Как в домашних условиях сделать солнечную батарею из доступных материалов? Солнечная батарея своими руками: дорогая игрушка или реальная возможность сэкономить? Как устроены солнечные батареи для дома.

Сегодня всё больше людей задумывается об альтернативном получении энергии. Солнечная панель – одно из таких устройств. Это комплект батареек для преобразования энергии солнца в электричество. Как и другие альтернативные источники, такое устройство является дорогим удовольствием. Однако монтаж батареи можно удешевить, если сделать прибор своими силами. Статья расскажет и покажет с помощью видео, как сконструировать собственными руками панель для получения солнечной энергии в домашних или иных условиях.

Принцип работы солнечной батареи

Солнце – бесплатный источник энергии. Нужно только научиться правильно ее добывать. В безоблачный день небесное светило «заряжает» землю примерно 1000 Вт на 1 кв. м. Этого хватило бы, чтобы обеспечить бытовые потребности жителей планеты. Но пока устройство для получения такой энергии не очень доступно широким слоям населения.

Солнечная панель представляет собой набор фотоэлектрических элементов. По сути, они являются полупроводниками, чаще всего — из кремния. Свет попадает на солнечный элемент и частично поглощается им. Энергия освобождает электроны. Присутствующее в фотоэлементе электрическое поле направляет электроны – а это уже ток. Солнечные элементы модуля соединены между собой и выведены на металлический контакт, с помощью которого полученная энергия снимается для внешнего использования.

Для создания солнечной батареи в домашних условиях нужно позаботиться о реализации таких тезисов:

  1. Сконструировать модуль, который будет принимать и преобразовывать энергию с минимальными затратами.
  2. Обеспечить максимально возможную мощность (читай – эффективность) источника питания.

Солнечная батарея на крыше дома

Для сборки солнечной панели вам понадобятся:

  • фотоэлементы;
  • стекло или оргстекло;
  • фанера, ДСП или алюминиевый уголок;
  • герметик;
  • паяльник небольшой мощности;
  • шины для пайки, флюс, олово;
  • мультиметр.

Где взять солнечные элементы

Фотоэлемент – ключевая деталь будущей солнечной батареи. Их поиск и покупка по адекватной стоимости – основная сложность в конструировании солнечной батареи. Существует несколько доступных вариантов:

  1. Извлечь полупроводниковые кристаллы из диодов и транзисторов, которые можно найти в старых радиоприемниках и телевизорах.
  2. Купить на eBay или AliExpress.
  3. Купить в отечественных магазинах, которые чаще всего просто перепродают товар из AliExpress и eBay.

Солнечные элементы

Первый способ может вообще не потребовать финансовых затрат, однако для более-менее мощной батареи нужно найти не один десяток диодов. Во втором варианте обязательно учтите стоимость доставки, которая может обойтись в несколько десятков долларов. Кроме того, чтобы совершать покупки в иностранных интернет-магазинах, нужно пройти процедуры регистрации и привязки банковской карты. Однако по отзывам, так всё равно обойдется дешевле, чем заказать батарею по месту (третий вариант).

Совет. В интернет-магазинах часто продаются целиком рабочие фотоэлектрические преобразователи, которые в процессе производства были отбракованы (т.н. B-тип). Стоимость их на порядок ниже, а эффективность такая же. Для сборки домашней солнечной панели сгодятся и разбитые элементы.

Прежде чем начать поиск солнечных элементов, определитесь с задачами, которые поставите перед батареей. Далее высчитайте необходимую мощность. Для этого сложите нагрузку приборов, которые запитаете от солнечной панели. Под эту величину и набирайте элементы.

Разновидности солнечных элементов

Фотоэлектрические преобразователи – это небольшие панельки со стороной от 38 до 156 мм. Для более-менее нормальной мощности вам понадобится не менее 35-50 элементов. Они могут быть как с припаянными проводниками, так и без них. Второй случай доставит больше хлопот с паяльником.

Панели очень хрупкие. Продавцы придумывают разные способы уберечь их от трещин и царапин во время доставки. Но даже такие меры не всегда спасают элементы. В процессе работы шанс повредить элементы еще больше: если их согнуть, они могут лопнуть, если сложить стопкой – поцарапать одна другую. Незначительные сколы не сильно повлияют на мощность.

На рынке есть два самых популярных типа фотоэлементов:

  • поликристаллические;
  • монокристаллические.

Поликристаллические имеют срок эксплуатации порядка 20 лет. Они достаточно эффективны в сложных погодных условиях. КПД – 7-9%. Монокристаллические преобразователи более долговечны (около 30 лет) и имеют больший КПД (13%). Однако они слишком чувствительны к плохой погоде: если солнце закрыто облаками или лучи падают не под прямым углом, эффективность существенно падает.

Виды солнечных элементов

Выбор каркаса и пайка элементов

Солнечная батарея представляет собой неглубокий короб. Лучше всего в домашней обстановке – фанерный или из , но можно и алюминиевый уголок. Он одновременно будет опорой и защитой для элементов. Для этих целей подойдёт, например, фанера 9,5 мм. Главное, чтобы бортик не затенял элементы. Можно для надёжности разделить им панель на две части.

Фотоэлектрические преобразователи обычно располагают на оргстекле или другой поверхности. Важно, чтобы она не пропускала ИК-спектр. Это необходимо для того, чтобы не нагревались сами фотоэлементы. Стекло, перед тем как расположить на нём преобразователи, нужно обезжирить. Паять можно до укладывания фотоэлементов или после.

Процесс пайки выглядит так:

  1. На проводники, которые будут паяться, предварительно нанесите флюс и припой.
  2. Солнечные элементы расположите на поверхности, оставляя зазор между ними около 5 мм.
  3. Припаяйте крайние детали к шинам — это более широкие проводники (они обычно присутствуют в наборах с фотоэлементами).
  4. Выведите «-» и «+». У большинства элементов лицевая сторона — это отрицательный полюс, а обратная — положительный.
  5. Выведите «среднюю точку», чтобы затем поставить шунтирующие диоды (диоды Шотке) для каждой половины панели – они не дадут батарее разряжаться ночью или в облачную погоду.

Герметизация элементов панели

Герметизация элементов и монтаж панели

Этот процесс – финальный этап создания солнечного источника энергии. Герметизация нужна, чтобы уменьшить негативное воздействие окружающей среды на элементы. Отличный герметик (его используют за границей) – компаунд, однако он стоит недешево. Поэтому для домашней панели подойдет и силиконовый, но довольно густой. Начните с фиксации системы в середине и по бокам, после этого залейте вещество в промежутки между элементами. На обратную сторону нанесите акриловый лак, смешанный с тем же силиконом.

