Дать определение мутации. Что такое мутация у человека

Мутации делятся на спонтанные и индуцированные .

Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10 − 9 {\displaystyle 10^{-9}} - 10 − 12 {\displaystyle 10^{-12}} на нуклеотид за клеточную генерацию организма.

Индуцированными мутациями называют наследуемые изменения генома , возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды .

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК , нарушения репарации ДНК , транскрипции и генетическая рекомбинация .

Связь мутаций с репликацией ДНК

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации . Например, из-за дезаминирования цитозина напротив гуанина в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК, напротив урацила в новую цепь включается аденин , образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер . Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация , а в другой - делеция .

Связь мутаций с репарацией ДНК

Таутомерная модель мутагенеза

Предполагается, что одной из причин образования мутаций замены основания является дезаминирование 5-метилцитозина , что может вызывать транзиции от цитозина к тимину. Из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Классификации мутаций

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные .

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • геномные ;
  • хромосомные ;
  • генные .

Точечная мутация, или единственная замена оснований, - тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим. Термин также применяется и в отношении парных замен нуклеотидов. Термин точечная мутация включает так же инсерции и делеции одного или нескольких нуклеотидов. Выделяют несколько типов точечных мутаций.

Встречаются также сложные мутации. Это такие изменения ДНК, когда один её участок заменяется участком другой длины и другого нуклеотидного состава .

Точечные мутации могут появляться напротив таких повреждений молекулы ДНК, которые способны останавливать синтез ДНК. Например, напротив циклобутановых пиримидиновых димеров. Такие мутации называются мишенными мутациями (от слова «мишень») . Циклобутановые пиримидиновые димеры вызывают как мишенные мутации замены оснований , так и мишенные мутации сдвига рамки .

Иногда точечные мутации образуются на, так называемых, неповрежденных участках ДНК, часто в небольшой окрестности от фотодимеров. Такие мутации называются немишенными мутациями замены оснований или немишенными мутациями сдвига рамки .

Точечные мутации образуются не всегда сразу же после воздействия мутагена. Иногда они появляются после десятков циклов репликаций. Это явление носит название задерживающихся мутаций . При нестабильности генома, главной причине образования злокачественных опухолей, резко возрастает количество немишенных и задерживающихся мутаций .

Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер - UAG, охр - UAA и опал - UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов - например амбер-мутация), 4) обратная замена (стоп-кодона на смысловой кодон).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift) . Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического кода.

Первичную мутацию иногда называют прямой мутацией , а мутацию, восстанавливающую исходную структуру гена, - обратной мутацией , или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Почковые мутации (спорты) - стойкие соматические мутации, происходящие в клетках точек роста растений. Приводят к клоновой изменчивости . При вегетативном размножении сохраняются. Многие сорта культурных растений являются почковыми мутантами .

Последствия мутаций для клетки и организма

Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, - апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.

Флуктуационный тест Лурии -Дельбрюка заключается в том, что небольшие порции исходной культуры бактерий рассеивают в пробирки с жидкой средой, а после нескольких циклов делений добавляют в пробирки антибиотик. Затем (без последующих делений) на чашке Петри с твердой средой высевают выживших устойчивых к антибиотику бактерий. Тест показал, что число устойчивых колоний из разных пробирок очень изменчиво - в большинстве случаев оно небольшое (или нулевое), а в некоторых случаях очень высокое. Это означает, что мутации, вызвавшие устойчивость к антибиотику, возникали в случайные моменты времени как до, так и после его воздействия.

Метод реплик заключается в том, что с исходной чашки Петри, где на твердой среде растут колонии бактерий, делается отпечаток на ворсистую ткань, а затем с ткани бактерии переносятся на несколько других чашек, где рисунок их расположения оказывается тем же, что на исходной чашке. После воздействия антибиотиком на всех чашках выживают колонии, расположенные в одних и тех же точках. Высевая такие колонии на новые чашки, можно показать, что все бактерии внутри колонии обладают устойчивостью.

Таким образом, обоими методами было доказано, что «адаптивные» мутации возникают независимо от воздействия того фактора, к которому они позволяют приспособиться, и в этом смысле мутации случайны. Однако несомненно, что возможность тех или иных мутаций зависит от генотипа и канализована предшествующим ходом эволюции (см.

МУТАЦИЯ (лат. mutatio изменение, перемена) - всеобщее свойство живых организмов, лежащее в основе эволюции и селекции всех форм жизни и заключающееся во внезапно возникающем изменении генетической информации. Для медицины изучение природы М. чрезвычайно важно с точки зрения профилактики и лечения наследственных болезней (см.).

Внезапное возникновение наследственных изменений было описано еще в 18-19 вв. Это явление было известно и Ч. Дарвину. Однако изучение явления М. началось только после сформирования экспериментальной генетики как науки с начала 20 в. Термин «мутация» в современном понимании стал употребляться в научной литературе с 1901 г. после выхода в свет книги X. de Фриса «Мутационная теория». Ранее словом «мутация» называли особи, отклоняющиеся по своим признакам от нормальных индивидов.

После установления того факта, что генетическая информация записана в молекулах нуклеиновых к-т, в теории М. произошел коренной перелом (см. Ген , Дезоксирибонуклеиновые кислоты). Позже было установлено, что наследуемые изменения могут происходить не только в ДНК хромосом, но и в ДНК цитоплазматических самовоспроизводящихся структур. В этом случае говорят о цитоплазматических М.

Процесс возникновения М. в естественных условиях или в результате экспериментального воздействия различных физ., хим. и биол, факторов называют мутагенезом (см.).

Особь, несущую М., действие к-рой проявляется в фенотипе, называют мутантом. М. могут изменять внешние признаки особи, ее физические особенности, биохим, процессы, нарушать процессы развития, ослаблять жизнеспособность (сублетальные М.) или даже приводить к гибели особи (летальные М.) и т. д. Наряду с М., влияние к-рых на развитие особи выражено отчетливо, существуют М., слабо изменяющие нормальное развитие особи. Такие М. получили название малых. М. могут возникнуть в зародышевых и в соматических клетках, в клетках культуры ткани и, наконец, в выделенных из клеток молекулах ДНК.

