Цезий тяжелый металл. Знаешь как

Тает в руках, но не снег – загадка из раздела «химия». Отгадка – цезий . Температура плавления этого металла равна 24,5 градусам Цельсия. Вещество, буквально утекающее сквозь пальцы, открыто в 1860-ом году. Цезий стал первым элементом, обнаруженным с помощью спектрального анализа.

Провели его Роберт Бунзен и Густав Киргоф. Химики изучали воды минеральных источников в Дюркхейме. Обнаружили магний, литий, кальций, . Напоследок, поместили каплю воды в спектроскоп и увидели две линии синего цвета – свидетельство присутствия неизвестного вещества.

Для начала выделили его хлороплатинат. Ради 50 граммов переработали 300 тонн минеральной воды. С названием нового металла мудрить не стали. С латинского «цезий» переводится как «голубой».

Химические и физические свойства цезия

В спектроскопе металл лучится ярко-синий. В реальности же элемент схож с , немного светлее его. В жидком состоянии желтизна цезия уходит, расплав становится серебристым. Добыть сырье для опытов непросто.

Из металлов элемент самый редкий и рассеянный в земной коре. В природе встречается лишь один изотоп – цезий 133 . Он полностью устойчив, то есть не подвержен радиоактивному распаду.

Радиоактивные изотопы металла получены искусственно. 135-ый цезий – долгожитель. Период его полураспада приближается к 3 000 000 лет. Цезий 137 наполовину распадается за 33,5 года. Изотоп признан одним из основных источников загрязнения биосферы.

В нее нуклид попадает из сбросов заводов, атомных станций. Период полураспада цезия позволяет ему проникать в воды, почву, растения, накапливаться в них. Особенно много 137-го изотопа в пресноводных водорослях и лишайниках.

Будучи самым редким из металлов, цезий является еще и самым активным. Элемент щелочной, расположен в главной подгруппе 1-ой группы периодической системы, что уже обязывает вещество легко вступать в химические реакции. Их течение усиливает присутствие воды. Так, на воздухе атом цезия взрывается из-за нахождения ее паров в атмосфере.

Взаимодействие с водой сопровождается взрывом, даже если она замерзшая. Реакция со льдом возможна при -120-ти градусах Цельсия. Сухой лед – не исключение. Взрыв неизбежен и при контакте цезия с кислотами, простыми спиртами, галогенидами тяжелых металлов галогенами органического типа.

Взаимодействия легко запускаются по 2-м причинам. Первая – сильный отрицательный электрохимический потенциал. То есть, атом заряжен отрицательно, стремится притянуть к себе иные частицы.

Вторая причина – площадь поверхности цезия при реакциях с другими веществами. Тая в комнатных условиях, элемент растекается. Получается, что для взаимодействия открыто большее число атомов.

Активность элемента привела к отсутствии его чистой формы в природе. Встречаются лишь соединения, к примеру, . В их числе: хлорид цезия , фторид, йодит, азит, цианит, бромид и карбонат цезия . Все соли 55-го элемента легко растворяются в воде.

Если же работа ведется с гидроксидом цезия , бояться нужно не его растворения, а того, что он сам способен разрушить, к примеру, стекло. Его структура нарушается реагентом уже при комнатной температуре. Стоит повысить градус, гидроксид не пощадит и кобальт, , корунд, и железо.

Реакции проходят особенно быстро в кислородной среде. Противостоять гидроксиду цезия способен только . Во взаимодействие с 55-ым элементом не вступает и азот. Азит цезия получают только косвенным путем.

Применение цезия

Цезий, формула которого обеспечивает низкую работу выхода электрона, пригождается при изготовлении фотоэлементов. В приборах на основе 55-го вещества затраты на получение тока минимальны. Чувствительность же к излучению, напротив, максимальна.

Чтобы фотоэлектрическое оборудование не стоило запредельно из-за редкости цезия, его сплавляют с , , , . Как источник тока цезий применяется в топливных элементах. Твердый электролит на основе 55-го металла – часть автомобилей и высокоэнергоемких аккумуляторов.

Применяют 55-ый металл и в счетчиках заряженных частиц. Для них закупают йодит цезия. Активированный таллием, он регистрирует почти любые излучения. Цезиевые детекторы приобретают для атомных предприятий, геологической разведки, медицинских клиник.

Пользуются приборами и космической отрасли. В частности, «Марс-5» изучил элементарный состав поверхности красной планеты именно благодаря гамма-спектрометру на основе цезия.

Способность улавливать инфракрасные лучи – причина для применения в оптике. В нее добавляют бромид цезия и оксид цезия . Он есть в биноклях и очках ночного видения, оружейных прицелах. Последние, срабатывают даже из космоса.

137-ой изотоп элемента тоже нашел достойное применение. Радиоактивный нуклид не только загрязняет атмосферу, но и стерилизует продукты, точнее, тару для них. Полураспад цезия долог. Можно обработать миллионы консервов. Порой, стерилизуют и мясо – туши птиц и .

Обрабатывать 137-ым изотопом можно и медицинские инструменты, лекарства. Нуклид нужен и в самом лечении, если дело касается опухолей. Метод называется радиотерапией. Препараты с цезием дают и при шизофрении, дифтерии, язвенных заболеваниях, некоторых видах шока.