Совет. Перед началом герметизации еще раз удостоверьтесь в хорошем качество пайки – протестируйте панель. Иначе потом внести изменения будет сложно.

Панель можно эксплуатировать такими способами:

  1. В электрическую цель включается инвертор, который будет преобразовывать постоянное напряжение от солнечной панели в переменное.
  2. Электрическая цель комплектуется аккумулятором (АКБ) и контроллером заряда АКБ. Они накапливают энергию от солнечной панели постоянно (в пределах вместимости АКБ), даже в тот момент, пока вы ею не пользуетесь.

Помните: вы всегда сможете нарастить количество элементов, расширив панель. Солнечная батарея будет максимально эффективной только на солнечной стороне дома. Предусмотрите возможность механического поворота и смены угла наклона, ведь солнце движется по небу, иногда его затягивают тучи. Также для эффективности важно, чтобы на устройство не налипал снег.

Изготовление солнечной панели своими руками: видео

Солнечная батарея на даче: фото





Жизнь в стиле «Органик», столь популярная идея в последние годы, предполагает гармоничные «отношения» человека с окружающей средой. Камнем преткновения любого экологического подхода является использование полезных ископаемых для получения энергии.

Выбросы токсичных веществ и углекислоты в атмосферу, выделяющихся при сгорании ископаемого топлива, постепенно убивают планету. Поэтому концепция «зеленой энергии», которая не вредит окружающей среде, является базовой основой многих новых энерготехнологий. Одним из таких направлений получения экологически чистой энергии является технология преобразования солнечного света в электрический ток. Да, именно так, речь пойдет о солнечных батареях и возможности установки систем автономного энергообеспечения в загородном доме.

В настоящий момент энергоустановки промышленного изготовления на базе солнечных батарей, применяемые для полного энерго- и теплообеспечения коттеджа, стоят не менее 15-20 тыс. долларов при гарантированном сроке эксплуатации около 25 лет. Стоимость любой гелиевой системы в перерасчете соотношения гарантированного срока эксплуатации к средним годичным затратам на коммунальное содержание загородного дома достаточно высокая: во-первых, сегодня средняя стоимость солнечной энергии соизмерима с покупкой энергоресурсов из центральных энергосетей, во-вторых, требуются одномоментные капитальные вложения для установки системы.

Обычно принято разделять гелиосистемы, предназначенные для тепло- и энергообеспечения. В первом случае используется технология солнечного коллектора, во втором — фотоэлектрический эффект для генерации электрического тока в солнечных батареях. Мы хотим рассказать о возможности самостоятельного изготовления солнечных батарей.

Технология ручной сборки солнечной энергетической системы достаточно проста и доступна. Практически каждый россиянин может собрать индивидуальные энергосистемы с высоким КПД при сравнительно низких затратах. Это выгодно, доступно и даже модно.

Выбор солнечных элементов для солнечной панели

Приступая к изготовлению солнечной системы, нужно обратить внимание, что при индивидуальной сборке нет необходимости в одномоментной установке полнофункциональной системы, её вполне можно наращивать постепенно. Если первый опыт оказался удачным, то имеет смысл расширять функциональность гелиосистемы.

По своей сути, солнечная батарея — это генератор, работающий на основе фотоэлектрического эффекта и преобразовывающий солнечную энергию в электрическую. Кванты света, попадающие на кремниевую пластину, выбивают электрон с последней атомной орбиты кремния. Этот эффект создает достаточное количество свободных электронов, образующих поток электрического тока.

Перед сборкой батареи нужно определиться в типе фотоэлектрического преобразователя, а именно: монокристаллическом, поликристаллическом и аморфном. Для самостоятельной сборки солнечной батареи выбирают доступные в продаже монокристаллические и поликристаллические солнечные модули.


Вверху: Монокристаллические модули без припаянных контактов. Внизу: Поликристаллические модули с припаянными контактами

Панели на основе поликристаллического кремния имеют достаточно низкий КПД (7-9%), но этот недостаток нивелируется тем, что поликристаллы практически не понижают мощность при облачности и пасмурной погоде, гарантийная долговечность таких элементов составляет около 10 лет. Панели на основе монокристаллического кремния имеют КПД около 13% при сроке эксплуатации около 25 лет, но эти элементы сильно снижают мощность при отсутствии прямого солнечного света. Показатели КПД кристаллов кремния от разных производителей могут существенно варьироваться. По практике работы солнечных электростанций в полевых условиях можно говорить о сроке службы монокристаллических модулей более 30 лет, а для поликристаллических — более 20 лет. Причем за весь период эксплуатации потеря мощности у кремниевых моно- и поликристаллических элементов составляет не более 10%, когда у тонкопленочных аморфных батарей за первые два года мощность снижается на 10-40%.



Солнечные элементы Evergreen Solar Cells с контактами в наборе 300 шт.

На аукционе Еbay можно приобрести набор Solar Cells для сборки солнечной батареи из 36 и 72 солнечных элементов. Такие наборы доступны в продаже и в России. Как правило, для самостоятельной сборки солнечных батарей используются солнечные модули В-типа, то есть модули, отбракованные на промышленном производстве. Эти модули не теряют своих эксплуатационных показателей и значительно дешевле. Некоторые поставщики предлагают солнечные модули на стеклотекстолитовой плате, что предполагает высокий уровень герметичности элементов, а, соответственно, надежности.

Название Характеристики Стоимость, $
Everbright Solar Cells (Еbay) без контактов поликристаллические, набор - 36 шт., 81х150 мм, 1,75 W (0,5 В), 3А, эффективность (%) - 13
в наборе с диодами и кислотой для паяния в карандаше
$46.00
$8.95доставка
Solar Cells (США новые) монокристаллические, 156х156 мм, 81х150 мм, 4W (0,5 В), 8А, эффективность (%) - 16.7-17.9 $7.50
монокристаллические, 153х138 мм, U хол. хода - 21,6V, I корот. зам. - 94 mA, Р - 1,53W, эффективность (%) - 13 $15.50
Solar Cells на стеклотекстолитовой плате поликристаллические, 116х116 мм, U хол. хода - 7,2V, I корот. зам. - 275 mA., Р - 1,5W, эффективность (%) - 10 $14.50
$87.12
$9.25 доставка
Solar Cells (Еbay) без контактов поликристаллические, набор - 72 шт., 81х150 мм 1.8W $56.11
$9.25 доставка
Solar Cells (Еbay) с контактами монокристаллические, набор - 40 шт., 152х152 мм $87.25
$14.99 доставка

Разработка проекта гелиевой энергосистемы

Проектирование будущей гелиосистемы во многом зависит от способа её установки и монтажа. Солнечные батареи должны быть установлены под наклоном, чтобы обеспечить попадание прямых солнечных лучей под прямым углом. Производительность солнечной панели во многом зависит от интенсивности световой энергии, а также от угла падения солнечных лучей. Размещение солнечной батареи относительно солнца и угол наклона зависит от географического расположения гелиевой системы и времени года.