По действию М. могут быть вредными, нейтральными и полезными, правда, такая их оценка относительна, поскольку эффект М. зависит от условий окружающей среды. Напр., для бабочек, живущих на березах, М. меланизма вредны, ибо темных бабочек на светлых стволах берез легче обнаруживают птицы. Однако в индустриальных р-нах, где стволы деревьев темнее, М. меланизма стали полезными.

Учитывая значение М. для последующих поколений, их делят на генеративные и соматические. Генеративные М. возникают в зародышевых клетках и переходят в последующие поколения. Соматические М. не передаются потомству. Появляясь в одиночной клетке тела, они наследуются только потомками этой клетки, образуя в организме мутантную ткань. Естественно, что в случае вегетативного размножения соматические М. могут сохраняться длительно. Соматические М. широко известны и для животных организмов. У дрозофилы на ранних стадиях развития глаза нормальный аллель (см. Аллели), определяющий красную окраску глаз, в отдельной клетке может мутировать в аллель, определяющий белую окраску глаз. Клетка, содержащая вновь появившийся аллель, дает начало ткани, занимающей часть глаза, в результате чего на фоне красной окраски в глазу такой дрозофилы появляется сектор белого цвета (см. Мозаицизм). Соматическая М., возникающая на той или иной стадии онтогенеза, генетически выделяет исходную клетку и произошедшую из нее ткань, что в нек-рых случаях позволяет изучить закономерности индивидуального развития. Соматические М. могут оказать серьезное влияние на жизнь особи. Организм человека состоит примерно из 10 14 клеток. Если предположить, что нек-рый определенный ген мутирует с такой низкой частотой, как 10 -8 , то и в этом случае в организме человека должно содержаться более 10 6 клеток, несущих М. только в данном гене. Число генов у человека условно равно 10 5 . Даже если допустить, что частота мутирования предельно низкая (10 -8), все равно получается огромное число мутантных клеток (10 11). Это показывает, что очень большая популяция клеток тела человека испытывает на себе влияние М. Мутабельность, т. е. способность изменяться, резко повышена в клетках раковых опухолей. По-видимому, в ряде случаев появление рака объясняется соматическими М. с последующей тканевой селекцией.

Успешное развитие исследований по культивированию тканей человека позволило в прямых опытах определять частоту М. генов в клетках, а также исследовать генетическую природу злокачественного роста в эксперименте.

Признаки, присущие данному виду, вырабатываются в процессе эволюции и контролируются нормальными аллелями, к-рые обычно доминантны по отношению к другому гену аллельной пары. Очевидно, что мутационный процесс, идущий в нормальных особях, в основном превращает доминантные нормальные аллели в мутантные рецессивные. Однако процесс мутирования обратим. Последующие М. в мутантном гене приводят к появлению не только серии других рецессивных аллелей, но и к возникновению нормальных доминантных аллелей. Изменения нормальных аллелей в мутантные называют прямыми мутациями (А -> а), превращения мутантных рецессивных аллелей в нормальные доминантные - обратными мутациями (а -> А).

В естественных условиях М. появляются под влиянием факторов внешней и внутренней среды и обозначаются термином «естественные (или спонтанные) мутации». М., полученные в условиях эксперимента, называют индуцированными. Агенты, вызывающие М., получили название мутагенов (см.). В процессе естественного мутирования гены мутируют с определенной частотой. Средняя частота М. на один ген в одном поколении у бактерий - 10 -7 , у дрозофилы в зародышевых клетках - 10 -5 и т. д.

В одном и том же организме разные гены мутируют с разной частотой. Из восьми генов эндосперма кукурузы ген, контролирующий окраску, мутирует с частотой 496*10 -6 , ген Wx, контролирующий крахмалистость эндосперма, мутирует в 330 раз реже, с частотой, равной всего лишь 1,5*10 -6 . Частота мутирования остальных шести генов представляет среднюю величину между приведенными крайними значениями.

Определение частоты М. у человека гораздо сложнее, чем у бактерий или растений. Однако в нек-рых случаях она примерно установлена. Так, ген кишечного полипоза мутирует с частотой 10 -4 , а ген прогрессирующей мышечной дистрофии - с частотой 10 -5 . Частота мутирования при прямых М. (А -> а), как правило, выше, чем частота мутирования при обратных М. (а -> А); соотношение прямых и обратных М. характерно для каждого отдельного гена. Если учитывать частоту прямых и обратных М. суммарно по многим генам, то становится ясно, что процесс мутирования - это массовый, статистически хорошо фиксируемый процесс.

В 1921 г. Райт (S. Wright) предложил называть устойчивость массового процесса мутирования термином «давление мутаций», к-рый характеризует естественную жизнь популяций организмов (см. Популяционная генетика). Прямые и обратные М. не обязательно являются скачком от одного состояния только к другому. Рецессивные и доминантные аллели изменяются многообразно, в результате из одного и того же локуса (см.) в разных организмах возникает множество аллелей. Изучение популяций показало, что в нек-рых случаях количество аллелей для отдельных генов исчисляется десятками и даже сотнями. Ген W, локализованный в Х-хромосоме у дрозофилы и определяющий цвет глаз, имеет более десятка аллелей, к-рые контролируют эозиновый, медовый, абрикосовый, вишневый, коралловый и белый цвет глаз плодовых мушек. Ген С + , вызывающий появление серой окраски шерсти у кролика (агути), мутирует в три разных рецессивных аллеля: аллель C ch обеспечивает шиншилловую окраску кролика, аллель С h - белую с черными пятнами (гималайский кролик), аллель с - чисто белую.

Практически всякий ген, испытывая М., дает серию множественных аллелей. Классическим примером серии аллелей служат аллели генов групп крови (см.) у человека.

Антиген А. в эритроцитах появляется при наличии у людей гена IA, антиген В - при действии гена IB. Оба эти гена являются аллельными, их влияние независимо друг от друга, они не связаны доминантностью или рецессивностью. Такое независимое проявление аллелей, когда у гетерозиготных особей возникают два признака под действием двух аллелей, получило название ко доминантности.

