Поплавковый выключатель уровня воды для управления насосом. Автоматическое управление насосом для поддержания уровня воды в емкости Электронный уровень воды в бочке

Многие дачники используют в своем хозяйстве различные системы водоснабжения, использующие промежуточные емкости. Они помогают вода очиститься, нагреться, в них оседает песок и окислы железа, вода насыщается кислородом. Часто такие емкости, бочки и баки устанавливают в подвалах и использую подкачивающие насосы. Или наоборот, ставят их на чердаке и втором этаже и тогда вода идет самотеком. Но и в том и в другом случае, желательно знать – сколько осталось воды в баке. Особенно если он не оборудован автоматической системой поддержания уровня воды. Для этого приходится периодически спускаться в подвал или залезать на чердак, что неудобно. А удобно иметь дистанционный указатель уровня воды с индикацией в месте ее основного потребления или в месте, где установлено управление насосом, наполняющим эту емкость. Рассмотрим некоторые варианты устройства, которые можно сделать на даче и дистанционно контролировать уровень воды. Надо сразу сказать, что человека вряд ли интересует точное значение количества воды в баке. Нет разницы, 153 или 162 литра там находится. Здесь – так же как и в автомобиле, важно знать с точностью до 10-15% — «почти полный бак», «половина», «меньше четверти» и т.п.

Механические индикаторы. Самые простые в исполнении, но довольно громоздкие. Как правило, представляют собой довольно большой и тяжелый поплавок, к которому привязан шнур. Шнур переброшен через блок (шкив) и к его другому концу прикреплен груз, по весу примерно равный поплавку, находящемуся в воде. При изменении уровня воды, груз перемещается вверх – вниз и может сам служить индикатором наполнения емкости, если виден. Правда с «перевернутой» шкалой – чем больше воды, тем ниже груз-индикатор.

Но если бак визуально не виден, то необходимо протягивать шнур в место размещения индикатора. Для этого прочный шнур натирают мылом (для лучшего скольжения), пропускают в тонкую трубку и на другом его конце устраивают шкалу. Разумеется, совершенно не требуется шкала размером с высоту возможного уровня воды (а это может быть и целый метр). Поэтому на одну ось с основным шкивом насаживают (и крепят к основному шкиву) шкив со значительно меньшим диаметром. На него наматывают немного шнура и уже он будет двигать стрелку индикатора. Длина индикаторной шкалы теперь будет меньше хода поплавка в столько раз, в сколько раз диаметр малого шкива меньше диаметра большого. А так же будет нормальной — максимум уровня вверху.

Такой же индикатор можно сделать и в случае поплавка на рычаге. Такая система больше подойдет для емкостей небольшой глубины, но с большой площадью поверхности воды. Такие используются обычно для того, что бы избавиться от растворенного в воде железа. В этом варианте необходимый коэффициент мультипликации можно получить просто подобрав точку крепления шнура к рычагу.

Явный недостаток таких индикаторов — обилие движущихся частей, а следовательно – необходимость содержания их в чистоте, смазке. Сложность прокладки коммуникации (трубки) на большое расстояние и через перекрытия.

Пневматические индикаторы. Устроены такие индикаторы следующим образом. В емкость для воды опущена труба, которая имеет заглушку вверху. В трубе образуется воздушный колокол. В заглушку трубы врезан штуцер, от которого тянется тонкая герметичная трубка. На другом ее конце располагается U-образная трубка – индикатор. К одному ее концу подсоединена трубка из емкости, другая — свободна. В индикаторе находится водяная пробка (из подкрашенной воды). Таким образом, в трубке оказывается запертой некоторая порция воздуха.

Когда уровень воды в баке меняется, то соответственно эта порция воздуха двигается вверх –вниз. А вместе с ним – двигается и «цветная» пробка, которая и служит индикатором. В отличие от механических систем, тут нет движущихся частей, требующих ухода. Но системе присущи другие недостатки. В частности — высокие требования к герметичности трубки и зависимость показаний от температуры и атмосферного давления. Погрешность незначительная, но она есть.

Электрические индикаторы. Являются самыми технологичными и могут быть исполнены в самых разнообразных вариантах. Начиная от простейших стрелочных индикаторов, кончая светодиодными шкалами и дисплеями. Но в основе любого электрического индикатора обязательно лежит какой то датчик уровня жидкости. Проще всего его изготовить из переменного резистора, движок которого занимает соответствующее положение в зависимости от уровня воды в баке.

Схема подключения достаточно проста. В качестве индикатора служит любая стрелочная головка микроамперметра. При максимальном уровне воды (движок переменного резистора вверху по схеме) подбором резистора R1 стрелка микроамперметра устанавливается крайнее правое положение — «полный бак». На этом наладка закончена. При минимальном уровне воды (движок резистора внизу по схеме) микроамперметр будет показывать «ноль» — «пустой бак».