Сверху вниз: Монокристаллические солнечные панели (по 80 ватт) на даче установлены практически вертикально (зима). Монокристаллические солнечные панели на даче имеют меньший угол (весна)ю Механическая система управления углом наклона солнечной батареи.

Промышленные гелиосистемы часто снабжены датчиками, которые обеспечивают ротационное движение солнечной панели по направлению движения солнечных лучей, а также зеркалами-концентраторами солнечного света. В индивидуальных системах такие элементы значительно усложняют и удорожают систему, поэтому не применяются. Может быть применена простейшая механическая система управлением углом наклона. В зимнее время солнечные панели должны быть установлены практически вертикально, это также защищает панель от налегания снега и обледенения конструкции.



Схема расчета угла наклона солнечной панели в зависимости от времени года

Солнечные батареи устанавливаются с солнечной стороны здания, чтобы обеспечить максимально доступный объем солнечной энергии в светлое время суток. В зависимости от географического расположения и уровня солнцестояния вычисляется угол наклона батареи, который наиболее подходит для вашего местоположения.

При усложнении конструкции можно создать систему управления углом наклона солнечной батареи в зависимости от времени года и углом поворота панели в зависимости от времени суток. Энергоэффективность такой системы будет выше.

При проектировании солнечной системы, которая будет устанавливаться на крышу дома, нужно обязательно выяснить, сможет ли кровельная конструкция выдержать требуемую массу. Самостоятельная разработка проекта предполагает расчет кровельной нагрузки с учетом веса снежного покрова в зимнее время.



Выбор оптимального статического угла наклона для кровельной солнечной системы монокристаллического типа

Для изготовления солнечных панелей можно выбирать различные материалы по удельному весу и другим характеристикам. При выборе материалов конструкции необходимо учитывать максимально допустимую температуру нагрева солнечного элемента, так как температура солнечного модуля, работающего на полную мощность, не должна превышать 250С. При превышении пиковой температуры солнечный модуль резко теряет свою способность преобразовывать солнечный свет в электрический ток. Готовые гелиосистемы для индивидуального использования, как правило, не предполагают охлаждение солнечных элементов. Самостоятельное изготовление может подразумевать охлаждение гелиосистемы или управление углом наклона солнечной панели для обеспечения функциональной температуры модуля, а также выбор соответствующего прозрачного материала, поглощающего ИК-излучение.

Грамотная конструкция солнечной системы позволяет обеспечить требуемую мощность солнечной батареи, которая будет приближаться к номинальной. При расчете конструкции нужно учитывать, что элементы одного типа дают одинаковое напряжение, не зависящее от размера элементов. Причем сила тока у крупноразмерных элементов будет больше, но и батарея будет значительно тяжелее. Для изготовления солнечной системы всегда берутся солнечные модули одного размера, так как максимальный ток будет ограничен максимальным током малого элемента.

Расчеты показывают, что в среднем в ясный солнечный день можно получить с 1 м солнечной панели не более 120 Вт мощности. Такая мощность не обеспечит работу даже компьютера. Система в 10 м дает более 1 кВт энергии и может обеспечивать электроэнергией работу основных бытовых приборов: светильников, телевизора, компьютера. Для семьи из 3-4 человек необходимо около 200-300 кВт в месяц, поэтому солнечная система, установленная с южной стороны, размером 20 м может вполне обеспечить семейные энергопотребности.

Если рассматривать среднестатистические данные по электроснабжению индивидуального жилого дома, то: ежедневное энергопотребление составляет 3 кВт ч, солнечная радиация с весны по осень — 4 кВт ч/м в день, пиковая мощность потребления — 3кВт (при включении стиральной машины, холодильника, утюга и электрочайника). С целью оптимизации энергопотребления для освещения внутри дома важно использовать лампы переменного тока с низким энергопотреблением — светодиодные и люминесцентные.

Изготовление каркаса солнечной батареи

В качестве каркаса солнечной батареи используется алюминиевый уголок. На аукционе Еbay можно приобрести готовые рамы для солнечных батарей. Прозрачное покрытие выбирается по желанию, исходя из характеристик, которые необходимы для данной конструкции.



Комплект рамы со стеклом для солнечной батареи, стоимость от 33 долларов

При выборе прозрачного защитного материала можно также ориентироваться на следующие характеристики материала:

Материал Показатель преломления Свето-пропуска-ние, % Удельный вес г/см 3 Размер листа, мм Толщина, мм Стоимость, руб./м 2
Воздух 1,0002926
Стекло 1,43-2,17 92-99 3,168
Оргстекло 1,51 92-93 1,19 3040х2040 3 960.00
Поликарбонат 1,59 до 92 0,198 3050 х2050 2 600.00
Плексиглас 1,491 92 1,19 2050х1500 11 640.00
Минеральное стекло 1,52-1,9 98 1,40

Если рассматривать показатель преломления света в качестве критерия выбора материала. Самый минимальный коэффициент преломления имеет плексиглас, более дешевым вариантом прозрачного материала является отечественное оргстекло, менее подходящим — поликарбонат. В продаже имеется поликарбонат с антиконденсатным покрытием, также этот материал обеспечивает высокий уровень термозащиты. При выборе прозрачных материалов по удельному весу и способности поглощать ИК-спектр лучшим будет поликарбонат. К лучшим прозрачным материалам для солнечных батарей относятся материалы с высоким светопропусканием.

При изготовлении солнечной батареи важно выбирать прозрачные материалы, которые не пропускают ИК-спектр и, таким образом, снижают нагревание кремниевых элементов, теряющих свою мощность при температуре свыше 250С. В промышленности используются специальные стекла, имеющие оксидно-металлическое покрытие. Идеальным стеклом для солнечных панелей считается тот материал, которые пропускает весь спектр кроме ИК-диапазона.



Схема поглощения УФ и ИК излучения различными стеклами.
а) обычное стекло, б) стекло с ИК-поглощением, в) дуплекс с термопоглощающим и обычным стеклом.

Максимальное поглощение ИК-спектра обеспечит защитное силикатное стекло с оксидом железа (Fe 2 O 3), но оно имеет зеленоватый оттенок. ИК-спектр хорошо поглощает любое минеральное стекло за исключением кварцевого, оргстекло и плексиглас относятся к классу органических стекол. Минеральное стекло более устойчиво к повреждениям поверхности, но является очень дорогим и недоступным. Для солнечных батарей также применяется специальное антибликовое сверхпрозрачное стекло, пропускающее до 98% спектра. Также это стекло предполагает поглощение большей части ИК-спектра.