Металлурги нуждаются в чистом элементе. Его примешивают к сплавам и . Добавка повышает их жаропрочность. У , к примеру, она увеличивается втрое при цезия всего в 0,3%.

Растет и прочность на разрыв, стойкость к коррозии. Правда, промышленники ищут альтернативу 55-му элементу. Слишком уж он дефицитен, не выгоден в цене.

Добыча цезия

Металл выделяют из поллуцита. Это водный алюмосиликат и цезия. Минералов, содержащих 55-ый элемент единицы. В поллуците процентовка цезия делает добычу экономически обоснованной. Немало металла и в авогардите. Однако, этот камень сам столь же редок, как и цезий.

Промышленники вскрывают поллуцит хлоридами или сульфатами . Цезий из камня выделяют, погружая его в подогретую соляную кислоту. Туда же засыпают хлорид сурьмы. Образуется осадок.

Его промывают горячей водой. Итог операций – хлорид цезия. При работе с сульфатом, поллуцит погружают в серную кислоту. На выходе образуются алюмоцезиевые квасцы.

В лабораториях применяют другие методы получения 55-го элемента. Их 3, все трудоемки. Можно нагреть дихромат и хромат цезия с цирконием. Но, для этого требуется вакуум. Он нужен и для разложения азида цезия. Без вакуума обходятся лишь при нагреве специально подготовленного кальция и хлорида 55-го металла.

Цена цезия

В России добычей и переработкой поллуцита занимается Завод редких металлов в Новосибирске. Продукцию предлагает и Горно-обогатительный комбинат Ловозерска. Последний предлагает цезий в ампулах по 10 и 15 миллиграммов.

Они идут в пачках по 1000 штук. Минимальная цена – 6000 рублей. Севредмет тоже торгует ампулами, но готов осуществлять поставки меньших объемов, — от 250-ти граммов.

Если чистота металла 99,9%, за один грамм, как правило, просят в районе 15-20-ти долларов США. Речь идет об устойчивом 133-ем изотопе 55-го элемента периодической системы .

ОПРЕДЕЛЕНИЕ

Цезий расположен в шестом периоде I группе главной (A) подгруппе Периодической таблицы.

Относится к семейству s -элементов. Металл. Обозначение - Cs. Порядковый номер - 55. Относительная атомная масса - 132,95 а.е.м.

Электронное строение атома цезия

Атом цезия состоит из положительно заряженного ядра (+55), внутри которого есть 55 протонов и 78 нейтронов, а вокруг, по шести орбитам движутся 55 электронов.

Рис.1. Схематическое строение атома цезия.

Распределение электронов по орбиталям выглядит следующим образом:

55Cs) 2) 8) 18) 18) 8) 1 ;

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 6 6s 1 .

Внешний энергетический уровень атома цезия содержит 1 электрон, который является валентным. Возбужденного состояния нет. Энергетическая диаграмма основного состояния принимает следующий вид:

Валентный электрон атома цезия можно охарактеризовать набором из четырех квантовых чисел: n (главное квантовое), l (орбитальное), m l (магнитное) и s (спиновое):

Подуровень

Примеры решения задач

ПРИМЕР 1

Задание Атому элемента марганец отвечает сокращенная электронная формула:
  1. [ 18 Ar]3d 5 4s 2 ;
  2. [ 18 Ar, 3d 10 ]4s 2 4p 5 ;
  3. [ 10 Ne]3s 2 3p 5 ;
  4. [ 36 Кr]4d 5 5s 2 ;
Решение Будем по очереди расшифровывать сокращенные электронные формулы, чтобы обнаружить ту, которая соответствует атому марганца в основном состоянии. Порядковый номер этого элемента равен 25.

Запишем электронную конфигурацию аргона:

18 Ar1s 2 2s 2 2p 6 3s 2 3p 6 .

Тогда, полная ионная формула будет иметь вид:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2 .

Общее количество электронов в электронной оболочке совпадает с порядковым номером элемента в Периодической таблице. Оно равно 25. Такой порядковый номер имеет марганец.

Ответ Вариант 1

ОПРЕДЕЛЕНИЕ

Цезий - пятьдесят пятый элемент Периодической таблицы. Обозначение - Cs от латинского «caesium». Расположен в шестом периоде, IA группе. Относится к металлам. Заряд ядра равен 55.

Цезий встречается в природе в составе многочисленных минералов, наибольшее значение из которых имеют поллуцит (Cs,Na) 2 Al 2 Si 4 O 12 ×H 2 O и авогадрит (K,Cs)BF 4 . Известно, что он также входит в состав некоторых алюмосиликатов в виде примеси.

В виде простого вещества цезий представляет собой металл золотисто-желтого цвета (рис. 1) с объемно-центрированной кристаллической решеткой. Плотность - 1,9 г/см 3 . Температура плавления 28,4 o С, кипения - 685 o С. Мягкий, легко режется ножом. На воздухе самовоспламеняется.

Рис. 1. Цезий. Внешний вид.

Атомная и молекулярная масса цезия

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии цезий существует в виде одноатомных молекул Cs, значения его атомной и молекулярной масс совпадают. Они равны 132,9054.