Такой переменный резистор можно насадить, например, на ось шкива (см механические индикаторы). А можно сделать его самому. Для этого надо взять проволоку из металла в высоким удельным сопротивлением (нихром, константан, фехраль и др.) и насадить на нее поплавок с упругими скользящими контактами. Например из луженой жести. Проволока вывешивается в баке, внизу прикрепляется груз. К концам проволоки и скользящим контактам припаиваются провода. При изменении уровня воды поплавок будет перемещаться по проволоке от максимального до минимального уровня.

Что бы дистанционный индикатор не потреблял электрический ток попусту, лучше подключить его через кнопку. Тогда одного комплекта батареек хватит на несколько лет. Использование микроаперметрической головки не является единственным способом индикации. Можно сделать простейший компаратор напряжения и использовать его со светодиодной шкалой, оснастить звуковыми индикаторами и т.п. Схемы таких светодиодных шкал можно найти в интернет и соответствующей радиолюбительской литературе.

Основное удобство электрических индикаторов — их точность, отсутствие трансмиссии, легкость проводки, надежность, зрелищность индикации. Недостаток — необходимость электропитания.

Для сборки измерителя уровня воды я стоял перед выбором метода измерения – контактный или бесконтактный. К контактным относятся резистивный, конденсаторный и индуктивный методы, из бесконтактных способов наибольшее распространение получили визуальный, радарный и ультразвуковой. Чтобы не повлиять на качество воды в емкости мы прибегнем к одному из бесконтактных методов измерения уровня жидкости.

Все бесконтактные методы основаны на одном принципе: сигнал уходит, проходит определенное время, сигнал возвращается. Визуальный метод использует оптический сигнал, он достаточно точный, но если датчик загрязнится, то он вообще перестанет работать.

При использовании радарного метода измерения уровня используются высокочастотные радиоволновые сигналы, из-за этого метод не подходит для использования в домашних условиях. Ультразвуковой метод аналогичен радарному, только вместо радиоволн используются ультразвуковые волны. Этот способ подходит нам как нельзя лучше, из-за того, что ультразвуковые сенсоры легко найти и они недороги.

Измеритель уровня жидкости я сделал на базе микроконтроллера Arduino Mega2560 (можно взять любой контроллер Arduino).

За любые повреждения, полученные в процессе сборки автор статьи ответственности не несет.

Шаг 1: Материалы


Материалы для датчика уровня воды в резервуаре:

  • Arduino (Uno, Mega 2560,…)
  • ультразвуковой датчик измерения расстояния HC SR04
  • провода для подключения датчика к контроллеру
  • оргстекло для корпуса (опционально)

Шаг 2: Немного теории

Для начала я расскажу вам немного об ультразвуковом способе измерения уровня жидкости. Смысл все бесконтактных приборов измерения уровней заключается измерении расстояния между трансивером и поверхностью жидкости. Трансивер посылает короткий ультразвуковой импульс и измеряется время, за которое сигнал идет до поверхности жидкости и обратно до трансивера. Из-за того, что плотность жидкости выше, чем плотность воды, ее поверхность отразит ультразвуковой импульс.

У ультразвукового метода измерения есть свои минусы:

  1. Из-за длины импульса остается маленькое окно для приема отраженного сигнала, потому что трансивер продолжает испускать сигнал. Проблема решается достаточно просто: сенсор размещается на несколько сантиметров выше максимального уровня жидкости, позволяя приемнику начать прием сигнала.
  2. Из-за ширины луча имеются ограничения в диаметре используемой емкости. Если диаметр будет слишком мал, отраженный от поверхности жидкости сигнал будет отражаться и от стенок емкости, тогда данные могут быть ложными.
  3. Прежде чем установить счетчик в бак на постоянное место, его протестировали на эти два момента. Стабильные данные получены на расстоянии минимум 5 см от сенсора. Это значит, что сенсор нужно установить не ниже 5 см над уровнем жидкости. Также не было отраженных от стен бака сигналов при диаметре сосуда 7,5 см (высота 0,5 м). Эти результаты были учтены при установке сенсора в бак.

Шаг 3: Водяной бак

Вода в систему полива будет поступать самотеком. Поэтому бак должен быть установлен выше уровня пола. Бак сделан из метровой канализационной трубы диаметром 16 см. Труба разделена на две секции. В нижней секции располагаются клапана, верхняя будет собственно резервуаром с водой. В качестве крышки резервуара используется заглушка. К заглушке крепится ультразвуковой датчик измерения расстояния. Для устойчивости бак установлен в деревянный короб, в котором установлена электроника и аккумулятор.

Высоту столба жидкости кодируем в процентах, точкой отсчета будут показания счетчика от 6 см (100%), и до 56 см (0%), 6 см – удаление от поверхности воды.

Бак сделан из трубы для простоты вычислений объема (цилиндиреская форма без изменений диаметра).

Шаг 4: Схема соединения ультразвукового датчика и контроллера



Сначала припаиваем к ультразвуковому датчику провода (витая пара, без экранирующего покрытия или фольгированная). Потом помещаем датчик в самодельный корпус из оргстекла. Корпус герметизируем и крепим на крышку бака. Корпус сделан по ходу дела и не является обязательной деталью, поэтому его нет на фото и нет инструкций по изготовлению, так что импровизируйте, если решили сделать его.