Оптимальный выбор оптических и спектральных характеристик стекла значительно повышает эффективность фотопреобразования солнечной панели.



Солнечная панель в корпусе из оргстекла

Во многих мастер-классах по изготовлению солнечных батарей рекомендуется использовать оргстекло для передней и задней панели. Это позволяет проводить инспекцию контактов. Однако конструкцию из оргстекла сложно назвать полностью герметичной, способной обеспечить бесперебойную эксплуатацию панели в течение 20 лет работы.

Монтаж корпуса солнечной батареи

В мастер-классе показывается изготовление солнечной панели из 36 поликристаллических солнечных элементов размером 81x150 мм. Исходя из этих размеров, можно вычислить размеры будущей солнечной батареи. При расчете размеров важно между элементами делать небольшое расстояние, которое будет учитывать изменение размеров основы под атмосферным воздействием, то есть между элементами должно быть 3-5 мм. Результирующий размер заготовки должен быть 835х690 мм при ширине уголка 35 мм.

Самодельная солнечная батарея, сделанная с использованием алюминиевого профиля, наиболее похожа на солнечную панель фабричного изготовления. При этом обеспечивается высокая степень герметичности и прочности конструкции.
Для изготовления берется алюминиевый уголок, и выполняются заготовки рамки 835х690 мм. Чтобы можно было провести крепление метизов, в раме следует сделать отверстия.
На внутреннюю часть уголка дважды наносится силиконовый герметик.
Обязательно проследите, чтобы не было незаполненных мест. От качества нанесения герметика зависит герметичность и долговечность батареи.
Далее в раму кладется прозрачный лист из выбранного материала: поликарбоната, оргстекла, плексигласа, антибликового стекла. Важно силикону дать высохнуть на открытом воздухе, иначе испарения создадут пленку на элементах.
Стекло нужно тщательно прижать и зафиксировать.
Для надежного крепления защитного стекла понадобятся метизы. Нужно закрепить 4 угла рамки и по периметру разместить два метиза с длинной стороны рамки и по одному метизу с короткой стороны.
Метизы фиксируются при помощи шурупов.
Шурупы плотно затягиваются при помощи шуруповерта.
Каркас солнечной батареи готов. Перед креплением солнечных элементов, необходимо очистить стекло от пыли.

Подбор и пайка солнечных элементов

В настоящий момент на аукционе Еbay представлен огромный ассортимент изделий для самостоятельного изготовления солнечных батарей.



Набор Solar Cells включает комплект из 36 поликристаллических кремниевых элементов, проводники для элементов и шины, диоды Шотке и карандаш с кислотой для паяния

Так как солнечная батарея, сделанная своими руками, практически в 4 раза дешевле готовой, самостоятельное изготовление — это значительная экономия средств. На Еbay можно приобрести солнечные элементы с дефектами, но они не теряют своей функциональности, таким образом, стоимость солнечной батареи может существенно сократиться, если вы можете дополнительно пожертвовать внешним видом батареи.



Поврежденные фотоэлементы не теряют своей функциональности

При первом опыте лучше приобретать наборы для изготовления солнечных панелей, в продаже имеются солнечные элементы с припаянными проводниками. Пайка контактов — это достаточно сложный процесс, сложность усугубляется хрупкостью солнечных элементов.

Если вы приобрели кремниевые элементы без проводников, то сначала необходимо провести пайку контактов.

Так выглядит поликристаллический кремниевый элемент без проводников.
Проводники нарезаются с помощью картонной заготовки.
Необходимо аккуратно положить проводник на фотоэлемент.
На место припаивания нанести кислоту для паяния и припой. Проводник для удобства фиксируется с одной стороны тяжелым предметом.
В таком положении необходимо аккуратно припаять проводник к фотоэлементу. Во время пайки нельзя нажимать на кристалл, потому что он очень хрупкий.

Пайка элементов — это достаточно кропотливая работа. Если не удастся получить нормального соединения, то необходимо повторить работу. По нормативам серебряное напыление на проводнике должно выдерживать 3 цикла пайки при допустимых тепловых режимах, на практике сталкиваешься с тем, что напыление разрушается. Разрушение серебряного напыления происходит из-за использования паяльников с нерегулируемой мощностью (65Вт), этого можно избежать, если понизить мощность следующим образом — нужно последовательно с паяльником включить патрон с лампочкой в 100 Вт. Номинальная мощность нерегулируемого паяльника слишком высока для пайки кремниевых контактов.

Даже если продавцы проводников уверяют, что припой на соединителе имеется, его лучше нанести дополнительно. Во время пайки старайтесь аккуратно обращаться с элементами, при минимальном усилии они лопаются; не стоит складывать элементы пачкой, от веса нижние элементы могут треснуть.

Сборка и пайка солнечной батареи

При первой самостоятельной сборке солнечной батареи лучше воспользоваться разметочной подложкой, которая поможет расположить элементы ровно на некотором расстоянии друг от друга (5 мм).



Разметочная подложка для элементов солнечной батареи

Основа выполняется из листа фанеры с маркированием уголков. После пайки на каждый элемент с обратной стороны крепится кусок монтажной ленты, достаточно прижать заднюю панель к скотчу, и все элементы переносятся.



Монтажная лента, использованная для крепления, с обратной стороны солнечного элемента

При таком типе крепления сами элементы дополнительно не герметизируются, они могут свободно расширяться под действием температуры, это не приведет к повреждению солнечной батареи и разрыву контактов и элементов. Герметизации поддаются только соединительные части конструкции. Такой вид крепления больше подходит для опытных образцов, но вряд ли может гарантировать долгосрочную эксплуатацию в полевых условиях.

Последовательный план сборки батареи выглядит так:

Выкладываем элементы на стеклянную поверхность. Между элементами должно быть расстояние, что предполагает свободное изменение размеров без ущерба конструкции. Элементы нужно прижать грузами.
Пайку производим по приведенной ниже электросхеме. «Плюсовые» токоведущие дорожки размещены на лицевой стороне элементов, «минусовые» — на обратной стороне.
Перед пайкой нужно нанести флюс и припой, после аккуратно припаять серебряные контакты.
По такому принципу соединяются все солнечные элементы.
Контакты крайних элементов выводятся на шину, соответственно, на «плюс» и «минус». Для шины используется более широкий серебряный проводник, который имеется в наборе Solar Cells.
Рекомендуем также вывести «среднюю» точку, с ее помощью ставятся два дополнительных шунтирующих диода.
Клемма устанавливается также с внешней стороны рамы.
Так выглядит схема подключения элементов без выведенной средней точки.
Так выглядит клеммная планка с выведенной «средней» точкой. «Средняя» точка позволяет на каждую половину батареи поставить шунтирующий диод, который не даст батарее разряжаться при снижении освещения или затемнении одной половины.
На фото показан шунтирующий диод на «плюсовом» выходе, он противостоит разрядке аккумуляторов через батарею в ночное время и разрядке других батарей во время частичного затемнения.
Чаще в качестве шунтирующих диодов используют диоды Шотке. Они дают меньшую потерю на общей мощности электрической цепи.
В качестве токовыводящих проводов может быть использован акустический кабель в силиконовой изоляции. Для изоляции можно применить трубки из-под капельницы.
Все провода должны быть прочно зафиксированы силиконом.
Элементы могут быть соединены последовательно (см. фото), а не посредством общей шины, тогда 2-й и 4-й ряд необходимо повернуть на 1800 относительно 1-го ряда.