Изотопы цезия

Известно, что в природе цезий может находиться в виде единственного стабильного изотопа 133 Cs. Массовое число равно 133, ядро атома содержит пятьдесят пять протонов и семьдесят восемь нейтронов.

Существуют искусственные нестабильные изотопы цезия с массовыми числами от 112-ти до 151-го, среди которых наиболее долгоживущим является изотоп 135 Cs с периодом полураспада равным 2,3 млн. лет.

Ионы цезия

На внешнем энергетическом уровне атома цезия имеется один электрон, который является валентным:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5р 6 6s 1 .

В результате химического взаимодействия цезий отдает свой валентный электрон, т.е. является его донором, и превращается в положительно заряженный ион:

Cs 0 -1e → Cs + .

Молекула и атом цезия

В свободном состоянии цезий существует в виде одноатомных молекул Cs. Приведем некоторые свойства, характеризующие атом и молекулу цезия:

Сплавы цезия

Цезий используют в виде сплавов с сурьмой, кальцием, барием, алюминием и серебром в качестве фотоэлементов.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Рассчитайте массовые доли элементов, входящих в состав оксида цезия, если его молекулярная формула имеет вид Cs 2 O.
Решение Массовая доля элемента в составе какой-либо молекулы определяется по формуле:

ω (Х) = n × Ar (X) / Mr (HX) × 100%.

В природном цезии не удалось обнаружить какие-либо иные изотопы, кроме стабильного 133 Cs. Известно 33 радиоактивных изотопа цезия с массовыми числами от 114 до 148. В большинстве случаев они недолговечны: периоды полураспада измеряются секундами и минутами, реже – несколькими часами или днями. Однако три из них распадаются не так быстро – это 134 Cs, 137 Cs и 135 Cs с периодами полураспада 2 года, 30 лет и 3·10 6 лет. Все три изотопа образуются при распаде урана, тория и плутония в атомных реакторах или в ходе испытаний ядерного оружия.

Степень окисления +1.

В 1846 в пегматитах о.Эльба в Тирренском море был открыт силикат цезия – поллуцит. При изучении этого минерала неизвестный в то время цезий был принят за калий. Содержания калия вычислялось по массе соединения платины, с помощью которого элемент переводили в нерастворимое состояние. Так как калий легче цезия, то подсчет результатов химического анализа показывал нехватку около 7%. Эта загадка была разрешена только после открытия спектрального метода анализа немецкими учеными Робертом Бунзеном и Густавом Кирхгоффом в 1859. Бунзен и Кирхгофф открыли цезий в 1861. Первоначально он был найден в минеральных водах целебных источников Шварцвальда. Цезий стал первым из элементов, открытых методом спектроскопии. Его название отражает цвет наиболее ярких линий в спектре (от латинского caesius – небесно-голубой).

Первооткрывателям цезия не удалось выделить этот элемент в свободном состоянии. Металлический цезий был впервые получен только через 20 лет, в 1882, шведским химиком К.Сеттербергом (Setterberg C.) при электролизе расплавленной смеси цианидов цезия и бария, взятых в отношении 4:1. Цианид бария добавлялся для снижения температуры плавления, однако работать с цианидами было трудно ввиду их высокой токсичности, а барий загрязнял конечный продукт, да и выход цезия был весьма мал. Более рациональный способ был найден в 1890 известным русским химиком Н.Н.Бекетовым , предложившим восстанавливать гидроксид цезия металлическим магнием в потоке водорода при повышенной температуре. Водород заполнял прибор и препятствовал окислению цезия, который отгонялся в специальный приемник, однако и в этом случае выход цезия не превышал 50% от теоретического.

Цезий в природе и его промышленное извлечение.

Цезий относится к редким элементам. Он встречается в рассеянном состоянии (порядка тысячных долей процента) во многих горных породах; ничтожные количества этого металла были обнаружены и в морской воде. В большей концентрации (до нескольких десятых процента) он содержится в некоторых калиевых и литиевых минералах, главным образом, в лепидолите. В отличие от рубидия и большинства других редких элементов, цезий образует собственные минералы – поллуцит, авогадрит и родицит.

Родицит крайне редок. Его часто относят к литиевым минералам, так как в его состав (М 2 O·2Al 2 O 3 ·3B 2 O 3 , где М 2 O – сумма оксидов щелочных металлов) лития обычно входит больше, чем цезия. Авогадрит (K,Cs) тоже редок. Больше всего цезия содержится в поллуците (Cs,Na)·n H 2 O (содержание Cs 2 O составляет 29,8–36,7% по массе).

Данные по мировым ресурсам цезия очень ограничены. Их оценки основаны на поллуците, добываемом в качестве побочного продукта вместе с другими пегматитовыми минералами.

По добыче поллуцита лидирует Канада. В месторождении Берник-Лейк (юго-восточная Манитоба) сосредоточено 70% мировых запасов цезия (ок. 73 тыс. т). Поллуцит добывают также в Намибии и Зимбабве, ресурсы которых оценивают в 9 тыс. т и 23 тыс. т цезия, соответственно. В России месторождения поллуцита находятся на Кольском п-ове, в Восточных Саянах и Забайкалье. Имеются они также в Казахстане, Монголии и Италии (о. Эльба).