Следуя приложенной схеме, подключите датчик к контроллеру.

Шаг 5: Программа

Программа по измерению расстояния конвертирована в программу по определению уровня воды.

Сначала посылается сигнал, затем он возвращается, измеряется время между передачей и приемом сигнала, а полученные данные преобразуются в сантиметры. Сантиметры, в свою очередь, преобразуются в проценты и через последовательное соединение эти данные передаются на компьютер. Также можно подсчитать оставшийся в резервуаре объем воды.

Файлы

Шаг 6: Проверка

Так как потом этот водяной бак будет использоваться в автоматической системе полива с двухступенчатым регулятором, необходимо измерить показатели потока. Выходной поток из бака зависит от гидростатического давления внутри него.

Любой человек, знакомый с основами гидродинамики, знает, что гидростатическое давление уменьшается при снижении уровня воды. Чтобы полив растений осуществлялся одинаковым объемом воды, нужно иметь возможность контролировать время, в течение которого клапан остается открытым. Зная показатели потока, можно подсчитать, какой объем воды может вытечь из бака за определённое время, и таким образом определить время, в течение которого клапан должен быть открытым.

Чтобы проверить точность работы нашего измерителя уровня воды наполните резервуар водой до максимального уровня. Затем откройте клапан, чтобы вся вода вытекла. Бак опустел до 2% из-за того, что конструкция сделана таким образом, чтобы предотвратить вытекание остатков. На картинке приложена диаграмма ступенчатой функции, по этой диаграмме мы можем приблизительно оценить на каком уровне воды происходит изменение (с помощью Excel, Matlab или другой вычислительной программы).

Датчик уровня воды, собранный своими руками работает в соответствии с ожиданиями.

Шаг 7: Применение в проектах

Собранный измеритель уровня воды с ультразвуковым датчиком является образцом. Если мы хотим применять измеритель в проектах, как самодельных, так и полупромышленных, нужно провести испытания на износостойкость и водостойкость. После проведения испытания будет ясно, подходит ли измеритель для использования в каких-либо проектах. Прямо сейчас я могу лишь сказать, что датчик работает нормально то время, которое прошло после сборки.

Из-за того, что метод измерения уровня воды бесконтактный, вода не загрязняется. Сам датчик вышел совсем недорогим по себестоимости, а это значит, что его можно использовать в самодельных проектах.

Датчик уровня воды в условиях современной техники выполняет функцию одного из органов чувств человека. От того, насколько правильно удается управлять и контролировать состояние водного потока, зависит исправная работа всего механизма. Важность надежности устройства сенсора сложно переоценить, хотя бы потому, что прибор, контролирующий воду, как правило, становится тем самым «узким» звеном современной техники.

Конструкция и принцип действия

Независимо от того, какой принцип действия положен в основу устройства, работает ли оно только в режиме сигнализатора или параллельно выполняет функции сторожа, автомата или управляющего механизма, конструкция прибора всегда состоит из трех основных узлов:

  • Чувствительного элемента, способного реагировать на характеристики водяного потока. Например, фактическое наличие воды, высота столба или уровень в баке, факт движения водяного потока в трубе или магистрали;
  • Балластного элемента, уравновешивающего сенсорную часть датчика. Без балласта чувствительный сенсор срабатывал бы при малейшем толчке или случайной капле воды;
  • Передающая или исполнительная часть, преобразующая сигнал сенсора, вмонтированного в датчик воды, в конкретный сигнал или действие.

Примерно 90% всей водной техники, так или иначе, связано с электрическими исполнительными механизмами – насосами, клапанами, нагревателями и управляющими электронными автоматами. Понятно, что такое устройство, работающее с водяными потоками, должно быть в первую очередь безопасным.

Из всех сигнальных систем датчик, контролирующий состояние воды, считается наиболее простым и доступным в настройке и ремонте. В отличие от сенсоров и устройств, работающих с измерениями температуры, давления или расхода, датчик воды очень просто контролировать с помощью простейших устройств, или, на крайний случай, увидеть уровень или прокачанный поток своими глазами.

Виды датчиков уровня

Одним из условий успешной работы сенсора является высокая чувствительность датчика, чем выше, тем лучше, тем точнее удается считать контролируемый параметр воды. Поэтому в качестве величины, измеряемой сенсором, стараются выбирать ту, которая сильнее всего меняется за время измерения.

На сегодня существует около двух десятков различных способов и методов измерения механических характеристик воды, но все они используются для получения сведений:

  • Высоты уровня водяного столба в емкости или баке;
  • Скорости движения потока или расхода воды;
  • Факта наличия-отсутствия воды в закрытой емкости, резервуаре, трубе или теплообменнике.

Разумеется, промышленные сенсоры могут быть достаточно сложными конструктивно, но используемые в них принципы работы такие же, как и в бытовой, садово-огородной или автомобильной технике.

Поплавковый тип датчика перелива

Наиболее простой способ измерять уровень воды используется в нехитрой механической конструкции, состоящей из герметичного поплавка, качающегося рычага или кулисы и запорного клапана. В данном случае датчиком является поплавок, балластом считается пружина и поплавковый утяжелитель, а исполнительным механизмом выступает сам клапан.