Основные проблемы сборки солнечной панели связаны с качеством пайки контактов, поэтому специалисты предлагают перед герметизацией панели ее протестировать.



Тестирование панели перед герметизацией, напряжение сети 14 вольт, пиковая мощность 65 Вт

Тестирование можно делать после пайки каждой группы элементов. Если вы обратите внимание на фотографии в мастер-классе, то часть стола под солнечными элементами вырезана. Это сделано намеренно, чтобы определить работоспособность электрической сети после пайки контактов.

Герметизация солнечной панели

Герметизация солнечных панелей при самостоятельном изготовлении — это самый спорный вопрос среди специалистов. С одной стороны, герметизация панелей необходима для повышения долговечности, она всегда применяется при промышленном изготовлении. Для герметизации зарубежные специалисты рекомендуют использовать эпоксидный компаунд «Sylgard 184», который дает прозрачную полимеризованную высокоэластичную поверхность. Стоимость «Sylgard 184» на Еbay составляет около 40 долларов.



Герметик с высокой степенью эластичности «Sylgard 184»

С другой стороны, если вы не хотите нести дополнительные затраты, вполне можно использовать силиконовый герметик. Однако в этом случае не стоит полностью заливать элементы, чтобы избежать их возможного повреждения в процессе эксплуатации. В таком случае элементы к задней панели можно прикрепить при помощи силикона и герметизировать только края конструкции. Насколько эффективна такая герметизация, сказать сложно, но использовать не- рекомендованные гидроизоляционные мастики не советуем, очень высока вероятность разрыва контактов и элементов.

Перед началом герметизации необходимо подготовить смесь «Sylgard 184».
Сначала заливаются места стыков элементов. Смесь должна схватиться, чтобы закрепить элементы на стекле.
После фиксации элементов делается сплошной полимеризирующий слой эластичного герметика, распределить его можно с помощью кисточки.
Так выглядит поверхность после нанесения герметика. Герметизирующий слой должен просохнуть. После полного высыхания можно закрыть солнечную батарею задней панелью.
Так выглядит лицевая сторона самодельной солнечной панели после герметизации.

Схема электроснабжения дома

Системы электроснабжения домов с использованием солнечных батарей принято называть фотоэлектрическими системами, то есть системами, обеспечивающими генерацию энергии с использованием фотоэлектрического эффекта. Для индивидуальных жилых домов рассматриваются три фотоэлектрические системы: автономная система энергообеспечения, гибридная батарейно-сетевая фотоэлектрическая система, безаккумуляторная фотоэлектрическая система, подключенная к центральной системе энергоснабжения.

Каждая из систем имеет свое предназначение и преимущества, но наиболее часто в жилых домах применяют фотоэлектрические системы с резервными аккумуляторными батареями и подключением к централизованной энергосети. Питание электросети осуществляется при помощи солнечных батарей, в темное время суток от аккумуляторов, а при их разрядке — от центральной энергосети. В труднодоступных районах, где нет центральной сети, в качестве резервного источника энергоснабжения используются генераторы на жидком топливе.

Более экономной альтернативой гибридной батарейно-сетевой системе электроснабжения будет безаккумуляторная солнечная система, подсоединенная к центральной сети энергоснабжения. Электроснабжение осуществляется от солнечных батарей, а в темное время суток сеть питается от центральной сети. Такая сеть более применима для учреждений, потому что в жилых домах большая часть энергии потребляется в вечернее время.



Схемы трех типов фотоэлектрических систем

Рассмотрим типичную установку батарейно-сетевой фотоэлектрической системы. В качестве генератора электроэнергии выступают солнечные панели, которые подсоединены через соединительную коробку. Далее в сети устанавливается контроллер солнечного заряда, чтобы избежать короткого замыкания при пиковой нагрузке. Электроэнергия накапливается в резервных батареях-аккумуляторах, а также подается через инвертор на потребители: освещение, бытовую технику, электроплиту и, возможно, используется для нагревания воды. Для установки системы отопления эффективнее применять гелиоколлекторы, которые относятся к альтернативной гелиотехнологии.



Гибридная батарейно-сетевая фотоэлектрическая система с переменным током

Существует два типа электросетей, которые используются в фотоэлектрических системах: на базе постоянного и переменного тока. Использование сети переменного тока позволяет размещать электропотребители на расстоянии, превышающем 10-15 м, а также обеспечивать условно-неограниченную нагрузку сети.

Для частного жилого дома обычно используют следующие комплектующие фотоэлектрической системы:

  • суммарная мощность солнечных панелей должна составлять 1000 Вт, они обеспечат выработку около 5 кВт ч;
  • аккумуляторы с общей емкостью в 800 А/ч при напряжении 12 В;
  • инвертор должен иметь номинальную мощность 3кВт с пиковой нагрузкой до 6 кВт, входное напряжение 24-48 В;
  • контроллер солнечного разряда 40-50 А при напряжении в 24 В;
  • источник бесперебойного питания для обеспечения кратковременного заряда с током до 150 А.

Таким образом, для фотоэлектрической системы электроснабжения понадобится 15 панелей на 36 элементов, пример сборки которых приведен в мастер-классе. Каждая панель дает суммарную мощность в 65 Вт. Более мощными будут солнечные батареи на монокристаллах. Например, солнечная панель из 40 монокристаллов имеет пиковую мощность 160 Вт, однако такие панели чувствительны к пасмурной погоде и облачности. В этом случае солнечные панели на базе поликристаллических модулей оптимальны для использования в северной части России.


Современные реалии таковы, что альтернативные источники энергии являются удовольствием отнюдь не дешевым, и далеко не каждый может позволить себе заказать установку солнечных батарей у поставщика. Поэтому все более популярным становится производство солнечных батарей своими руками . И поговорим мы сегодня о том, как сделать солнечные панели в домашних условиях.

Где достать фотоэлементы, и сколько они стоят?

