсора, в результате производственного брака могут обладать аномальной (пониженной или повышенной) чувствительностью или не работать вообще. В процессе эксплуатации могут появиться новые дефектные элементы.

На нынешнем уровне развития технологии производства сенсоров избежать появления дефектных элементов очень сложно, и сенсоры, содержащие их в малом количестве, не считаются бракованными.

Статически «белые» или элементы с повышенной чувствительностью называют «горячими» пикселями (или хот-пикселями), статически черные - «мертвыми» или «битыми» пикселями.

Дефекты изображения, образовавшиеся в результате аномалий сенсора, обычно устраняются фильтрами шумоподавления.

Также камера может программироваться на особенности своего сенсора так, чтобы аномальные элементы игнорировались при считывании, а их значения определялись интерполяцией. Такое программирование (римэпинг, remaping ) проводят в процессе контроля качества, при появлении новых дефектных элементов римэпинг можно повторить (самостоятельно или в сервисном центре).

Низкая фотографическая широта

Светочувствительный сенсор имеет более низкую по сравнению с традиционной фотоплёнкой (в особенности, негативной). Поэтому при съемке сюжета с большим диапазоном яркостей в на цифровых снимках могут наблюдаться «выгорание» и/или зачернение . При «выгорании» пиксель приобретает максимальное значение яркости, при зачернении значение яркости приближается к минимальному значению (а также приближается или оказывается ниже уровня цифрового шума).

Большинство любительских камер при просмотре изображения позволяют видеть «выгоревшие» пиксели, для пересъёмки при необходимости.

Для борьбы с выгоранием свето́в некоторые сенсоры имеют добавочные фотодиоды с пониженной чувствительностью.

Внутренние отражения

Высокое энергопотребление

Весь процесс получения цифрового изображения, его обработки и записи на носитель является электронным. Всвязи с этим, подавляющее большинство цифровых камер потребляют больше электроэнергии, чем плёночные аналоги. Особенно высоким энергопотреблением отличаются компактные камеры, использующие в качестве видоискателя .

Сенсоры, выполненные по технологии CMOS, отличаются меньшим энергопотреблением, чем CCD-сенсоры.

Из-за энергопотребления, а также стремления к компактности, в бо́льшей части цифровых камер производители отказались от использования , популярных в пленочных камерах, в пользу более ёмких и компактных аккумуляторов. Некоторые модели позволяют использовать батареи AA в дополнительных батарейных блоках.

Сложное устройство и высокая цена цифровых камер

Даже самая простая цифровая камера является сложным электронным устройством, потому что как при съемке, как минимум, должна:

  • открыть затвор на заданное время
  • считать информацию с сенсора
  • записать файл изображения на носитель

В то время как простой плёночной камере достаточно просто открыть затвор, а для этого (а также, манипуляций с плёнкой) достаточно нескольких несложных механических узлов.

Именно сложность объясняет цены цифровых камер в 5-10 раз превышающие цены аналогичных плёночных моделей. При этом среди простых моделей цифровые камеры часто проигрывают пленочным по качеству картинки (в основном, по разрешению и цифровому шуму).

Кроме всего прочего, сложность увеличивает число возможных неисправностей и стоимость ремонта.

Устройство цветного сенсора и его недостатки

Традиционный цветной фотопроцесс использует многослойную фотоэмульсию со слоями чувствительными в разных диапазонах.

Большинство же современных цветных цифровых камер используют для цветоотделения мозаичный или его аналоги. В фильтре Байера каждый датчик на имеет светофильтр одного из трех основных цветов и воспринимает только его. Такой подход имеет ряд недостатков.

Потери разрешения

Полное изображение получается восстановлением (интерполяцией) цвета промежуточных точек в каждой из цветовых плоскостей. Интерполяция снижает разрешение (резкость) изображения.

Снижение разрешения, отчасти, корректируется методом «нерезкой маски» - повышением контрастности на яркостных переходах изображения. В документации эта операция называется «коррекцией резкости» или просто «резкостью». Злоупотребление нерезкой маской приводит к появлению ореолов на границах.