Множественные аллели участвуют в создании естественных приспособительных биол, особенностей организмов.

Когда М. происходит в отдельном гене, говорят о генных, или точко-вых М. При изменениях структуры хромосом (структурные М., аберрации хромосом) или их числа, речь идет о хромосомных мутациях. Сущность аберраций хромосом состоит в дислокации участков хромосом, т. е. их перемещении внутри данной хромосомы или между разными хромосомами. В начальный период развития генетики наличие структурных М. хромосом устанавливалось путем генетического анализа (см.) и примитивного наблюдения за хромосомами. Возможность тонкого наблюдения хромосомных мутаций под микроскопом появилась после открытия гигантских хромосом в слюнных железах дрозофилы. В 1930 г. Д. Костов предположил, а Пейнтер (Т. S. Painter) в 1933 г. доказал, что видимая под микроскопом структура этих хромосом, представленная рядом последовательно расположенных дисков, отражает их генетическое содержание. Структурные М. широко представлены в популяциях растений, животных и человека, на их основе осуществляется эволюция видовых кариотипов (см.). Основными типами структурных М. хромосом являются делеции (см.), симметричные и асимметричные транслокации (см.), образование кольцевых хромосом (центрических и ацентрических), дупликации (см.), инверсии (см.).

Транслокации представляют собой обмен фрагментами между разными хромосомами. Это становится возможным при совпадении двух разрывов - одного в одной хромосоме и другого - в другой. Возникающие четыре фрагмента свободно комбинируются друг с другом.

Деления, т. е. потеря участка хромосомы, может произойти в результате одного разрыва хромосомы. Концевой фрагмент, лишенный центромеры, теряется. Такой тип делеций получил название концевых. При появлении двух разрывов средний участок хромосомы выпадает, а концевые фрагменты соединяются в одну хромосому. Так возникают интерстициальные делеции. Размер делеций может быть различным. В тех случаях, когда теряются заметные блоки генов, зиготы погибают. Сравнительно небольшие делеции передаются по поколениям через гетерозиготных особей. Однако при появлении зигот, гомозиготных по утраченному участку, они, как правило, погибают. М., вызванные делецией в этом случае, имеют летальный эффект.

У человека обнаружен ряд делеций, служащих причиной наследственных болезней. Так, концевая нехватка части короткого плеча 5-й хромосомы обусловливает появление так наз. синдрома крика кошки, интерстициальная делеция в 21-й хромосоме является причиной злокачественной анемии.

Явления дупликации, т. е. удвоения какого-либо блока генов в хромосомах, могут служить источником увеличения объема генетической информации видов, они важны с эволюционной точки зрения.

Термин «инверсия» был введен Стертевантом (A. H. Sturtevant) в 1926 г. при изучении кроссинговера у самок дрозофилы; он показал, что срединный участок одной из хромосом 3-й пары перевернут на 180°. Инверсии могут быть одиночными и сложными, последние приводят к заметной перестановке блоков генов. В случае, если при образовании инверсии оба разрыва проходят по одну сторону от центромеры, образуется парацентрическая инверсия. Такая инверсия не изменяет морфологии хромосом. Однако у гетерозиготных особей на инвертированном участке для заключенного в ней блока генов не происходит кроссинговера (см. Рекомбинация). Это обеспечивает наследование этого блока целиком. Если инверсия захватывает центромеру, то возникает перицен-трическая инверсия. Когда две инверсии непосредственно примыкают друг к другу, появляются так наз. тандемные инверсии. Этот тип инверсий имеет две формы: прямую тандемную инверсию (при сохранении обеими инверсиями исходно свойственных их блокам генов в хромосоме) и обратную тандемную инверсию, когда блоки генов, заключенные в инверсиях, меняются местами. При наличии одной инверсии вторая может произойти на ее внутреннем участке. Этот тип хромосомных М. называют включенной инверсией. Если вторая инверсия происходит с частичным захватом части материала первой инверсии и части генов из соседнего нормального района хромосомы, то ее называют заходящей. Причиной отсутствия на участке инверсии у гетерозиготных особей обмена генами являются биол, последствия кроссинговера. У гетерозиготной особи, имеющей нормальную хромосому - 12345678 и хромосому с инверсией - 12654378, кроссинговер на участке 5-6 приведет к появлению двух кроссинговерных хромосом - 126678 и 123455437 8. В половине таких хромосом часть генов потеряна, а в другой половине часть генов представлена в удвоенном количестве. Такие последствия кроссинговера наблюдают при парацентрических и перицентрических инверсиях. В последнем случае, кроме того, появляется хроматида с двумя центромерами (дицентрики) и фрагмент без центромеры. Появление несбалансированной хромосомы в зиготе приводит ее к гибели. Явление, когда у особей часть зигот регулярно погибает, а другая часть оказывается нормальной, получило название полустерильности.

Явление транслокации, лежащее в основе еще одного типа хромосомной М., состоит в переносе участка хромосомы на другую хромосому или в другое место той же хромосомы. В большинстве случаев при транслокациях хромосомы обмениваются участками. Эти транслокации назвали взаимными, в отличие от невзаимных транслокаций, когда средний участок одной хромосомы вставляется в другую хромосому. В этом случае для образования срединного фрагмента в одной хромосоме необходимы два разрыва. Хромосома, в к-рую вставляется посторонний срединный участок, разрывается в одном месте. Взаимные транслокации бывают двух видов: 1) симметричные, возникающие при таком обмене участками, когда в каждой хромосоме сохраняется по одной центромере (подобные транслокации связаны с сохранением всего генетического материала, к-рый по-разному распределяется между хромосомами, они передаются последующим поколениям); 2) асимметричные, наблюдающиеся при слиянии двух центромерных фрагментов и образовании дицентрической хромосомы. Соединение двух ацентрических фрагментов ведет к появлению одного ацентрического фрагмента. Во время репликации (см.) хромосом в фазе синтеза ДНК дицентрическая хромосома и ацентрический фрагмент удваиваются. В первом же митозе ацентрические фрагменты теряются. Что касается дицентрика, то он или образует хромосомный мост и рвется, или, при отхождении обеих центромер к одному полюсу, попадает в дочернюю клетку. Через ряд митозов дицентрик теряется. Симметричные транслокации благодаря действию сил притяжения гомологичных локусов в профазе мейоза (см.) образуют крестообразную конфигурацию. При расхождении из такой фигуры хромосомы часто образуют кольцо, состоящее из четырех хромосом. Поскольку симметричные транслокации сопровождают лишь перераспределение генного материала, особи, гетерозиготные по транслокациям, наряду с нормальными дают гаметы с нарушениями в виде больших дупликаций или делеций. Зиготы, возникающие при участии таких гамет, погибают, что приводит к полусте-рильности растений и животных, гетерозиготных по взаимной транслокации. Транслокации не только изменяют порядок генов, но и число хромосом в связи с приобретением или потерей центромер.