Во всех поплавковых системах датчик или поплавок регулируется на определенную высоту срабатывания. Вода, поднявшаяся в баке до контрольного уровня, поднимает поплавок и открывает клапан.

Поплавковая система может быть оборудована электрическим исполнительным устройством. Например, внутрь поплавкового датчика устанавливают вкладыш-магнит, при подъеме воды до рабочего уровня магнитное поле заставляет вакуумный геркон замыкать контакты, и тем самым включает или выключает электрическую цепь.

Поплавковый датчик может также выполняться по свободной схеме, как, например, в погружных насосах. В этом случае геркон замыкается не под воздействием магнитного поля вкладыша, а только за счет перепада давлений внутри корпуса насоса и на уровне поплавка. На сегодня магнитно-поплавковый датчик с электрическим исполнительным реле считается одним из самых безопасных и надежных вариантов контроля уровня жидкости.

Ультразвуковой сенсор

Конструкция датчика воды предусматривает наличие двух устройств – источника ультразвука и приемника сигнала. Звуковая волна направляется на поверхность воды, отражается и возвращается на датчик приемник.

На первый взгляд, идея использовать ультразвук для изготовления датчика контроля уровня или скорости движения воды выглядит не очень удачной. Ультразвуковая волна способна отражаться от стен бака, преломляться и создавать помехи в работе приемного датчика, а кроме того, потребуется сложное электронное оборудование.

На самом деле ультразвуковой сенсор для измерения уровня воды или любой другой жидкости помещается в коробку чуть больше пачки сигарет, при этом использование ультразвука в качестве датчика дает определенные преимущества:

  • Возможность измерять уровень, и даже скорость воды при любой температуре, в условиях вибраций или движения;
  • Ультразвуковой датчик может измерять расстояние от сенсора до поверхности воды даже в условиях сильного загрязнения, с переменным уровнем жидкости.

Кроме того, датчик может измерять уровень воды, расположенной на значительной глубине, при этом точность измерения достигается 1-2 см на каждые 10 м высоты.

Электродный принцип контроля воды

Тот факт, что вода обладает электропроводностью, успешно используется для изготовления контактных датчиков уровня жидкости. Конструктивно система представляет собой несколько электродов, установленных в емкости на разной высоте и соединенных в одну электрическую цепь.

По мере заполнения емкости водой жидкость последовательно замыкает пару контактов, что включает цепь управляющего реле насоса. Как правило, у датчика воды имеется два-три электрода, поэтому измерение потока воды получается слишком дифференцированным. Датчик сигнализирует лишь о достижении минимального уровня и запускает мотор насоса, или о полном заполнении емкости и отключает его, поэтому подобные системы используются для контроля резервных или поливных цистерн с водой.

Емкостной тип датчика воды

Конденсаторный или емкостной тип сенсора используется для измерения уровня воды в узких и глубоких емкостях, это может быть колодец или скважина. С помощью емкостного датчика можно определить высоту водяного столба в скважине с точностью до десятка сантиметров.

Конструкция сенсора состоит из двух коаксиальных электродов, фактически трубы и внутреннего металлического электрода, погруженных в ствол скважины. Вода заполняет часть внутреннего пространства системы, меняя тем самым его емкость. С помощью подключенной электронной схемы и катушки колебаний с кварцем можно точно определить емкость датчика и количество воды в скважине.

Радарный измеритель

Волновой, или радарный датчик используется для работы в наиболее сложных условиях, например, если нужно измерить уровень или объем жидкости в резервуаре, открытом водоеме, колодце несимметричной и неправильной формы.

Принцип действия не отличается от ультразвукового прибора, а использование электрического импульса позволяет выполнить измерение с большой точностью.

Гидростатический вариант сенсора

Один из вариантов гидростатического датчика приведен на схеме.

К сведению! Подобный сенсор используется в стиральных машинах и бойлерах, где очень важно контролировать высоту водяного столба внутри бака.

Гидростатический датчик представляет собой коробку с эластичной подпружиненной мембраной, делящей корпус датчика на два отделения. Одну из секций соединяют прочной полиэтиленовой трубкой со штуцером, впаянным в днище бака.

Давление водяного столба передается по трубке на мембрану и заставляет замыкаться контакты пускового реле, чаще всего для запуска исполнительного механизма используется пара — магнитный вкладыш и геркон.

Датчик давления воды

Гидростатическое давление определяется в условиях, когда поток или определенный объем воды находится в состоянии покоя. Чаще всего гидростатический сенсор используется в нагревательных и отопительных приборах – бойлерах, котлах отопления.

Устройство датчика давления воды

Такие устройства чаще всего работают в режиме триггера:

  • При высоком давлении воды сенсор замыкает контакты реле и разрешает работу насоса или нагревателя;
  • При низком давлении в сенсоре блокируется даже физическая возможность включения исполнительного механизма, то есть никакие удары или временные скачки напора не заставят устройство заработать.

При исправном датчике давления воды сенсор выдаст сигнал на запуск мотора, только если нагрузка на сильфон сохраняется более трех секунд.