Зачастую «повышение резкости» выполняет сама камера. Но автоматическая коррекция резкости часто имеет слишком низкий порог чувствительности и усиливает цифровой шум. В камерах любительского уровня применение нерезкой маски можно запрещать, чтобы сделать необходимые коррекции на компьютере (в конвертере RAW-файлов или графическом редакторе) с параметрами наиболее подходящими для каждого изображения, а также выполнить их в требуемом порядке.

Цветовые артефакты

Интерполяция может давать неверный цвет на границах и деталях изображения соизмеримых по размеру с пикселем. Также, цветовые артефакты могут образовывать муарные образования (см. раздел ).

Искажения на границах призваны предотвратить улучшенные алгоритмы интерполяции, с отслеживанием цветовых переходов. Для подавления цветовых артефактов на готовых изображениях применяют алгоритм «низкочастотного фильтра», однако его применение, делает мелкие детали изображения менее контрастными и резкими.

Предотвращением и подавлением цветовых артефактов и муара занимаются конвертеры RAW-файлов и программы обработки фотографий. Камеры высокого класса имеют для этого встроенные алгоритмы.

Альтернативные схемы цветоотделения

Недостатки фильтра Байера заставляют разработчиков искать альтернативные решения. Вот наиболее популярные из них.

Трёхсенсорные схемы

Данные схемы используют три сенсора и призму, разделяющую световой поток на составляющие цвета.

Основной проблемой трехсенсорной системы является совмещение трех получающихся изображений в одно. Но это не мешает использовать ее в системах с относительно низким разрешением, например в видеокамерах.

Многослойные сенсоры

Идея многослойного сенсора, аналогичного современной цветной фотоплёнке с многослойной эмульсией, всегда владела умами разработчиков электроники, но до последнего времени не имела методов для практической реализации.

Разработчики компании Foveon решили использовать свойство кремния поглощать свет разной длины волны (цвета) на различной глубине кристалла, расположив датчики основных цветов друг под другом на различных уровнях микросхемы. Реализацией этой технологии стали сенсоры , анонсированные в 2005 году.

Сенсоры X3 считывают полную гамму цветов на каждом пикселе, поэтому им несвойственны проблемы, связанные с интерполяцией цветовых плоскостей. У них есть собственные проблемы - склонность к шуму, межслойная , и т. п. но эта технология еще находится в активном развитии.

Разрешение в применении к сенсорам X3 имеет несколько трактовок, отталкивающихся от различных технических аспектов. Так для топовой модели Foveon «X3 10.2 MP»:

  • Итоговое изображение имеет пиксельное разрешение 3,4 мегапикселя. Так понимает мегапиксель пользователь.
  • Сенсор имеет 10,2 миллионов датчиков (или 3,4×3). Такое понимание использует компания в маркетинговых целях (именно эти цифры присутствуют в маркировках и спецификациях).
  • Сенсор обеспечивает разрешение изображения (в общем смысле) соответствующее 7 -мегапиксельному сенсору с фильтром Байера (по расчётам Foveon), т. к. не требует интерполяции и поэтому обеспечивает более чёткое изображение.

Сравнительные особенности

Быстродействие

Цифровые и пленочные камеры, в общем, имеют схожее быстродействие, определяемое задержками, перед съемкой кадра в различных режимах. Хотя отдельные типы цифровых камер могут уступать плёночным.

Лаг затвора

При этом, в большинстве компактных и бюджетных цифровых камер используется медленный, но точный контрастный автофокус (неприменимый для плёночных камер). Плёночные камеры той же категории используют менее точные (полагающиеся на высокую ), но быстрые системы фокусировки. Зеркальные камеры (как цифровые, так и плёночные) используют одинаковую систему фазовой фокусировки, с минимальными задержками.

Для уменьшения влияния автофокуса на лаг затвора (как в цифровых, так и в некоторых типах плёночных камер) применяется предварительная (в т. ч. упреждающая, для движущихся объектов) фокусировка, включаемая средним положением трехпозиционной кнопки спуска затвора.