Своеобразным типом структурных М. служит появление кольцевых хромосом. В норме у животных и растений в кариотипе кольцевые хромосомы не встречаются. Образование кольцевой хромосомы связано с возникновением в одной хромосоме двух разрывов, в результате чего образуются два концевых и один срединный фрагмент. Срединный участок соединяется местами разрывов и замыкается в кольцо. Если срединный участок хромосомы включал центромеру, то возникает центрическое кольцо. Такая кольцевая хромосома передается поколениям клеток и организмов. Если кольцевая хромосома образуется из срединного участка хромосомы, лишенного центромеры, возникает ацентрическая кольцевая хромосома.

Существует два типа М. числа хромосом: анеуплоидия, т. е. потеря или появление дополнительных хромосом (единицей М. служат одна или несколько хромосом, число к-рых меньше, чем гаплоидный набор); гаплоидия и полиплоидия, кратное изменение числа хромосом, при них единицей М. служит гаплоидный набор хромосом (n). Гаплоидия - потеря целого набора (2n - n). Полиплоидия возникает при добавлении целых наборов (2n + n, 2n + 2n и т. д.). Особи, несущие три набора хромосом, называются триплоидами (Зn), четыре набора - тетраплоидами (4n) и т. д. Анеуцлоидии возникают в процессе митоза или мейоза, как правило, вследствие нерасхождения гомологичных хромосом. Для диплоидов характерны следующие типы анеу-плоидии: нулисомия - потеря пары гомологичных хромосом (2n - 2r, где r обозначает гомолог); моносомия - потеря одной хромосомы из какой-либо пары (2n - 1); трисомия - появление одной лишней хромосомы (2n + 1); тетрасомия - наличие двух лишних гомологичных хромосом (2n + 2r). При более сложных явлениях возможна двойная моносомия (2n - 1 - 1), двойная трисомия (2n + 1 + 1), сочетание двух типов (2n - 1, 2n + 1) и т. д. Анеу-плоидии вызывают нарушение генного баланса и, как правило, заметно изменяют признаки особи. Тетрасомия позволяет локализовать гены в определенных хромосомах, т. к. наличие четырех хромосом создает систему из трех аллелей у одного из родителей, что изменяет характер расщепления.

Анеуплоидии у человека объясняют появление целого ряда наследственных болезней. Впервые ане-уплоидию у человека обнаружили Ж. Лежен и др. в 1959 г. при анализе хромосом больного болезнью Дауна (см. Дауна болезнь). Оказалось, что больные имеют трисомию по 21-й хромосоме, регулярно возникающую с частотой 1 на 700 рождений. С частотой 1 на 5000 яйцеклеток вследствие нерасхождения X-хромосом возникает яйцеклетка, лишенная половой хромосомы (см. Пол). Женщины с генотипом ХО несут признаки синдрома Шерешевского - Тернера (см. Тернера синдром). В результате нерасхождения X-хромосом появляются люди с 47 хромосомами, включающими набор XXY. Дети XXY оказываются мальчиками с так наз. синдромом Клайнфелтера (см. Клайнфелтера синдром). Обнаружены и другие анеуплоидные изменения у человека, в частности трисомия и тетрасомия по Х-хромосоме и комбинированная трисомия. Сложные нарушения, числа половых хромосом обнаружены у мужчин (XXXY, XXYY, XXXXY, XYY) и женщин (ХХХХ, ХХХХХ). Анеуплоидия часто возникает как соматическая М. В случае соматической М. анеуплоидия в результате нерасхождения гомологов в митозе проявляется как хромосомная мозаика, при к-рой одни ткани имеют нормальный набор хромосом, а другие - состоят из клеток с анеуплоидным числом хромосом. У человека обнаружены хромосомные мозаики по половым хромосомам: ХО/ХХ, XO/XY, XX/XY, XXY/XX хх/ххх, ххх/хо, хххх/ххххх и др. (см. Хромосомные болезни).

Термином «гаплоидия» или «моно-плоидия» обозначают наличие в геноме только одного гомолога из каждой пары хромосом. У высших растений и животных диплоидность хромосом (парность аллелей) заключает в себе одно из преимуществ полового размножения, жизнеспособности организма при индивидуальном развитии, т. е. является важнейшим генетическим явлением.

Полиплоидия широко представлена у растений. Полиплоидные растения отличаются от диплоидных многими морфол., физиол, и биохим, особенностями. Их клетки и ядра имеют большие размеры, чем у диплоидов. Общие размеры растений, их цветки, семена и плоды увеличены.

Полиплоидия у животных распространена меньше, чем у растений. Это связано с тем, что для животных большое значение имеет генный баланс между половыми хромосомами и аутосомами. Отклонение от диплоидности у животных часто вызывает стерильность. Полиплоидные виды обнаружены среди червей, насекомых, ракообразных, рыб, амфибий, рептилий и других животных. Среди этих форм нек-рые виды утратили способность к половому размножению. Связь партеногенеза с по-липлоидностью установлена у рачков рода Artemia, мокриц Trichoni-seus, бабочек Solenobia и др. Тетра-плоидными формами, размножающимися половым путем, являются отдельные виды рыб, южноамериканская лягушка Odontophymis ame-ricanus и нек-рые другие организмы. Тихоокеанские лососи являются полиплоидами, то же касается ряда видов карповых рыб.