Типовое устройство «умного» сенсора представлено на схеме.

Чувствительным элементом системы является диафрагма, соединенная с сильфоном, центральный шток может подниматься и опускаться в зависимости от величины давления, и тем самым менять емкость встроенного конденсатора.

Подключение датчика давления воды

Упрощенная модель сенсора используется в домашних системах «гидроаккумулятор — скважинный насос». Внутри прибора находится коробка с мембраной, соединенной с качающимся рычагом и двумя балансирующими пружинами.

Конструкция наворачивается на выходной штуцер гидроаккумулятора. С увеличением внутреннего давления мембрана поднимается и размыкает главную пару контактов, чтобы система исправно реагировала на давление воды, момент выключения и включения необходимо отрегулировать осадкой малой и большой пружины в соответствии с показаниями стрелочного манометра.

Датчик протечки воды

Уже из названия становится понятным, что речь идет об устройстве, фиксирующем наличие утечки воды из водопроводных коммуникаций. Принцип работы устройства напоминает электродную систему. Внутри пластиковой коробки в специальном кармане установлена одна или несколько пар электродов. В случае аварии скапливающая на полу вода затекает внутрь кармана и замыкает контакты. Срабатывает электронная схема, и по сигналу сенсора в работу вступают шаровые краны с электроприводом.

Понятно, что датчик, сам по себе, — вещь бесполезная, если используется без системы управления и автоматических отсекателей воды, установленных на вводе в дом или на одной из веток водопровода.

В качестве примера можно привести одну из наиболее популярных систем защиты — датчик протечки воды Нептун. В систему входят три основных блока:

  • Сам датчик протечки Нептун в проводной или беспроводной модификации, обычно в комплект входит три отдельных сенсора;
  • Шаровой кран с электроприводом, производства итальянской компании «Бугатти», в количестве двух штук;
  • Блок управления «Neptun Base».

Наиболее ценная часть комплекта — автоматические краны, их выпускают для установки на полудюймовой и дюймовой трубной резьбе. Конструкция выдерживает давление до 40 Атм., а итальянское качество привода гарантирует не менее 100 тыс. циклов открывания-закрывания.

Сам датчик выглядит, как две латунные пластины в коробке, к которым подведено низковольтное напряжение с очень высоким сопротивлением входа, при замыкании сенсора ток ограничен 50 мА. Сама конструкция выполнена по протоколу IP67, поэтому является абсолютно безопасной для человека.

Установка беспроводных датчиков протечки воды

В системе «Нептун» датчик может быть удален от блока управления на расстояние более 50 м. В более совершенных беспроводных системах NEPTUN PROW+ вместо системы проводов используются датчики протечки воды, оборудованные модулем WF.

Блок управления оборудован защищенным от помех и влаги каналом, системой включения-выключения шаровых кранов. Считается, что никакие помехи или случайные капли влаги, конденсат не влияют на работу датчиков.

Коробки с сенсором протечки устанавливают на удалении от труб не более чем на 2 м, сенсоры нельзя экранировать металлической сантехникой или мебелью.

Беспроводной датчик протечки воды

Устройство беспроводного измерителя сложнее, чем обычного двухэлектродного варианта с проводным подключением. Внутри установлен контроллер, который непрерывно сравнивает ток, протекающий между электродами, с эталонным значением, зашитым в память. При этом эталонное значение «сухой пол» можно настраивать по собственному выбору.

Очень удобное решение, учитывая, что уровень влажности в ванной комнате может быть очень высоким, а регулярно выпадающий конденсат может привести к ложным срабатываниям.

Как только контроллер определяет уровень, соответствующий затоплению, прибор контроля воды отправляет на базовый блок сигнал об аварии. Наиболее продвинутые модели способны дублировать команду СМС-сообщением по GSM каналу.

Датчик протока воды

Во многих случаях для стабильной и безаварийной работы техники мало датчика наличия воды, требуется информация о том, движется ли поток по трубопроводу, какова его скорость и напор. Для этих целей используются датчики протока воды.

Виды датчиков протока воды

В бытовой и наиболее простой промышленной технике используют четыре основных вида датчиков протока:

  • Напорный измеритель;
  • Лепестковый тип сенсора;
  • Лопаточная схема измерения;
  • Ультразвуковая система.

Иногда используется устаревшая конструкция на основе трубки Пито, но для ее надежной работы требуется как минимум отсутствие загрязнений и ламинарный характер течения воды. Первые три датчика являются механическими, поэтому часто подвергаются засорению или водяной эрозии чувствительного элемента. Последний тип сенсора, ультразвуковой, способен работать практически в любых условиях.

Принцип работы ультразвукового измерителя можно понять из схемы. Внутри трубки расположен излучатель волн и приемник. В зависимости от скорости потока звуковая волна может отклоняться от первоначального направления, что и служит основанием для измерения характеристик потока.

Устройство и принцип работы

Простейшие лепестковые датчики потока работают по принципу гребного весла. В поток погружается лепесток, подвешенный на шарнире. Чем выше скорость потока, тем сильнее отклоняется лепесток датчика.