Введя соответствующий поисковый запрос в браузере, появляется большое количество предложений солнечных панелей, причем в странах СНГ. В том числе и в Беларуси нашлось несколько фирм и индивидуальных предпринимателей, предлагающих солнечные панели и необходимые элементы автономного электроснабжения. Бегло просмотрев предложения и каталоги фирм, увидел такую картину. Например, поликристаллические панели на 170 Вт стоили примерно 255$, встречались и за 420$. (Правда я не уточнял, в каком они виде поставляются и т.д., лишь ознакомился с некоторыми тех. характеристиками). Не дешевле они оказались и в Украине и в России. Это очень грубо, но думаю, что в Беларуси надо рассчитывать где-то 1,5$ за 1 Вт мощности.

Но в то же время на многих российских сайтах видел предложения комплектов для самостоятельной сборки небольшой мощности, например, комплект из 36 поликристаллических пластин в 76 Вт по 2550 рос. руб. или 63 Вт по 2300 рос. руб. Некоторые покупали фотоэлементы на Ebay. Там можно найти комплекты фотоэлементов значительно дешевле. Но при этом понадобится зарегистрироваться на Ebay, долларовая карта Visa Classic, регистрация в системе Pay Pal и привязка к системе своей долларовой карты. Там же можно приобрести абсолютно рабочие элементы, но отбракованные по каким-либо причинам в промышленности (B- тип). В этом варианте почему-то никто не говорит о доставке, однако этот вопрос тоже надо учитывать. Доставка может составить порядка 30$.

Какие типы фотоэлементов выбрать?

Все предлагаемые фотоэлектрические преобразователи, как правило, двух типов: поликристаллические и монокристаллические. Монокристаллические имеют более длительный срок эксплуатации (до 30 лет), однако при изменении прямого попадания солнечных лучей, облачности значительно снижается мощность. В этом плане поликристаллические элементы более устойчивые к изменениям погодных условий. Но у них меньше срок эксплуатации (около 20 лет) и более низкий КПД, равный 7-9%. Монокристаллические имеют КПД, равный 13%.

Что необходимо предусмотреть?

В первую очередь необходимо определиться с установленной мощностью. Подсчитать всю свою нагрузку, которая будет питаться от солнечных батарей. Отсюда будет понятно, сколько фотоэлементов необходимо купить, и сколько понадобиться площади для их установки. В дальнейшем их можно наращивать. Важной составляющей является и угол наклона панели. Естественно они должны находиться на максимально солнечной стороне дома. Необходимо предусмотреть механическое изменение угла наклона, это позволит более эффективно использовать панели. Например, зимой во избежание налипания снега угол наклона практически вертикальный.

Каркас солнечных батарей

В качестве прозрачной поверхности вполне подойдет оргстекло, есть примеры применения и обычного стекла. Здесь исходят из того, чтобы поверхность не пропускала ИК-спектр, это позволит снизить нагрев самих солнечных элементов. В качестве корпуса зачастую используют алюминиевые уголки, но встречаются и другие материалы (фанера, ДСП и т.д.).

В продаже часто встречаются элементы с уже припаянными проводниками, но может быть и не так. Паять придется в любом случае, но в первом варианте задача значительно упрощается. Тем более что фотоэлементы хрупкие, и действовать нужно аккуратно. Элементы могут лопаться, не стоит их складывать один на одного, т.к. это может вызвать трещины нижних элементов. Предварительно наносится флюс и припой.

Схема сборки солнечных батарей своими руками


После того, как готов каркас и пайка, приступают к сборке панели. Фотоэлементы аккуратно переносят на лицевую поверхность. Между ними должно сохраняться небольшое расстояние (примерно 5 мм). В принципе, элементы можно сразу перенести на лицевую сторону, и там паять, думаю, так даже удобнее. Затем крайние элементы припаиваются к шинам. Они есть в наборах, более широкие проводники. Выводится «плюс» и «минус».

Во многих источниках говорят о выводе« средней точки», которая позволит установить шунтирующие диоды на каждую половину панели. Это не даст батареи разряжаться в темное время суток или в пасмурную погоду. В качестве диодов используют диоды Шотке.

Герметизация

Перед герметизацией советуют протестировать панель, чтобы проверить качество пайки. За рубежом для герметизации используются компаунды, которые стоят у нас довольно прилично. Вполне можно обойтись и силиконовым герметиком. Сначала можно зафиксировать всю систему по краям и в середине, а затем залить расстояние между элементами герметиком. Тыльную сторону можно покрыть акриловым лаком, смешав его предварительно с герметиком.Пример изготовления солнечной батареи можно посмотреть на этом видео. Для сборки использовалось 36 пластин (4 цепочки по 9 элементов в каждой).

Альтернативной энергетикой сейчас занимаются не только специалисты. Варианты автономных источников питания интересуют и любителей, которые дружат с электро- и радиотехникой. Применительно к солнечным батареям главная сложность в реализации проекта – их высокая цена. А если учесть, что для частного дома понадобится несколько панелей, то некоторый скепсис в плане их использования в быту становится понятен.

Хотя есть неплохое решение для тех, кто привык все делать своими руками – собрать солнечную батарею из отдельных панелей. Например, китайских, которые стоят относительно недорого.

По опыту их практического применения можно сделать вывод, что они вполне оправдывают ожидания мастера. А если ориентироваться на комплект класса B (более дешевая продукция), то экономия при самостоятельной сборке источника питания достигается значительная.

Для получения образца в 145 Вт общим напряжением 18 В придется выложить за китайские панели (36 штук) около 3 100 рублей (если приобретать через Интернет, к примеру, на площадках Alibaba, Ebay) против 6 180 (стоимость готового аналога промышленного изготовления). Получается, есть смысл потратить время и сделать такую батарею.

Не только китайские, а все солнечные панели делятся на моно- (более дорогие) и поликристаллические (аморфные). В чем разница? Не вдаваясь в технологию изготовления, достаточно указать, что первые характеризуются однородной структурой. Поэтому их КПД выше, чем у аморфных аналогов (примерно 25% против 18%) и стоят они дороже.

Визуально их можно отличить по форме (показано на рисунке) и оттенку синего. Монокристаллические панели несколько темнее. Ну а есть ли смысл в экономии на мощности, решать придется самостоятельно. К тому же следует учесть, что производством недорогих поликристаллических панелей в Китае занимаются в основном мелкие фирмы, экономящие буквально на всем, в том числе, и на исходных материалах. Это напрямую отражается не только на себестоимости, но и на качестве продукции.

Все фотоэлементы соединяются в единую энергетическую цепочку проводниками. В зависимости от типа панелей, они могут быть уже зафиксированы по месту или отсутствовать. Значит, припаивать их придется своими руками. Все кристаллические образцы довольно хрупкие, и обращаться с ними нужно крайне аккуратно.