Причиной генных, или так наз. точечных, М. является замена одного азотистого основания в молекуле ДНК на другое, потеря, вставка или перестановка азотистых оснований в молекуле ДНК. В результате генных М. у человека могут развиться патол, состояния, патогенез к-рых различен. Потеря одного или нескольких нуклеотидов (деле-ция) может привести к нарушению последовательности аминокислотных остатков в полипептидной цепи кодируемого белка, т. е. к нарушению его первичной структуры. Делеция нескольких нуклеотидов может привести к полному прекращению синтеза белка, кодируемого мутантным геном. Аналогичный эффект возможен в случае превращения триплета, кодирующего включение в полипеп-тидную цепь определенной аминокислоты, в триплет, кодирующий окончание синтеза полипептидной цепи.

Генная М., не изменяя количество синтезируемого белка, может изменить его конформацию и тем самым - его ферментативную активность вплоть до полного ее исчезновения, и, наоборот, не влияя на ферментативную активность белка,- изменить скорость его синтеза, синтеза его ингибитора или активатора. Все это в конечном итоге приводит к развитию энзимопатий (см.).

Все генетическое разнообразие людей так или иначе является следствием М. Средняя частота возникновения М. на одну гамету человека оказалась близкой к 1*10 -5 . Частота М. нормального аллеля в аллель гемофилии (см.) или в аллель альбинизма (см.) составляет 3*10 -5 . Клетки костного мозга человека в культуре ткани мутируют от нормального аллеля в аллель устойчивости к 8-азагуанину с частотой 7*10 -4 .

Огромный полиморфизм в популяциях человека существует не только за счет отдельных генов, но и за счет их сочетаний, создающих полиморфные системы ферментов, групп крови, изменчивости по аллелям тканевой несовместимости в локусе HLA и др.

Библиография: Ауэрбах Ш. Проблемы мутагенеза, пер. с англ., М., 1978; Б а-р а ш н e в Ю. И. и Вельти-щ e в Ю. Е. Наследственные болезни обмена веществ у детей, JI., 1978; Бердышев Г. Д. и Криворучко И. Ф. Генетика человека с основами медицинской генетики, Киев, 1979; Б о ч-ков H. П. Генетика человека, М., 1978; Дубинин Н. П. Общая, генетика, М., 1976; М а к к ь ю с и к В. А. Наследственные признаки человека, пер. с англ., М., 1976; McKusick Y. Mendelian inheritance in man, Baltimore, 1978.

Образование

Мутация - ошибка природы или эволюция? Кто такие мутанты?

17 июня 2018

Кто такие мутанты? Это живые организмы, в ДНК которых произошли определенные изменения, что сделало их непохожими на своих собратьев. Как происходят мутации или ошибки в ДНК, какие эффекты они могут иметь и как они влияют на организм в целом?

Что такое мутации?

Вы когда-нибудь задумывались, почему у вас коричневые волосы и голубые глаза, а брат светловолосый и кареглазый? Это связано с ДНК - генетическим кодом, который исходит от наших родителей. Иногда ошибки совершаются в ДНК, когда она реплицируется или копируется в момент деления каждой клетки. Когда это происходит, то процесс может повлиять на наш внешний вид и даже поведение.

ДНК организма влияет на то, как он выглядит и ведет себя, его физиологию. Изменение ДНК может вызвать метаморфозы во всех аспектах жизни. Мы часто думаем о мутациях как о чем-то негативном, но это не всегда так. Эти ошибки или изменения в ДНК необходимы для эволюции. Без них развитие не могло бы происходить. Обычно мутации не бывают хорошими или плохими, они просто разные.

Мутации создают несколько различных версий одной и той же генетической информации. Они называются аллелями. Именно эти различия делают каждого из нас уникальным, создавая вариации в цвете волос, кожи, росте, комплекции, поведении и нашей способности бороться с болезнями.

Вариации, помогающие организму выживать и размножаться, передаются следующему поколению. А те, которые препятствуют способности организма выживать и размножаться, приводят к тому, что организм выбывает из популяции - другими словами, умирает. Этот процесс, называемый естественным отбором, может привести к важным изменениям во внешнем виде, поведении и физиологии всего за несколько поколений.


Типы мутаций

Существует много типов ошибок ДНК. Мутации могут быть сгруппированы в категории, основанные на том, где именно они происходят.

  • Соматические мутации (приобретенные) происходят в нерепродуктивных клетках. Обычно они не передаются потомству. Однако могут изменить деление клеток.
  • Мутации зародышевой линии происходят в репродуктивных клетках. Такого рода мутации передаются потомству. Примером может служить альбинизм.
  • Мутации также можно классифицировать по длине нуклеотидных последовательностей, на которые они влияют. Мутации на уровне генов - это изменения коротких длин нуклеотидов. Они влияют на физические характеристики и важны для крупномасштабной эволюции. Например, насекомые становятся устойчивыми к воздействию инсектицида ДДТ после многократного его воздействия.
  • Хромосомные мутации - это изменения длинных длин нуклеотидов. Это имеет серьезные последствия. Примером является синдром Дауна, где есть три копии хромосомы 21 вместо двух. Это существенно влияет на внешний вид человека, уровень развития и поведение.

Кто такие мутанты?

Люди часто рассматривают мутации в негативном свете. Однако без мутаций мы не имели бы богатого цветового зрения и прочих необходимых особенностей. Мутации - это изменения в вашем генетическом коде. ДНК - это генетический материал, используемый для кодирования определенных физических характеристик. Он сделан из четырех различных молекул, называемых основаниями. Эти базы представлены буквами A, T, C и G. Полный генетический код человека содержит миллиарды баз! Когда эти базовые последовательности изменяются, это называется мутацией.