В более точных лопаточных датчиках применяется крыльчатка или турбинка из полиамида или алюминиевого сплава. В этом случае удается измерять скорость потока по частоте вращения подвижного элемента. Единственным недостатком является повышенное сопротивление, создаваемое лепестками и лопатками в потоке воды.

Напорный сенсор работает с использованием динамического давления потока. Под напором воды подвижный элемент с магнитным вкладышем выдавливается вверх, освобождая тем самым пространство для движения жидкости. Установленный в головке геркон моментально реагирует на магнитное поле вкладыша и замыкает цепь.

Область применения

Датчики водяного потока используются исключительно в системах нагрева и системах автоматики одноконтурных теплообменников. Чаще всего выход из строя сенсора наличия потока приводит к прогару и тяжелейшим повреждениям раскаленных радиаторов и нагревателей.

Датчик уровня воды своими руками

Простейший вариант устройства, способного сигнализировать о наполнении водой бака или любой другой емкости, приведен на схеме ниже.

Конструктивно определитель уровня состоит из трех металлических электродов, установленных на текстолитовой пластинке. Схема, собранная на обычном маломощном транзисторе, позволяет определять предельно допустимый верхний и нижний уровень воды в емкости.

Конструкция абсолютно безопасна в пользовании и не требует каких-либо дорогостоящих деталей или приборов управления.

Заключение

Датчики уровня воды широко используются в бытовой технике, поэтому чаще всего для вспомогательных нужд гаражной или садовой техники используют уже готовые конструкции от старой техники, переделанные и адаптированные к новым условиям. При правильном подключении такое устройство прослужит гораздо дольше самодельной схемы.

Водоснабжение и водоотвод является неотъемлемой частью быта и производства. Практически каждый, кто занимался фермерским хозяйством или благоустройством быта, хоть раз сталкивался с проблемой поддержания уровня воды в той или иной емкости. Некоторые делают это вручную, открывая и закрывая задвижки, но намного проще и эффективнее использовать для этих целей автоматический датчик уровня воды.

Типы датчиков уровня

В зависимости от поставленных задач для контроля за уровнем жидкости используются контактные и бесконтактные датчики. Первые, как можно догадаться из их названия, имеют контакт с жидкостью, вторые получают информацию дистанционно, используя косвенные методы измерения – прозрачность среды, ее емкость, электропроводность, плотность и пр. По принципу действия же все датчики можно разделить на основных 5 типов:

  1. Поплавковый.
  2. Электродный.
  3. Гидростатический.
  4. Емкостный.
  5. Радарный.

Первые три можно отнести к приборам контактного типа, поскольку они непосредственно взаимодействуют с рабочей средой (жидкостью), четвертый и пятый – бесконтактные.

Поплавковые сенсоры

Пожалуй, самые простые по конструкции. Представляют собой поплавковую систему, которая находится на поверхности жидкости. По мере изменения уровня поплавок движется, тем или иным образом замыкая контакты механизма контроля. Чем больше контактов находится по пути движения поплавка, тем точнее показания сигнализатора:

Принцип работы поплавкового датчика уровня воды в баке

Из рисунка видно, что показания индикатора такого устройства дискретны, а количество значений уровня зависит от числа выключателей. На приведенной схеме их два – верхний и нижний. Этого, как правило, вполне достаточно для автоматического поддержания уровня в заданном диапазоне.

Существуют поплавковые приборы и для непрерывного дистанционного контроля. В них поплавок управляет движком реостата, а уровень вычисляется исходя из текущего сопротивления. Такие устройства до недавнего времени широко использовались, к примеру, для измерения количества бензина в топливных баках автомобилей:

Устройство реостатного уровнемера, где:

  • 1 – проволочный реостат;
  • 2 – ползунок реостата, механически связанный с поплавком.

Электродные датчики уровня

Устройства этого типа используют электрическую проводимость жидкости и являются дискретными. Датчик представляет собой несколько электродов различной длины, погруженных в воду. В зависимости от уровня в жидкости оказывается то или иное количество электродов.

Трехэлектродная система датчиков уровня жидкости в резервуаре

На рисунке, приведенном выше, два правых датчика погружены в воду, а значит, между ними присутствует сопротивление воды – насос остановлен. Как только уровень опустится, средний датчик окажется сухим, а сопротивление цепи увеличится. Автоматика запустит насос подкачки. Когда емкость окажется заполненной, самый короткий электрод попадет в воду, его сопротивление относительно общего электрода уменьшится и автоматика остановит насос.

Вполне понятно, что количество контрольных точек несложно увеличить, добавив в конструкцию дополнительные электроды и соответствующие каналы контроля, к примеру, для аварийной сигнализации переполнения или пересыхания.

Гидростатическая система контроля

Здесь датчик представляет собой открытую трубку, в которой установлен сенсор давления того или иного типа. При увеличении уровня изменяется высота водяного столба в трубке, а значит, и давление на сенсор:

Принцип работы гидростатической системы контроля уровня жидкости

Такие системы обладают непрерывной характеристикой и могут использоваться не только для автоматического управления, но и для дистанционного контроля уровня.