Чтобы вскрыть этот минерал и перевести ценные компоненты, в растворимую форму его обрабатывают при нагревании концентрированными минеральными кислотами. Если поллуцит разлагают соляной кислотой, то из полученного раствора действием SbCl 3 осаждают Cs 3 , который затем обрабатывают горячей водой или раствором аммиака. При разложении поллуцита серной кислотой получают алюмоцезиевые квасцы CsAl(SO 4) 2 ·12H 2 O.

Используют и другой способ: поллуцит спекают со смесью оксида и хлорида кальция, спек выщелачивают в автоклаве горячей водой, раствор выпаривают досуха с серной кислотой, а остаток обрабатывают горячей водой. После отделения сульфата кальция из раствора выделяют соединения цезия.

Современные методы извлечения цезия из поллуцита основаны на предварительном сплавлении концентратов с избытком извести и небольшим количеством плавикового шпата. Если процесс вести при 1200° C, то почти весь цезий возгоняется в виде оксида Cs 2 O. Этот возгон загрязнен примесью других щелочных металлов, однако он растворим в минеральных кислотах, что упрощает дальнейшие операции. Металлический цезий извлекают, нагревая до 900° С смеси (1:3) измельченный поллуцит с кальцием или алюминием.

Но, в основном, цезий получают как пробочный продукт при производстве лития из лепидолита. Лепидолит предварительно сплавляют (или спекают) при температуре около 1000° С с гипсом или сульфатом калия и карбонатом бария. В этих условиях все щелочные металлы превращаются в легкорастворимые соединения – их можно выщелачивать горячей водой. После выделения лития остается переработать полученные фильтраты, и здесь самая трудная операция – отделение цезия от рубидия и громадного избытка калия.

Для разделения цезия, рубидия и калия и получения чистых соединений цезия применяют методы многократной кристаллизации квасцов и нитратов, осаждения и перекристаллизации Cs 3 или Cs 2 . Используют также хроматографию и экстракцию. Для получения соединений цезия высокой чистоты применяют полигалогениды.

Бóльшую часть производимого цезия выделяют в ходе получения лития, поэтому когда в 1950-х литий начали использовать в термоядерных устройствах и широко применять в автомобильных смазках, добыча лития, как и цезия возросла и соединения цезия стали доступнее, чем прежде.

Данные по мировому производству и потреблению цезия и его соединений не публикуются с конца 1980-х. Рынок цезия небольшой, и его ежегодное потребление оценивается всего лишь в несколько тысяч килограммов. В результате нет торговли и официальных рыночных цен.

Характеристика простого вещества, промышленное получение и применение металлического цезия.

Цезий – золотисто-желтый металл, один из трех интенсивно окрашенных металлов (наряду с медью и золотом). После ртути – это самый легкоплавкий металл. Плавится цезий при 28,44° С, кипит при 669,2° С. Его пары окрашены в зеленовато-синий цвет.

Легкоплавкость цезия сочетается с большой легкостью. Несмотря на довольно большую атомную массу элемента, его плотность при 20° С составляет всего 1,904 г/см 3 . Цезий много легче своих соседей по Периодической таблице. Лантан, например, имеющий почти такую же атомную массу, по плотности превосходит цезий в три с лишним раза. Цезий всего вдвое тяжелее натрия, в то время как их атомные массы относятся, как 6:1. По-видимому, причина этого кроется в электронной структуре атомов цезия (один электрон на последнем s -подуровне), приводящей к тому, что металлический радиус цезия очень велик (0,266 нм).

У цезия есть еще одно весьма важное свойство, связанное с его электронной структурой, – он теряет свой единственный валентный электрон легче, чем любой другой металл; для этого необходима очень незначительная энергия – всего 3,89 эВ, поэтому, например, получение плазмы из цезия требует гораздо меньших энергетических затрат, чем при использовании любого другого химического элемента.

По чувствительности к свету цезий превосходит все другие металлы. Цезиевый катод испускает поток электронов даже под действием инфракрасных лучей с длиной волны 0,80 мкм. Максимальная электронная эмиссия наступает у цезия при освещении зеленым светом, тогда как у других светочувствительных металлов этот максимум проявляется лишь при воздействии фиолетовых или ультрафиолетовых лучей.

Химически цезий очень активен. На воздухе он мгновенно окисляется с воспламенением, образуя надпероксид CsO 2 с примесью пероксида Cs 2 O 2 . Цезий способен поглощать малейшие следы кислорода в условиях глубокого вакуума. С водой он реагирует со взрывом с образованием гидроксида CsOH и выделением водорода. Цезий взаимодействует даже со льдом при –116° C. Его хранение требует большой осторожности.

Цезий взаимодействует и с углеродом . Только самая совершенная модификация углерода – алмаз – в состоянии противостоять цезию. Жидкий расплавленный цезий и его пары разрыхляют сажу, древесный уголь и даже графит, внедряясь между атомами углерода и давая довольно прочные соединения золотисто-желтого цвета. При 200–500° С образуется соединение состава C 8 Cs 5 , а при более высоких температурах – C 24 Cs, C 36 Cs. Они воспламеняются на воздухе, вытесняют водород из воды, а при сильном нагревании разлагаются и отдают весь поглощенный цезий.