Если нет должных навыков работы паяльником, то лучше приобрести панели класса A (более дорогие). Покупая дешевые аналоги (B), желательно взять хотя бы один в запас. Практика сборки солнечных батарей показывает, что повреждений точно не избежать, поэтому лишняя панель однозначно понадобится.

При определении потребного количества фотоэлементов можно ориентироваться на такие данные. 1 м² панелей дает примерно 0,12 кВт/час электроэнергии. Статистика эн/потребления показывает, что для небольшой семьи (4 человека) в месяц достаточно порядка 280 – 320 кВт.

Солнечные панели продаются в двух возможных вариантах – с восковым покрытием (для предохранения от повреждений при транспортировке) и без него. Если панели с защитным слоем, то их придется подготовить к сборке.

Что необходимо сделать?

  • Распаковать товар.
  • Погрузить комплект в горячую воду. Примерная температура – 90±5 0С. Главное, чтобы это не был кипяток, иначе панели частично деформируются.
  • Разъединить образцы. Признаки того, что воск растаял, заметны визуально.
  • Обработать каждую панель. Технология простая – поочередное погружение их в воду горячую мыльную, потом – чистую. Процедура «омовения» продолжается до тех пор, пока на поверхности не останется следов воска.
  • Просушить. Раскладывать панели следует на мягкой ткани. К примеру, на махровой скатерти.

Порядок сборки

Специфика изготовление каркаса

По сути, это традиционная простейшая рама, материал для которой выбирается в зависимости от места расположения батареи. Обычно на тематических сайтах указывается алюминиевый уголок или древесина. Целесообразность использования последней (при всем уважении к авторам статей) вызывает определенные сомнения. Основная причина – в особенностях любого дерева. Она заключается в содержании влаги, независимо от степени осушки.

Сколько бы процентов ее ни было, скручивания, а то и растрескивания дерева не избежать. С учетом хрупкости панелей – не вариант, однозначно. Долго такая , даже при закреплении на окне внутри строения, не прослужит.

Монтаж батареи

Размеры рамы выбираются исходя из линейных параметров панелей. Горизонтальная ориентация или вертикальная – это зависит от специфики установки батареи, и принципиального значения не имеет.

На каркас крепится лист стекла или поликарбоната (только не ячеистого, а монолитного). Он выполняет защитную функцию, предохраняя фотоэлементы от механического разрушения.

На него, с внутренней стороны каркаса, наносятся капли силиконового герметика (по центру панелей), или он намазывается тончайшим слоем. Рекомендации по использованию смолы (эпоксидной) вряд ли заслуживают внимания, так как о ремонтопригодности батареи в этом случае говорить не приходится.

В раму укладывается расчетное количество панелей (сборка делается заранее). Одна дает напряжение порядка 0,5 В (небольшое отклонение номинала не в счет). Здесь важно не перепутать, где лицевая сторона изделий, а где тыльная.

Задняя часть закрывается мягким съемным матом. Для его изготовления своими руками можно взять поролон (4 см, как минимум) и пленку п/э. Соединяются ее кромки скотчем или спаиваются (если есть специальная машинка).

На этом работа не заканчивается. Между стеклом (поликарбонатом) и панелями останутся воздушные пузырьки, которые снижают эффективность солнечной батареи. Их необходимо удалить. Для этого на мат укладывается плотный материал. Например, фрагмент, подобранный по размерам каркаса, толстой (многослойной) фанеры.

Сверху – груз, вес которого достаточный, чтобы панели слегка придавить. В таком положении батарея оставляется на полсуток, не менее. Здесь следует ориентироваться на ее габариты и равномерность распределения нагрузки.

По истечении этого времени гнет, фанера и мат демонтируются. Сразу же крепить батарею по месту установки нельзя. Понадобится еще некоторое время, чтобы герметик окончательно просох.

Вместо мата можно использовать и иную мягкую подложку. К примеру, опилки, стружку.

Завершающий этап – изготовление задней стенки и ее постановка на место. Для этого берется ДСП, ДВП, фанера, но обязательно с той же подложкой, чтобы защитить панели от деформации.

Особенности сборки схемы

Спайка пластин – процесс сложный, требующий кропотливости и внимательности. Лучше работать паяльником маломощным (24 – 36 Вт). Если используется распространенный в быту на 65, то его следует включать через ограничительное сопротивление. Простейший вариант – последовательное присоединение лампочки-«стоваттки».

Но это не все. Необходимо исключить саморазряд батареи (ночью, в ненастную погоду). Это обеспечивается включением в схему п/п диодов. В качестве проводника (для выводов) целесообразно использовать кабель акустический, который на панели также фиксируется герметиком.

Вариант пленочной солнечной батареи (есть и такой) не рассматривается. Несмотря на некоторые достоинства, у него есть ряд существенных минусов – низкий КПД и необходимость укладки на больших площадях. Для частного дома решение неприемлемое.

Электричество – незаменимая часть нашей жизни. Но вместе с тем это дорогое удовольствие, которое наносит вред окружающей среде. Чтобы получать бесперебойное освещение, тепло и работу всех электрических приборов, весь мир использует солнечные батареи. Собрать конструкцию достаточно легко, можно самостоятельно справиться с поставленной задачей.

Многие начинают устанавливать на своих домах солнечные батареи, которые позволяют абсолютно бесплатно получать электроэнергию. Достаточно просто сделать солнечный модуль самостоятельно, потратив небольшую сумму на материалы. Но для начала необходимо разобраться, как работает панель из подручных материалов.

Схема солнечной батареи:

  • Коллектор;
  • Аккумулятор;
  • Инвертор.

Коллектор представляет собой конструктор из небольших по размеры деталей. Работа устройства заключается в преображении солнечной энергии в поток электронов положительного и отрицательного заряда. Высокого напряжения ток типовые детали вырабатывать не в силе.

Нормой считается формирование одного элемента – 0,5 Вт. Солнечный коллектор должен крафтится ток напряжением в 18 Вт. Этой энергии хватит для зарядки аккумулятора мощностью 12 Вт. Для больших зарядов потребуется большая площадь модуля.

Аккумуляторы для солнечных батарей для дома или дачи обеспечивают нужно количество электрической энергии. Заряда одного модуля не хватит. Но многое зависит от приборов, которые работают от мощности солнечной панели.

Количество аккумуляторов со временем потребуется увеличить. Вместе с этим необходимо приобретать и коллекторы. Для одной системы можно взять больше 10 аккумуляторов.

Аккумуляторы и инверторы потребуется купить в специализированном магазине или на рынке. Но саму солнечную батарею можно соорудить из подручных материалов.