Емкостный метод измерения

Принцип работы емкостного датчика с металлической (слева) и диэлектрической ванной

По сходному принципу работают и индукционные указатели, но в них роль сенсора исполняет катушка, индуктивность которой изменяется в зависимости от присутствия жидкости. Основным недостатком подобных устройств является то, что они годятся только для контроля за веществами (жидкости, сыпучие материалы и пр.), имеющими достаточно высокую магнитную проницаемость. В быту индуктивные сенсоры практически не используются.

Радарный контроль

Основное достоинство этого метода – отсутствие контакта с рабочей средой. Причем сенсоры могут отстоять от жидкости, уровень которой необходимо контролировать, достаточно далеко – метры. Это позволяет использовать датчики радарного типа для контроля за исключительно агрессивной, ядовитой или горячей жидкостями. О принципе работы таких датчиков говорит само их название – радарные. Прибор состоит из передатчика и приемника, собранных в одном корпусе. Первый излучает тот или иной тип сигнала, другой принимает отраженный и подсчитывает время задержки между отправленным и принятым импульсами.

Принцип работы ультразвукового сигнализатора уровня радарного типа

Сигналом в зависимости от поставленных задач может служить свет, звук, радиоизлучение. Точность таких сенсоров достаточно велика – миллиметры. Единственным, пожалуй, недостатком можно считать сложность радарного оборудования контроля и достаточно высокую его стоимость.

Самодельные регуляторы уровня жидкости

Благодаря тому, что некоторые из датчиков исключительно просты по конструкции, создать реле уровня воды своими руками совсем несложно . Работая совместно с водяными насосами, такие приборы позволят полностью автоматизировать процесс подкачки воды, к примеру, в дачную водонапорную башню или автономную систему капельного полива.

Поплавковый автомат управления насосом

Для реализации этой идеи используется самодельный герконовый датчик уровня воды с поплавком. Он не требует дорогостоящих и дефицитных комплектующих, прост в повторении и достаточно надежен. Прежде всего, стоит рассмотреть конструкцию самого сенсора:

Конструкция двухуровневого поплавкового датчика воды в баке

Он состоит из собственно поплавка 2, который закреплен на подвижном штоке 3. Поплавок находится на поверхности воды и в зависимости от ее уровня движется вместе со штоком и закрепленным на нем постоянным магнитом 5 вверх / вниз в направляющих 4 и 5. В нижнем положении, когда уровень жидкости минимален, магнит замыкает геркон 8, а в верхнем (бак полон) – геркон 7. Длина штока и расстояние между направляющими выбирается исходя из высоты водяного бака.

Осталось собрать устройство, которое будет автоматически включать и выключать насос подкачки в зависимости от состояния контактов. Схема его выглядит следующим образом:

Схема управления водяным насосом

Предположим, что бак полностью заполнен, поплавок находится в верхнем положении. Геркон SF2 замкнут, транзистор VT1 закрыт, реле К1 и К2 отключены. Водяной насос, подключенный к разъему ХS1, обесточен. По мере расхода воды поплавок, а вместе с ним и магнит будут опускаться, геркон SF1 разомкнется, но схема останется в прежнем состоянии.

Как только уровень воды упадет ниже критического, замкнется геркон SF1. Транзистор VT1 откроется, реле К1 сработает и встанет на самоблокировку контактами К1.1. Одновременно контакты К1.2 этого же реле подадут питание на пускатель К2, включающий насос. Началась подкачка воды.

По мере увеличения уровня поплавок начнет подниматься , контакт SF1 разомкнется, но заблокированный контактами К1.1 транзистор останется открытым. Как только емкость наполнится, замкнется контакт SF2 и принудительно закроет транзистор. Оба реле отпустят, насос отключится, а схема перейдет в ждущий режим.

При повторении схемы на месте К1 можно использовать любое маломощное электромагнитное реле на напряжение срабатывания 22-24 В, к примеру, РЭС-9 (РС4.524.200). В качестве К2 подойдет РМУ (РС4.523.330) или любое другое на напряжение срабатывания 24 В, контакты которого выдерживают пусковой ток водяного насоса. Герконы пойдут любые, работающие на замыкание или переключение.

Реле уровня с электродными датчиками

При всем своем достоинстве и простоте, предыдущая конструкция уровнемера для емкостей имеет и существенный недостаток – механические узлы, работающие в воде и требующие постоянного обслуживания. Этот недостаток отсутствует у электродной конструкции автомата. Она намного надежнее механической, не требует никакого обслуживания, а схема ненамного сложнее предыдущей.

Здесь в качестве датчиков используются три электрода, выполненные из любого токопроводящего нержавеющего материала. Все электроды электрически изолированы друг от друга и от корпуса емкости. Конструкция сенсора хорошо видна на рисунке, приведенном ниже:

Конструкция трехэлектродного сенсора, где:

  • S1 – общий электрод (всегда в воде)
  • S2 – сенсор минимума (бак пуст);
  • S3 – сенсор максимального уровня (бак полон);

Схема же управления насосом будет выглядеть следующим образом:

Схема автоматического управления насосом при помощи электродных сенсоров

Если бак полон, то все три электрода находятся в воде и электрическое сопротивление между ними невелико. При этом транзистор VT1 закрыт, VT2 открыт. Реле К1 включено и своими нормально замкнутыми контактами обесточивает насос, а нормально разомкнутыми подключает сенсор S2 параллельно S3. Когда уровень воды начинает падать, оголяется электрод S3, но S2 еще в воде и ничего не происходит.