Даже при обычной температуре реакции цезия с фтором, хлором и другими галогенами сопровождаются воспламенением, а с серой и фосфором – взрывом. При нагревании цезий соединяется с водородом. С азотом в обычных условиях цезий не взаимодействует. Нитрид Cs 3 N образуется в реакции с жидким азотом при электрическом разряде между электродами, изготовленными из цезия.

Цезий растворяется в жидком аммиаке , алкиламинах и полиэфирах, образуя синие растворы, обладающие электронной проводимостью. В аммиачном растворе цезий медленно реагирует с аммиаком с выделением водорода и образованием амида CsNH 2 .

Сплавы и интерметаллические соединения цезия сравнительно легкоплавки. Аурид цезия CsAu, в котором между атомами золота и цезия реализуется частично ионная связь, является полупроводником n -типа.

Наилучшее решение задачи получения металлического цезия было найдено в 1911 французским химиком А.Акспилем. По его методу, до сих пор остающемуся наиболее распространенным, хлорид цезия восстанавливают металлическим кальцием в вакууме:

2CsCl + Ca → CaCl 2 + 2Cs

при этом реакция идет практически до конца. Процесс ведут при давлении 0,1–10 Па и температуре 700–800° С. Выделяющийся цезий испаряется и отгоняется, а хлористый кальций полностью остается в реакторе, так как в этих условиях летучесть соли ничтожна (температура плавления CaCl 2 равна 773° С). В результате повторной дистилляции в вакууме получается абсолютно чистый металлический цезий.

Описаны и многие другие способы получения металлического цезия из его соединений. Металлический кальций можно заменить его карбидом, однако при этом температуру реакции приходится повышать до 800° С, поэтому конечный продукт загрязняется дополнительными примесями. Проводят также электролиз расплава галогенида цезия с использованием жидкого свинцового катода. В результате получают сплав цезия со свинцом, из которого металлический цезий выделяют дистилляцией в вакууме.

Можно разлагать азид цезия или восстанавливать цирконием его дихромат, однако эти реакции иногда сопровождаются взрывом. При замене дихромата цезия хроматом процесс восстановления протекает спокойно, и хотя выход не превышает 50%, отгоняется очень чистый металлический цезий. Этот способ применим для получения небольших количеств металла в специальном вакуумном приборе.

Мировое производство цезия сравнительно невелико.

Металлический цезий – компонент материала катодов для фотоэлементов, фотоэлектронных умножителей, телевизионных передающих электронно-лучевых трубок. Фотоэлементы со сложным серебряно-цезиевым фотокатодом особенно ценны для радиолокации: они чувствительны не только к видимому свету, но и к невидимым инфракрасным лучам и, в отличие, например, от селеновых, работают безинерционно. В телевидении и кино широко распространены сурьмяно-цезиевые фотоэлементы; их чувствительность даже после 250 часов работы падает всего на 5–6%, они надежно работают в интервале температур от –30° С до +90° С. Из них составляют так называемые многокаскадные фотоэлементы; в этом случае под действием электронов, вызванных лучами света в одном из катодов, наступает вторичная эмиссия – электроны испускаются добавочными фотокатодами прибора. В результате общий электрический ток, возникающий в фотоэлементе, многократно усиливается. Усиление тока и повышение чувствительности достигаются также при заполнении цезиевых фотоэлементов инертным газом (аргоном или неоном).

Металлический цезий служит для изготовления специальных выпрямителей, во многих отношениях превосходящих ртутные. Его используют в качестве теплоносителя в ядерных реакторах, компонента смазочных материалов для космической техники, геттера в вакуумных электронных приборах. Металлический цезий проявляет и каталитическую активность в реакциях органических соединений.

Цезий используется в атомных стандартах времени. «Цезиевые часы» необыкновенно точны. Их действие основано на переходах между двумя состоянием атома цезия с параллельной и антипараллельной ориентацией собственных магнитных моментов ядра атома и валентного электрона. Этот переход сопровождается колебаниями со строго постоянными характеристиками (длина волны 3,26 см). В 1967 Международная генеральная конференция по мерам и весам установила: «Секунда – время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133».

В последнее время большое внимание уделяется цезиевой плазме, всестороннему изучению ее свойств и условий образования, возможно, она станет использоваться в плазменных двигателях будущего. Кроме того, работы по исследованию цезиевой плазмы тесно связаны с проблемой управляемого термоядерного синтеза. Многие считают, что целесообразно создавать цезиевую плазму, используя тепловую энергию атомных реакторов.

Хранят цезий в стеклянных ампулах в атмосфере аргона или стальных герметичных сосудах под слоем обезвоженного вазелинового масла. Утилизируют остатки металла обработкой пентанолом.

Соединения цезия.

Цезий образует бинарные соединения с большинством неметаллов. Гидриды и дейтериды цезия легко воспламеняются на воздухе, а также в атмосфере фтора и хлора. Неустойчивы, а иногда огнеопасны и взрывчаты соединения цезия с азотом, бором, кремнием и германием. Галогениды и соли большинства кислот более стабильны.

Соединения с кислородом . Цезий образует девять соединений с кислородом, имеющих состав от Cs 7 O до CsO 3 .