Принцип работы инвертора заключается в переработке добытого тока в электрическую энергию. При покупке устройства необходимо учитывать характеристику элемента. Мощность прибора должна составлять не менее 4кВт.

Сделать безопасный и практичный ветрогенератор можно самостоятельно. Что для этого необходимо узнавайте в следующем материале:

Монтаж солнечных батарей своими руками: расчетные работы

Раму для солнечных батарей можно сделать самостоятельно из подручных материалов, что поможет сэкономить. Но можно и приобрести готовый вариант. Для самостоятельно изготовления лучше всего использовать дюралюминий. Но можно специально подготовить и другой материал, который покрывается особенной защитой.

Для зарядного тока в 3,6 А потребуется соединить параллельно 3 цепочки. Для этого количество необходимых деталей умножается на 3 цепочки. Если умножить данный показатель на цену, то можно узнать стоимость панели.

Детали на солнечной панели необходимо соединять параллельно-последовательно. Стоит соблюдать равное количество элементов в каждой цепочке.

На деле полученный расчет будет меньше, так как солнце неравномерно светит на протяжении всего дня. Для полноценного заряда потребуется соединить вместе несколько панелей. Так получится 6 рядов элментов.

Необходимые инструменты для работы:

  • Сварочный аппарат;
  • Канифоль;
  • Монтажный провод;
  • Герметик на основе силикона;
  • Двусторонний скотч.

Количество инструментов может меняться. Чтобы разместить все элементы на раме, потребуется модуль размером 90х50 см. Если в готовых рамах другие размеры, то можно провести иные расчеты.

Подбор и пайка солнечных элементов

Геопанель должна работать при температуре 70-90 градусов. Но контролировать данный показатель бывает непросто. Именно поэтому в раме потребуется проделать отверстия для вентиляции. Их диаметр приблизительно 10 мм. Элементы для батареи придется спаять самому.

Для приобретения набора элементов для пластин потребуется потратить определенную сумму. Но в итоге все равно выйдет дешевле, чем те варианты, что выпускает Мариуполь и другие заводы. Это кремниевые пластины, способные перерабатывать солнечную энергию в электричество. Для их производства используется поликристаллический кремний.

Пайка деталей включает такие этапы:

  1. Проводники необходимо нарезать согласно заготовкам;
  2. Элементы устанавливаются на нужных местах;
  3. На контакты наносят припой и кислоту;
  4. Дальше происходит фиксация проводников;
  5. Затем начинают паять.

Перед работой стоит учесть, что перевертывать сваренную конструкцию бывает непросто. Именно с этой целью сначала спаиваются элементы, а затем ряды. На крайних элементах делают шину на минус и плюс. Выводящая проводка оснащается изоляцией. Наружная сторона рамы оборудована клеммой.

Если возникают трудности при пайке, то можно обработать контакты нулевой наждачной бумагой.

После соединения элементов следует проверить их работоспособность. Для этого используют тестер. Оптимальные показатели прибора – 17-19 Вт. Данное мероприятие проводят несколько дней и только после этого переходят к герметизации.

На раму наносят герметик и монтируют оргстекло. Нужно выделить время, чтобы силикон высох. К раме оргстекло прикрепляется с помощью саморезов. Все швы также необходимо заполнить герметиком.

Сборка солнечной панели своими руками

После спайки собираем все элементы воедино. Для начала необходимо разобраться с инверторами. Они перерабатывают ток и меняют его напряжение.

Виды инверторов:

  1. Системные – дополнительный . При создании энергии в комплексе с центральным источником электроэнергии, аккумуляторы совсем не потребуются.
  2. Гибридные – подходит в качестве основного источника, но от центральной подачи отказываться все равно не стоит. Такие инверторы способны не только перерабатывать энергию, но и накапливать ее.
  3. Автономные – используются без центрального энергоснабжения. Монтируется с необходимым количеством аккумуляторов.

Количество аккумулятор для дома придется рассчитать, исходя из требуемой мощности. Также играет роль количество панелей и высота их установки. Чем выше смонтировать солнечную батарею, тем лучше.

Для домашних нужд семьи необходимо 4 кВт.

К аккумулятору солнечная батарея подключается при помощи диода. Такое мероприятие не позволит батареи разрядиться за ночь. Для исключения перезарядки и закипания приборов приобретается контроллер заряда.

Способ, как сделать солнечную батарею в домашних условиях

Чтобы сделать солнечную панель своими руками в домашних условиях, необходимо запастись нужными материалами. Потребуется медный лист, пластиковая бутылка без горлышка, кухонная соль, теплая вода и 2 зажима. Из инструментов пригодится тестер, электроплита и наждачная бумага.

Последовательная сборка солнечной батареи:

  1. Отрезаем кусок металла подходящего размера для размещения на спирали электрической плиты.
  2. На плите медь нагреется и почернеет. Спустя полчаса можно снять материал.
  3. Медь должна остыть. Материал начнет сжиматься и окись отслоится.
  4. После остывания меди, материал моет в теплой воде.
  5. Дальше начинается изготовление солнечной панели. Отрезаем еще одну медную пластину. Сжимаем 2 части и помещаем в бутылку. Медные части не должны контактировать между собой.
  6. Фиксируем материал с помощью зажимов.
  7. Подсоединяем провода к плюсам и минусам.
  8. В бутыль помещаем соленую воду. При этом жидкость не должна доставать к меди несколько сантиметров.

Такая простая конструкция способна работать даже без солнечной энергии. Но это достаточно простая панель. Подходит она для зарядки мобильника, не более. Проверить работоспособность модуля можно с помощью тестера.

Солнечные батареи своими руками из подручных средств

Многие выполняют отличные солнечные модули из подручных средств. Для работы можно использовать жестяные банки. При этом материал таких бутылок – обязательно алюминий.

Как сделать солнечную батарею из пивных банок:

  1. Сначала необходимо подготовить материал. Для этого банки промываются. Дно следует пробить, чтобы отобрать тепло.
  2. Поверхности материала следует обезжирить.
  3. Банки склеиваются между собой.

Для каркаса солнечного модуля потребуется основание, деревянная рама и оргстекло. Подложка основы выполняется из фольги. Это усилит светоотражающую функцию основы.

Использование солнечной энергии в качестве источника электроэнергии несет экологическую безопасность. Использование подручных средств позволяет сэкономить на обустройстве солнечного модуля. От такого в выигрыше остаются все.

Сборка солнечных батарей своими руками (видео)

Изготовить солнечную батарею сможет каждый желающий. Для этого не требуется особых навыков и материалом. Самодельные приборы выполняют из подручных средств. Но, если делать серьезную панель, то придется приобрести аккумуляторы и инверторы.