Некоторые мутации могут вызвать такие пагубные состояния, как синдром Дауна или синдром Клинефельтера. Тем не менее многие мутации являются доброкачественными, а некоторые не имеют значения, потому что они существуют в областях ДНК, которые активно не используются. Например, голубые глаза возникли из-за изменения белка, ответственного за пигментацию глаз. Это один из примеров доброкачественной мутации.

Иногда, однако, будет происходить мутация, которая дает человеку преимущество и на самом деле выгодна. Кто такие мутанты (фото см. в статье)? В определенном смысле это все живые организмы.


Пример полезной мутации

Полезные мутации могут быть найдены в природе. Например, наше цветовое зрение. У людей трихроматическое зрение, то есть мы можем различать три цвета: красный, зеленый и синий. Многие животные имеют дихроматическое или монохроматическое зрение и не имеют возможности воспринимать все цвета. Эта способность видеть несколько оттенков, вероятно, является результатом полезной мутации, которая произошла в нашей ДНК несколько миллионов лет назад.

Когда вы думаете о мутанте, вы вспоминаете о научно-фантастических фильмах, где мутировавшие существа становятся могущественными и злыми, а затем пытаются уничтожить мир? Что такое мутации на самом деле? Это изменения в последовательности ДНК клетки. Когда мутация происходит в кодирующей последовательности гена, полученный белок изменяется.


Биологическая точка зрения

Кто такой мутант в биологии? Для этой науки, а также для генетики мутант - это организм или новое генетическое явление, возникающее в результате мутации, которая представляет собой изменение последовательности ДНК гена или хромосомы организма. Естественное возникновение генетических мутаций является неотъемлемой частью процесса эволюции. Изучение мутантов - обязательная часть биологии.

Мутантов не следует путать с организмами, рожденными с отклонениями в развитии, которые вызваны ошибками в процессе морфогенеза. При аномалии развития ДНК организма остается неизменной, поскольку сбой не может быть передан потомству. Сиамские близнецы являются результатом аномалий развития. Это не мутация. Химические вещества, вызывающие аномалии развития, называются тератогенами. Они также могут вызывать мутации, но их влияние на развитие не связано с процессом напрямую. Химические вещества, вызывающие мутации, называются мутагенами.

Мутации - это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора.


Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины - нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.


Хромосомные мутации - изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины - нарушения при кроссинговере. Пример: синдром кошачьего крика.


Геномные мутации - изменение количества хромосом. Причины - нарушения при расхождении хромосом.

  • Полиплоидия - кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
  • Анеуплоидия - изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом - 47).

Цитоплазматические мутации - изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений - пестролистность.


Соматические - мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).

Приведённые ниже понятия, кроме двух, используются для описания последствий нарушения расположения нуклеотидов в участке ДНК, контролирующем синтез белка. Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) нарушение первичной структуры полипептида
2) расхождение хромосом
3) изменение функций белка
4) генная мутация
5) кроссинговер

Ответ


Выберите один, наиболее правильный вариант. Полиплоидные организмы возникают в результате
1) геномных мутаций

3) генных мутаций
4) комбинативной изменчивости

Ответ


Установите соответствие между характеристикой изменчивости и ее видом: 1) цитоплазматическая, 2) комбинативная
А) происходит при независимом расхождении хромосом в мейозе
Б) происходит в результате мутаций в ДНК митохондрий
В) возникает в результате перекреста хромосом
Г) проявляется в результате мутаций в ДНК пластид
Д) возникает при случайной встрече гамет

Ответ


Выберите один, наиболее правильный вариант. Синдром Дауна является результатом мутации
1) геномной
2) цитоплазматической
3) хромосомной
4) рецессивной

Ответ


1. Установите соответствие между характеристикой мутации и ее видом: 1) генная, 2) хромосомная, 3) геномная
А) изменение последовательности нуклеотидов в молекуле ДНК
Б) изменение строения хромосом
В) изменение числа хромосом в ядре
Г) полиплоидия
Д) изменение последовательности расположения генов

Ответ


2. Установите соответствие между характеристиками и типами мутаций: 1) генные, 2) геномные, 3) хромосомные. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) делеция участка хромосомы
Б) изменение последовательности нуклеотидов в молекуле ДНК
В) кратное увеличение гаплоидного набора хромосом
Г) анеуплоидия
Д) изменение последовательности генов в хромосоме
Е) выпадение одного нуклеотида

Ответ


Выберите три варианта. Чем характеризуется геномная мутация?
1) изменением нуклеотидной последовательности ДНК
2) утратой одной хромосомы в диплоидном наборе
3) кратным увеличением числа хромосом
4) изменением структуры синтезируемых белков
5) удвоением участка хромосомы
6) изменением числа хромосом в кариотипе

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик геномной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) ограничена нормой реакции признака
2) число хромосом увеличено и кратно гаплоидному
3) появляется добавочная Х-хромосома
4) имеет групповой характер
5) наблюдается потеря Y-хромосомы

Ответ


2. Все приведённые ниже характеристики, кроме двух, используют для описания геномных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) нарушение расхождения гомологичных хромосом при делении клетки
2) разрушение веретена деления
3) конъюгация гомологичных хромосом
4) изменение числа хромосом
5) увеличение числа нуклеотидов в генах

Ответ


3. Все приведённые ниже характеристики, кроме двух, используют для описания геномных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) изменение последовательности нуклеотидов в молекуле ДНК
2) кратное увеличение хромосомного набора
3) уменьшение числа хромосом
4) удвоение участка хромосомы
5) нерасхождение гомологичных хромосом

Ответ


Выберите один, наиболее правильный вариант. Рецессивные генные мутации изменяют
1) последовательность этапов индивидуального развития
2) состав триплетов в участке ДНК
3) набор хромосом в соматических клетках
4) строение аутосом

Ответ


Выберите один, наиболее правильный вариант. Цитоплазматическая изменчивость связана с тем, что
1) нарушается мейотическое деление
2) ДНК митохондрий способна мутировать
3) появляются новые аллели в аутосомах
4) образуются гаметы, неспособные к оплодотворению

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик хромосомной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) потеря участка хромосомы
2) поворот участка хромосомы на 180 градусов
3) уменьшение числа хромосом в кариотипе
4) появление добавочной Х-хромосомы
5) перенос участка хромосомы на негомологичную хромосому