Оксид цезия Cs 2 O образует коричнево-красные кристаллы, расплывающиеся на воздухе. Его получают медленным окислением недостаточным (2/3 от стехиометрического) количеством кислорода. Остаток непрореагировавшего цезия отгоняют в вакууме при 180–200° С. Оксид цезия в вакууме при 350–450° С возгоняется, а при 500° С разлагается:

2Cs 2 O = Cs 2 O 2 + 2Cs

Энергично реагирует с водой, давая гидроксид цезия.

Оксид цезия является компонентом сложных фотокатодов, специальных стекол и катализаторов. Установлено, что при получении синтола (синтетической нефти) из водяного газа и стирола из этилбензола, а также при некоторых других синтезах добавление к катализатору незначительного количества оксида цезия (вместо оксида калия) повышает выход конечного продукта и улучшает условия процесса.

Гигроскопичные бледно-желтые кристаллы пероксида цезия Cs 2 O 2 можно получить окислением цезия (или его раствора в жидком аммиаке) дозированным количеством кислорода. Выше 650° С пероксид цезия разлагается с выделением атомарного кислорода и энергично окисляет никель, серебро, платину и золото. Пероксид цезия растворяется в ледяной воде без разложения, а выше 25° С реагирует с ней:

2Cs 2 O 2 + 2H 2 O = 4CsOH + O 2

В кислотах он растворяется с образованием пероксида водорода.

При сжигании цезия на воздухе или в кислороде образуется золотисто-коричневый надпероксид цезия CsO 2 . Выше 350° С он диссоциирует с выделением кислорода. Надпероксид цезия – очень сильный окислитель.

Пероксид и надпероксид цезия служат источниками кислорода и используются для его регенерации в космических и подводных кораблях.

Полуторный оксид «Cs 2 О 3 » образуется в виде темного парамагнитного порошка при осторожном термическом разложении надпероксида цезия. Его можно также получить окислением металла, растворенного в жидком аммиаке, или контролируемым окислением пероксида. Предполагается, что он является динадпероксидом-пероксидом [(Cs +)4(O 2 2–)(O 2 –) 2 ].

Оранжево-красный озонид CsО 3 можно получить при действии озона на безводный порошок гидроксида или пероксида цезия при низкой температуре. При стоянии озонид медленно разлагается на кислород и надпероксид, а при гидролизе он сразу превращается в гидроксид.

Цезий образует также субоксиды, в которых формальная степень окисления элемента существенно ниже +1. Оксид состава Cs 7 O имеет бронзовую окраску, его температура плавления равна 4,3° С, активно реагирует с кислородом и водой. В последнем случае образуется гидроксид цезия. При медленном нагревании Cs 7 O разлагается на Cs 3 O и цезий. Фиолетовые кристаллы Cs 11 O 3 плавятся с разложением при 52,5° С. Красно-фиолетовый Cs 4 O разлагается выше 10,5° С. Нестехиометрическая фаза Cs 2+x O меняет состав вплоть до Cs 3 O, который разлагается при 166° С.

Гидроксид цезия CsOH образует бесцветные кристаллы, которые плавятся при ° С. Температуры плавления гидратов еще ниже, например моногидрат CsOH·H 2 O плавится с разложением при 2,5° С, а тригидрат CsOH·3H 2 O – даже –5,5° С.

Гидроксид цезия служит катализатором синтеза муравьиной кислоты. С этим катализатором реакция идет при 300° С без высокого давления. Выход конечного продукта очень велик – 91,5%.

Галогениды цезия CsF, CsCl, CsBr, CsI (бесцветные кристаллы) плавятся без разложения, выше температуры плавления летучи. Термическая устойчивость понижается при переходе от фторида к иодиду; бромид и иодид в парах частично разлагаются на простые вещества. Галогениды цезия хорошо растворимы в воде. В 100 г воды при 25° С растворяется 530 г фторида цезия, 191,8 г хлорида цезия, 123,5 г бромида цезия, 85,6 г иодида цезия. Из водных растворов кристаллизуются безводные хлорид, бромид и иодид. Фторид цезия выделяется в виде кристаллогидратов состава CsF·n H 2 O, где n = 1, 1,5, 3.

При взаимодействии с галогенидами многих элементов галогениды цезия легко образуют комплексные соединения. Некоторые из них, например Cs 3 , используют для выделения и аналитического определения цезия.

Фторид цезия применяют для получения фторорганических соединений, пьезоэлектрической керамики, специальных стекол. Хлорид цезия – электролит в топливных элементах, флюс при сварке молибдена.

Бромид и иодид цезия широко используются в оптике и электротехнике. Кристаллы этих соединений прозрачны для инфракрасных лучей с длиной волны от 15 до 30 мкм (CsBr) и от 24 до 54 мкм (CsI). Обычные призмы из хлорида натрия пропускают лучи с длиной волны 14 мкм, а из хлорида калия – 25 мкм, поэтому применение бромида и иодида цезия вместо хлоридов натрия и калия сделало возможным снятие спектров сложных молекул в отдаленной инфракрасной области.

Если при изготовлении флуоресцирующих экранов для телевизоров и научной аппаратуры ввести между кристалликами сульфида цинка примерно 20% иодида цезия, экраны будут лучше поглощать рентгеновские лучи и ярче светиться при облучении электронным пучком.