Задержка видоскателя

Неоптические видоискатели, применяемые в незеркальных цифровых камерах - ЖК-экран или электронный видоискатель (окуляр с ЭЛТ или ЖК-экраном), могут показывать изображение с задержкой, что также как и лаг затвора может привести к запаздыванию съёмки.

Время готовности

Время готовности камеры к съёмке - понятие, существующее для электронных камер и камер с выдвигающимися элементами. Большинство механических камер готовы к съёмке всегда, и среди них нет цифровых - все цифровые камеры и задники являются электронными.

Время готовности электронных камер определяется временем стартовой инициализации камеры. Для цифровых камер время инициализации может быть бо́льшим, но достаточно мало - 100-200 миллисекунд.

Компактные камеры с выдвигающимися объективами имеют значительно бо́льшее время готовности, но такие объективы имеют как цифровые, так и пленочные камеры.

Задержка при непрерывной съемке

Задержка при непрерывной съёмке обусловлена обработкой текущего кадра и подготовкой к съёмке следующего, которые требуют некоторого времени. Для плёночной камеры такой обработкой будет перемотка пленки на следующий кадр.

Цифровая камера перед следующим снимком должна:

  • Считать данные с сенсора;
  • Обработать изображение - сделать файл нужного формата и размера с необходимыми коррекциями;
  • Записать файл на цифровой носитель.

Самой медленной из перечисленных операций является запись на носитель (Flash-карту). Для ее оптимизации используется - запись файла в буфер (AKA кэш cache ; область оперативной памяти), с записью из буфера на медленный носитель, параллельно с другими операциями.

Обработка включает в себя большое количество операций по восстановлению, коррекции изображения, уменьшения до требуемого размера и упаковке в файл нужного формата. Для увеличения производительности, кроме повышения частоты работы процессорной части камеры, повышают ее эффективность, разрабатывая специализированные процессоры с аппаратной реализацией алгоритмов обработки изображения.

Скорость считывания с сенсора обычно становится «бутылочным горлом» производительности только в топовых моделях профессиональных камер, с сенсорами высокого разрешения. Все другие виды задержек в них производители устраняют. Как правило, максимальная скорость работы конкретного сенсора ограничивается физическими факторами, приводящими на бо́льших скоростях к резким снижениям качества изображения. Для работы с большей производительностью разрабатываются новые типы сенсоров.

Также на время подготовки к съёмке следующего кадра (как при цифровой, так и при обычной съемке) влияет время необходимое для зарядки вспышки, если она используется.

Максимальное количество кадров при непрерывной съемке

Кэширование записи на медленный носитель рано или поздно приводит к заполнению буфера и падению производительности на реальный уровень. В зависимости от ПО камеры, при этом съёмка может:

  • остановиться;
  • продолжаться с низкой скоростью по мере записи изображений;
  • или продолжаться на той же скорости, затирая в буфере ранее заснятые, но не записанные изображения.

Поэтому, для непрерывной съёмки, кроме количества кадров в секунду, камера имеет параметр максимального количества кадров , которые камера может сделать до переполнения кэша записи. Это количество зависит от:

  • Размера оперативной памяти и разрешения сенсора (заводские характеристики) камеры;
  • Выбранных пользователем:
    • формата файла (если камера это позволяет);
    • размера изображения (если формат это позволяет);
    • качества изображения (если формат это позволяет).

Плёночные камеры, в силу своего устройства, всегда работают с реальной производительностью, и максимальное количество кадров ограничивает только количество кадров на пленке.

Съёмка в инфракрасном диапазоне

Большинство цифровых камер, позволяют проводить съёмку, частично, в невидимом инфракрасном диапазоне (съёмка теплового излучения или съёмка с инфракрасной подсветкой), потому что фотосенсор способен воспринимать верхнюю часть этого диапазона. Видимый свет, при необходимости, можно отфильтовать специальным .

В классической фотографии для инфракрасной съемки требуется специальная фотоплёнка, но она, в отличие от фотосенсоров, способна воспринимать бо́льшую часть инфракрасного диапазона.