Вода продолжает расходоваться и, наконец, оголяется электрод S2. Благодаря резистору R1 транзисторы переходят в противоположное состояние. Реле отпускает и запускает насос, одновременно отключая датчик S2. Уровень воды постепенно повышается и сначала замыкает электрод S2 (ничего не происходит – он отключен контактами К1.1), а затем и S3. Транзисторы снова переключаются, реле срабатывает и отключает насос, одновременно подключая сенсор S2 в работу для следующего цикла.

В устройстве можно использовать любое маломощное реле, срабатывающее от 12 В, контакты которого способны выдержать ток пускателя насоса.

При необходимости эту же схему можно применить и для автоматической откачки воды, скажем, из подвала. Для этого дренажный насос нужно подключить не к нормально замкнутым, а к нормально разомкнутым контактам реле К1. Никаких других изменений схема не потребует.

Многие из Нас и не только заядлые дачники, сталкивались с проблемой автоматизации и контроля заполнения емкостей водой. Скорее всего эта статья именно для тех, кто решил сделать простейшую схему контроля наполнения емкости в бытовых условиях. Самый бюджетный способ построения автоматики - это использование реле контроля воды. Реле контроля уровня (воды) так же используются в более сложных системах водоснабжения частных домов, но в данной статье мы рассмотрим только бюджетные модели реле контроля уровня токопроводящей жидкости. К подконтрольным жидкостям относятся: вода (водопроводная, родниковая, дождевая), жидкости с низким содержанием алкоголя (пиво, вино и др.), молоко, кофе, сточные воды, жидкие удобрения. Номинальный ток контактов реле 8-10А, что позволяет коммутировать небольшие насосы без использования промежуточного реле или контактора, но производители все равно рекомендуют ставить промежуточные реле или контакторы для включения/выключения насосов. Температурный диапазон работы устройств от -10 до +50C, а максимально возможная длина провода (от реле до датчика) – 100 метров, на передней панели светодиодные индикаторы работы, вес не более 200 грамм, крепление на din-рейку, поэтому необходимо будет заранее продумать размещение системы контроля.

Принцип работы реле основан на измерении сопротивления жидкости, находящейся между двумя погруженными датчиками. Если измеренное сопротивление оказывается менее величины порога срабатывания, тогда состояние контактов реле меняется. Во избежание электролитического эффекта переменный ток протекает поперек датчиков. Напряжение питания датчика не более 10В. Потребляемая мощность не более 3Вт. Фиксированная чувствительность 50 кОм.

На рынке представлено множество однотипных реле, рассмотрим самые бюджетные модели от производителей «Реле и Автоматика» г.Москва и новинки «TDM» (Торгового Дома им.Морозова).

Реле контроля уровня . (аналог РКУ-02 TDM )

Реле контроля уровня TDM представлено четырьмя моделями:

  1. (SQ1507-0002) под разъем Р8Ц(SQ1503-0019) на дин-рейку
  2. (SQ1507-0003) на дин-рейку (аналог РКУ-1М )
  3. (SQ1507-0004) на дин-рейку
  4. (SQ1507-0005) на дин-рейку

Корпуса реле выполнены из не поддерживающих горение материалов. Датчики контроля уровня изготовлены из нержавеющей стали. (ДКУ-01 SQ1507-0001).

Работа реле основана на кондуктометрическом методе определения наличия жидкости, который основан на электрической проводимости жидкостей и возникновении микротока между электродами. Реле имеют переключающие контакты, что позволяет использовать режим наполнения или слива. Напряжение питания РКУ-02, РКУ-03, РКУ-04 – 230В или 400В.

Схема управления насосом в резервуаре в режиме "наполнение или дренаж".

Схема перекачки жидкости из скважины/резервуара в резервуар, контроль уровня в обоих средах, т.е. реле производит защитное отключение насоса в режиме сухого хода (при снижении уровня жидкости в скважине/резервуаре)

Схема поочередного или суммарного включения 2-х насосов. Используется реле РКУ-04 в местах, где недопустимо переполнение колодцев, котлованов, водосборных и прочих емкостей. Реле работает с 2-мя насосам, и, для равномерного использования их ресурса, реле производит их поочередное включение. В случае чрезвычайной ситуации оба насоса выключаются одновременно.

Реле нельзя использовать для следующих жидкостей: дистиллированная вода, бензин, керосин, масло, этиленгликоли, краски, сжиженный газ.

Сравнительная таблица аналогов по сериям:

TDM F&F lovato РиА
РКУ-01 PZ-829 LVM20 РКУ-1М
РКУ-02 PZ-829 LVM20 РКУ-1М
РКУ-03 - LVM20 EBR-02
РКУ-04 - LVM20 -