Сцинтилляционные приборы для регистрации тяжелых заряженных частиц, содержащие монокристаллы иодида цезия, активированного таллием, обладают наибольшей чувствительностью из всех приборов подобного назначения.

Цезий-137.

Изотоп 137 Cs образуется во всех атомных реакторах (в среднем 6 ядер 137 Cs из 100 ядер урана).

При нормальных условиях эксплуатации АЭС выбросы радионуклидов, в том числе радиоактивного цезия, незначительны. Подавляющее количество продуктов ядерного деления остается в топливе. По данным дозиметрического контроля, концентрация цезия в районах расположения АЭС почти не превышает концентрацию этого нуклида в контрольных районах.

Сложные ситуации возникают после аварий, когда во внешнюю среду поступает огромное количество радионуклидов и загрязнению подвергаются большие территории. Поступление цезия-137 в атмосферу было отмечено при аварии на Южном Урале в 1957 г., где произошел тепловой взрыв хранилища радиоактивных отходов, при пожаре на радиохимическом заводе в Уинденейле в Великобритании в 1957, при ветровом выносе радионуклидов из поймы оз. Карачай на Южном Урале в 1967. Катастрофой стала авария на Чернобыльской атомной электростанции в 1986, на долю цезия-137 пришлось около 15% общего радиационного заражения. Основной источник поступления радиоактивного цезия в организм человека – загрязненные нуклидом продукты питания животного происхождения.

Радионуклид 137 Cs можно использовать и с пользой для человека. Он применяется в дефектоскопии, а также в медицине для диагностики и лечения. Цезием-137 заинтересовались специалисты в области рентгенотерапии. Этот изотоп разлагается сравнительно медленно, теряя за год только 2,4% своей исходной активности. Он оказался пригодным для лечения злокачественных опухолей. Цезий-137 имеет определенные преимущества перед радиоактивным кобальтом-60: более длительный период полураспада и менее жесткое g -излучение. В связи с этим приборы на основе 137 Cs долговечнее, а защита от излучения менее громоздка. Однако, эти преимущества становятся реальными лишь при отсутствии примеси 134 Cs с более коротким периодом полураспада и более жестким g -излучением.

Из растворов, полученных при переработке радиоактивных отходов ядерных реакторов, 137 Cs извлекается методами соосаждения с гексацианоферратами железа , никеля , цинка или фторовольфраматом аммония. Используют также ионный обмен и экстракцию.

Елена Савинкина

Цезий (лат. Caesium), Cs, химический элемент I группы периодической системы Менделеева; атомный номер 55, атомная масса 132, 9054; серебристо-белый металл, относится к щелочным металлам. В природе встречается в виде стабильного изотопа 133 Cs. Из искусственно полученных радиоактивных изотопов с массовыми числами от 113 до 148 наиболее устойчив 137 Cs с периодом полураспада Т ½ = 33 года.

Историческая справка. Цезий открыт в 1860 году Р. В. Бунзеном и Г. Р. Кирхгофом в водах Дюркхеймского минерального источника (Германия) методом спектрального анализа. Назван Цезий (от лат. caesius - небесно-голубой) по двум ярким линиям в синей части спектра. Металлический Цезий впервые выделил шведский химик К. Сеттерберг в 1882 при электролизе расплавленной смеси CsCN и Ва.

Распространение Цезия в природе. Цезий - типичный редкий и рассеянный элемент. Среднее содержание Цезия в земной коре (кларк) 3,7·10 -4 % по массе. В ультраосновных горных породах содержится 1·10 -5 % Цезия, в основных - 1·10 -4 %. Цезий геохимически тесно связан с гранитной магмой, образуя концентрации в пегматитах вместе с Li, Be, Та, Nb; в особенности в пегматитах, богатых Na (альбитом) и Li (лепидолитом). Известно два крайне редких минерала Цезия - поллуцит и авогадрит (К,Cs)(BF) 4 ; наибольшая концентрация Цезия в поллуците (26-32% Cs 2 O). Большая часть атомов Цезия изоморфно замещает К и Rb в полевых шпатах и слюдах. Примесь Цезия встречается в берилле, карналлите, вулканическом стекле. Слабое обогащение Цезия установлено в некоторых термальных водах. В целом Цезий - слабый водный мигрант. Основное значение в истории Цезия имеют процессы изоморфизма и сорбции крупных катионов Цезия. В геохимическом отношении Цезий близок к Rb и К, отчасти к Ва.

Физические свойства Цезия. Цезий - очень мягкий металл; плотность 1,90 г/см 3 (20 °С); t пл 28,5 °С; t кип 686 °С. При обычной температуре кристаллизуется в кубической объемноцентрированной решетке (а = 6,045Å). Атомный радиус 2,60 Å, ионный радиус Cs + 1,86 Å. Удельная теплоемкость 0,218 кдж/(кг·К) ; удельная теплота плавления 15,742 кдж/кг (3,766 кал/г); удельная теплота испарения 610,28 кдж/кг (146,0 кал/г); температурный коэффициент линейного расширения (0-26 °С) 9,7·10 -5 ; коэффициент теплопроводности (28,5°С) 18,42 вт/(м·К) ; удельное электросопротивление (20 °С) 0,2 мком·м; температурный коэффициент электросопротивления (0-30°С) 0,005. Цезий диамагнитен, удельная магнитная восприимчивость (18 °С) -0,1·10 -6 . Динамическая вязкость 0,6299 Мн·сек/м 2 (43,4 °С), 0,4065 Мн·сек/м 2 (140,5 °С). Поверхностное натяжение (62 °С) 6,75·10 -2 н/м (67,5 дин/см); сжимаемость (20 °С) 7,05Мн/м 2 (70,5 кгс/см 2). Энергия ионизации 3,893 эв; стандартный электродный потенциал - 2,923 в, работа выхода электронов 1,81 эв. Твердость по Бринеллю 0,15 Мн/м 2 (0,015 кгс/см 2).