Ответ


2. Все приведённые ниже признаки, кроме двух, используются для описания хромосомной мутации. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) число хромосом увеличилось на 1-2
2) один нуклеотид в ДНК заменяется на другой
3) участок одной хромосомы перенесен на другую
4) произошло выпадение участка хромосомы
5) участок хромосомы перевернут на 180°

Ответ


3. Все приведенные ниже характеристики, кроме двух, используются для описания хромосомной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) умножение участка хромосомы в несколько раз
2) появление дополнительной аутосомы
3) изменение последовательности нуклеотидов
4) потеря концевого участка хромосомы
5) поворот гена в хромосоме на 180 градусов

Ответ


ФОРМИРУЕМ
1) удвоение одного и того же участка хромосомы
2) уменьшение числа хромосом в половых клетках
3) увеличение числа хромосом в соматических клетках

Выберите один, наиболее правильный вариант. К какому виду мутаций относят изменение структуры ДНК в митохондриях
1) геномной
2) хромосомной
3) цитоплазматической
4) комбинативной

Ответ


Выберите один, наиболее правильный вариант. Пестролистность у ночной красавицы и львиного зева определяется изменчивостью
1) комбинативной
2) хромосомной
3) цитоплазматической
4) генетической

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик генной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) обусловлена сочетанием гамет при оплодотворении
2) обусловлена изменением последовательности нуклеотидов в триплете
3) формируется при рекомбинации генов при кроссинговере
4) характеризуется изменениями внутри гена
5) формируется при изменении нуклеотидной последовательности

Ответ


2. Все приведенные ниже характеристики, кроме двух, служат причинами генной мутации. Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) конъюгация гомологичных хромосом и обмен генами между ними
2) замена одного нуклеотида в ДНК на другой
3) изменение последовательности соединения нуклеотидов
4) появление в генотипе лишней хромосомы
5) выпадение одного триплета в участке ДНК, кодирующей первичную структуру белка

Ответ


3. Все приведённые ниже характеристики, кроме двух, используют для описания генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) замена пары нуклеотидов
2) возникновение стоп-кодона внутри гена
3) удвоение числа отдельных нуклеотидов в ДНК
4) увеличение числа хромосом
5) потеря участка хромосомы

Ответ


4. Все приведённые ниже характеристики, кроме двух, используют для описания генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) добавление одного триплета в ДНК
2) увеличение числа аутосом
3) изменение последовательности нуклеотидов в ДНК
4) потеря отдельных нуклеотидов в ДНК
5) кратное увеличение числа хромосом

Ответ


5. Все приведённые ниже характеристики, кроме двух, типичны для генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) возникновение полиплоидных форм
2) случайное удвоение нуклеотидов в гене
3) потеря одного триплета в процессе репликации
4) образование новых аллелей одного гена
5) нарушение расхождения гомологичных хромосом в мейозе

Ответ


ФОРМИРУЕМ 6:
1) осуществляется перенос участка одной хромосомы на другую
2) возникает в процессе репликации ДНК
3) происходит выпадение участка хромосомы

Выберите один, наиболее правильный вариант. Полиплоидные сорта пшеницы - это результат изменчивости
1) хромосомной
2) модификационной
3) генной
4) геномной

Ответ


Выберите один, наиболее правильный вариант. Получение селекционерами сортов полиплоидной пшеницы возможно благодаря мутации
1) цитоплазматической
2) генной
3) хромосомной
4) геномной

Ответ


Установите соответствие между характеристиками и мутациями: 1) геномная, 2) хромосомная. Запишите цифры 1 и 2 в правильном порядке.
А) кратное увеличение числа хромосом
Б) поворот участка хромосомы на 180 градусов
В) обмен участками негомологичных хромосом
Г) выпадение центрального участка хромосомы
Д) удвоение участка хромосомы
Е) некратное изменение числа хромосом

Ответ


Выберите один, наиболее правильный вариант. Появление разных аллелей одного гена происходит в результате
1) непрямого деления клетки
2) модификационной изменчивости
3) мутационного процесса
4) комбинативной изменчивости

Ответ


Все перечисленные ниже термины, кроме двух, используются при классификации мутаций по изменению генетического материала. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) геномные
2) генеративные
3) хромосомные
4) спонтанные
5) генные

Ответ


Установите соответствие между типами мутаций и их характеристиками и примерами: 1) геномные, 2) хромосомные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) утеря или появление лишних хромосом в результате нарушения мейоза
Б) приводят к нарушению функционирования гена
В) примером является полиплоидия у простейших и растений
Г) удвоение или потеря участка хромосомы
Д) ярким примером является синдром Дауна

Ответ


Установите соответствие между категориями наследственных болезней и их примерами: 1) генные, 2) хромосомные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) гемофилия
Б) альбинизм
В) дальтонизм
Г) синдром «кошачьего крика»
Д) фенилкетонурия

Ответ


Найдите три ошибки в приведённом тексте и укажите номера предложений с ошибками. (1) Мутации – это случайно возникшие стойкие изменения генотипа. (2) Генные мутации – это результат «ошибок», возникающих в процессе удвоения молекул ДНК. (3) Геномными называют мутации, которые ведут к изменению структуры хромосом. (4) Многие культурные растения являются полиплоидами. (5) Полиплоидные клетки содержат одну–три лишние хромосомы. (6) Полиплоидные растения характеризуются более мощным ростом и крупными размерами. (7) Полиплоидию широко используют как в селекции растений, так и в селекции животных.

Ответ


Проанализируйте таблицу «Виды изменчивости». Для каждой ячейки, обозначенной буквой, выберите соответствующее понятие или соответствующий пример из предложенного списка.
1) соматические
2) генные
3) замена одного нуклеотида на другой
4) удвоение гена в участке хромосомы
5) добавление или выпадение нуклеотидов
6) гемофилия
7) дальтонизм
8) трисомия в хромосомном наборе

Ответ

© Д.В.Поздняков, 2009-2019

Здравствуйте, с вами Ольга Рышкова. Сегодня побеседуем о мутациях. Что это такое – мутация? Мутации в человеческих организмах это хорошо или плохо, это положительное или опасное для нас явление? Мутации могут быть причиной болезней, а могут дать своим носителям невосприимчивость к заболеваниям, таким как рак, СПИД, малярия, сахарный диабет.