Химические свойства Цезия. Конфигурация внешних электронов атома Цезия 6s 1 ; в соединениях имеет степень окисления + 1. Цезий обладает очень высокой реакционной способностью. На воздухе мгновенно воспламеняется с образованием пероксида Cs 2 O 2 и надпероксида CsO 2 ; при недостатке воздуха получается оксид Cs 2 O; известен также озонид CsО 3 . С водой, галогенами, углекислым газом, серой, четыреххлористым углеродом Цезий реагирует со взрывом, давая соответственно гидроксид CsOH, галогениды, оксиды, сульфиды, CsCl. С водородом взаимодействует при 200-350 °С и давлении 5-10 Мн/м 2 (50-100 кгс/см 2), образуя гидрид. Выше 300 °С Цезий разрушает стекло, кварц и других материалы, а также вызывает коррозию металлов. Цезий при нагревании соединяется с фосфором, кремнием, графитом. При взаимодействии Цезия со щелочными и щелочноземельными металлами, а также с Hg, Au, Bi и Sb образуются сплавы; с ацетиленом - ацетиленид Cs 2 C 2 . Большинство простых солей Цезия, особенно CsF, CsCl, Cs 2 CO 3 , Cs 2 SO 4 , CsH 2 PO 4 , хорошо растворимы в воде; малорастворимы CsMnO 4 , CsClO 4 и Cs 2 Cr 2 O 7 . Цезий не принадлежит к числу комплексообразующих элементов, но он входит в состав многих комплексных соединений в качестве катиона внешней среды.

Получение Цезия. Цезий получают непосредственно из поллуцита методом вакуумтермического восстановления. В качестве восстановителей используют Са, Mg, Al и других металлы.

Различные соединения Цезий также получают путем переработки поллуцита. Сначала руду обогащают (флотацией, ручной рудоразработкой и т. п.), а затем выделенный концентрат разлагают либо кислотами (H 2 SO 4 , HNO 3 и другими), либо спеканием с оксидно-солевыми смесями (например, СаО с СаCl 2). Из продуктов разложения поллуцита Цезий осаждают в виде CsAl(SO 4) 2 ·12H 2 O, Cs 3 и других малорастворимых соединений. Далее осадки переводят в растворимые соли (сульфат, хлорид, иодид и других). Завершающим этапом технологического цикла является получение особо чистых соединений Цезия, для чего применяют методы кристаллизации из растворов Cs, Cs 3 , Cs 2 и сорбцию примесей на окисленных активированных углях. Глубокую очистку металлического Цезия производят методом ректификации. Перспективно получение Цезия из отходов от переработки нефелина, некоторых слюд, а также подземных вод при добыче нефти; Цезий извлекают экстракционными и сорбционными методами.

Хранят Цезий либо в ампулах из стекла "пирекс" в атмосфере аргона, либо в стальных герметичных сосудах под слоем обезвоженного вазелинового или парафинового масла.

Применение Цезия. Цезий идет для изготовления фотокатодов (сурьмяно-цезиевых, висмуто-цезиевых, кислородно-серебряно-цезиевых), электровакуумных фотоэлементов, фотоэлектронных умножителей, электронно-оптических преобразователей. Изотопы Цезия применяют: 133 Cs в квантовых стандартах частоты, 137 Cs в радиологии. Резонансная частота энергетического перехода между подуровнями основного состояния 133 Cs положена в основу современного определения секунды.

Цезий в организме. Цезий - постоянный химический микрокомпонент организма растений и животных. Морские водоросли содержат 0,01-0,1 мкг Цезия в 1 г сухого вещества, наземные растения - 0,05-0,2. Животные получают Цезий с водой и пищей. В организме членистоногих около 0,067-0,503 мкг/г Цезия, пресмыкающихся - 0,04, млекопитающих -0,05. Главное депо Цезия в организме млекопитающих - мышцы, сердце, печень; в крови - до 2,8 мкг/л. Цезий относительно малотоксичен.

Цезий-137 (137 Cs) - бета-гамма-излучающий радиоизотоп Цезий; один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимуществено в виде ионов. Содержится в растениях и организме животных и человека. Коэффициент накопления 137 Cs наиболее высок у пресноводных водорослей и арктических наземных растений, особенно лишайников. В организме животных 137 Cs накапливается главным образом в мышцах и печени. Наибольший коэффициент накопления его отмечен у северных оленей и северных американских водоплавающих птиц. В организме человека l37 Cs распределен относительно равномерно и не оказывает значительного вредного действия.