Что такое мутация?

Что же это такое – мутация и где она происходит? Клетки человека (как и растений, и животных) имеют ядро.

В ядре заключён набор хромосом. Хромосома – это носитель генов, то есть носитель генетической, наследственной информации.

Каждая хромосома образуется из молекулы ДНК, которая содержит генетическую информацию и передаётся от родителей к детям. Молекула ДНК выглядит вот так:

Мутации происходят именно в молекуле ДНК.

Как они происходят?

Как происходят мутации? ДНК каждого человека состоит всего лишь из четырёх азотистых оснований – A,T,G,C. Но молекула ДНК очень большая и они повторяются в ней многократно в разных последовательностях. Характеристика каждой нашей клетки зависит от того, в какой последовательности расположены эти азотистые основания.

Изменение последовательности этих оснований в ДНК и приводит к мутациям.

Мутацию может вызвать небольшое изменение в одном основании ДНК или его части. Часть хромосомы может быть утеряна. Или эта часть может продублироваться. Или два гена поменяются местами. Мутации возникают, когда в генах начинается путаница. Ген – это участок ДНК. На этом рисунке для наглядности буквами обозначены не азотистые основания (их всего четыре — A,T,G,C), а участки хромосомы, с которыми происходят изменения.

Но это ещё не мутация.

Вы заметили, что я сказала «приводит к мутациям», а не «это и есть мутация». Например, в ДНК произошло изменение, а клетка, в которой эта ДНК расположена, может просто погибнуть. И никаких последствий в организме не останется. Чтобы мы могли сказать, что произошла мутация, это изменение должно быть стойким. Это значит, что клетка будет делиться, дочерние клетки ещё раз делиться и так многократно, и это изменение передастся всем потомкам данной клетки и закрепится в организме. Вот тогда мы можем сказать, что произошла мутация, то есть изменение в геноме человека и это изменение может передаться его потомкам.

Почему они происходят?

Почему происходят мутации в клетках человека? Есть такое понятие «мутагены», это физические и химические факторы, которые вызывают изменения в структуре хромосом и генов, то есть вызывают мутации.

  • К физическим относят радиацию, ионизирующее и ультрафиолетовое излучение, высокие и низкие температуры.
  • К химическим – нитраты, пестициды, продукты переработки нефти, некоторые пищевые добавки, некоторые лекарственные препараты и т.д.
  • Мутагены могут быть биологическими, к таким относят некоторые микроорганизмы, вирусы (кори, краснухи, гриппа), а также продукты окисления жиров внутри человеческого организма.

Мутации могут быть опасными.

Даже самая маленькая генная мутация резко увеличивает вероятность врождённых дефектов. Мутации могут стать причиной отклонений в развитии плода. Они возникают в процессе оплодотворения, когда сперматозоид встречается с яйцеклеткой. Что-то может пойти не так при смешении геномов или проблема может уже присутствовать в родительских генах. Это ведёт к рождению детей с генетическими отклонениями.

Мутации могут быть полезными.

Кому-то эти мутации дают привлекательную внешность, высокий уровень интеллекта или атлетическое телосложение. Такие мутации эффективно притягивают противоположный пол. Востребованные мутировавшие гены передаются потомкам и распространяются по планете.

Мутации привели к появлению большого числа людей, невосприимчивых к опасным инфекционным заболеваниям, таким как чума и СПИД, эти люди не заболеют ими даже во время самой страшной эпидемии.

Мутации полезные и вредные одновременно.

Одна из главных болезней в Африке – малярия. Но есть люди, которые малярией не болеют. Это люди с серповидными эритроцитами, вот такими:

Мутировавшие эритроциты достались им по наследству от предков. Такие эритроциты плохо переносят кислород, поэтому их обладатели хилые и страдают анемией. Но они невосприимчивы к малярии.

Или другой замечательный пример. Генетическая мутация, наследственное заболевание – синдром Ларона. У этих людей наследственный недостаток инсулиноподобного фактора роста ИФР-1, из-за этого рост их очень рано останавливается. Но из-за недостатка ИФР-1 они никогда не болеют раком, сердечно-сосудистыми заболеваниями и сахарным диабетом. Среди людей с синдромом Ларона эти заболевания вообще не встречаются.

Продукты, которые мы едим – это мутанты.

Да, мутанты, и это были полезные мутации. Большая часть продуктов, которые мы используем в пищу, появилась в результате мутаций.

Два примера. Дикий рис красный, его урожайность на 20% ниже, чем посевного. Посевной рис появился как мутировавшая форма около 10 000 лет назад. Оказалось, что он проще очищается, быстрее варится, что позволяло людям экономить топливо. Из-за высокой урожайности и полезных свойств крестьяне стали предпочитать мутировавший вид. То есть белый рис – это мутировавший красный.

Пшеницу, которую мы сейчас едим, стали выращивать за 7 тысяч лет до нашей эры. Человек выбрал мутировавшую дикую пшеницу с более крупными и неосыпающимися зёрнами. Её мы выращиваем до сих пор.

Другие культурные растения также выращивают несколько тысяч лет. Человек отбирал мутировавшие сорта диких растений и специально выращивал их. Сегодня мы потребляем результаты мутаций, отобранные в древние времена.

Не все мутации передаются по наследству.

Я говорю о мутациях, которые возникают в течение жизни одного человека. Это раковые клетки.

В следующей статье я расскажу вам о том, как мутации приводят к появлению раковых клеток и откуда среди нас взялись люди, невосприимчивые к ВИЧ-инфекции, люди, у которых есть иммунитет к ВИЧ.

Если у вас остались вопросы о том, что такое мутации, где, как и почему они происходят, обсудим это в комментариях. Если статья показалась вам полезной, поделитесь с друзьями в социальных сетях.