Прямой круговой конус. Конус как геометрическая фигура

Рассмотрим какую-либо линию l (кривую или ломаную), лежащую в некоторой плоскости (рис. 386, а, б), и произвольную точку М, не лежащую в этой плоскости. Всевозможные прямые, соединяющие точку М со всеми точками линии образуют поверхность а; такая поверхность называется конической поверхностью, точка вершиной, линия - направляющей, прямые образующими. На рис. 386 мы не ограничиваем поверхность а ее вершиной, но представляем себе ее простирающейся неограниченно в обе стороны от вершины.

Если коническую поверхность рассечь какой-либо плоскостью, параллельной плоскости направляющей , то в сечении получим линию (кривую или ломаную, в зависимости от того, была ли кривой или ломаной линия ), гомотетичную линии l, с центром гомотетии в вершине конической поверхности. Действительно, отношение любых соответствующих отрезков образующих будет постоянным:

Итак, сечения коническои поверхности плоскостями, параллельными плоскости направляющей, подобны и подобно расположены, с центром подобия в вершине конической поверхности; это же верно для любых параллельных плоскостей, не проходящих через вершину поверхности.

Пусть теперь направляющая - замкнутая выпуклая линия (кривая на рис. 387, а, ломаная на рис. 387, б). Тело, ограниченное с боков конической поверхностью, взятой между ее вершиной и плоскостью направляющей, и плоским основанием в плоскости направляющей, называется конусом (если -кривая линия) или пирамидой (если -ломаная).

Пирамиды классифицируются по числу сторон многоугольника, лежащего в их основании. Говорят о треугольной, четырехугольной и вообще -угольной пирамидах. Заметим, что -угольная пирамида имеет грань: боковых граней и основание. При вершине пирамиды мы имеем -гранный угол с плоскими и двугранными углами.

Они соответственно называются плоскими углами при вершине и двугранными углами при боковых ребрах. При вершинах основания мы имеем трехгранных углов; их плоские углы, образованные боковыми, ребрами и сторонами основания, называются плоскими углами при основании, двугранные углы между боковыми гранями и плоскостью основания - двугранными углами при основании.

Треугольная пирамида иначе называется тетраэдром (т. е. четырехгранником). Любая из ее граней может быть принята за основание.

Пирамида называется правильной при выполнении двух условий: 1) в основании пирамиды лежит правильный многоугольник,

2) высота, опущенная из вершины пирамиды на основание, пересекает его в центре этого многоугольника (иначе говоря, вершина пирамиды проектируется в центр основания).

Заметим, что правильная пирамида не является, вообще говоря, правильным многогранником!

Отметим некоторые свойства правильной -угольной пирамиды. Проведем через вершину такой пирамиды высоту SO (рис. 388).

Повернем всю пирамиду как целое вокруг этой высоты на угол При таком повороте многоугольник основания перейдет сам в себя: каждая из его вершин займет положение соседней. Вершина пирамиды и ее высота (ось вращения!) останутся на месте, и поэтому пирамида как целое совместится сама с собой: каждое боковое ребро перейдет в соседнее, каждая боковая грань совместится с соседней, каждый двугранный угол при боковом ребре также совместится с соседним.

Отсюда вывод: все боковые ребра равны между собой, все боковые грани суть равные равнобедренные треугольники, все двугранные углы при основании равны, все плоские углы при вершине равны, все плоские углы при основании равны.

Из числа конусов в курсе элементарной геометрии мы изучаем прямой круговой конус, т. е. такой конус, основание которого круг, а вершина проектируется в центр этого круга.

Прямой круговой конус показан на рис. 389. Если проведем через вершину конуса высоту SO и повернем конус вокруг этой высоты на произвольный угол, то окружность основания будет скользить сама по себе; высота и вершина останутся на месте, поэтому при повороте на любой угол конус совместится сам с собой. Отсюда видно, в частности, что все образующие конуса равны между собой и одинаково наклонены к плоскости основания. Сечения конуса плоскостями, проходящими через его высоту, будут равнобедренными треугольниками, равными между собой. Весь конус получается от вращения прямоугольного треугольника SOA вокруг его катета (который становится высотой конуса). Поэтому прямой круговой конус является телом вращения и также называется конусом вращения. Если не оговорено противное, мы для краткости в дальнейшем говорим просто «конус», понимая под этим конус вращения.

Сечения конуса плоскостями, параллельными плоскости его основания, суть круги (хотя бы потому, что они гомотетичны кругу основания).

Задача. Двугранные углы при основании правильной треугольной пирамиды равны а. Найти двугранные углы при боковых ребрах.

Решение. Обозначим временно сторону основания пирамиды через а. Проведем сечение пирамиды плоскостью, содержащей ее высоту SO и медиану основания AM (рис. 390).

В сечении конической поверхности плоскостью получаются кривые второго порядка - окружность, эллипс, парабола и гипербола. В частом случае при определенном расположении секущей плоскости и когда она проходит через вершину конуса (S∈γ), окружность и эллипс вырождаются в точку или в сечении попадает одна или две образующих конуса.

Дает - окружность, когда секущая плоскость перпендикулярна к его оси и пересекает все образующие поверхности.

Дает - эллипс, когда секущая плоскость не перпендикулярна к его оси и пересекает все образующие поверхности.

Построим эллиптическое ω плоскостью α , занимающей общее положение.

Решение задачи на сечение прямого кругового конуса плоскостью значительно упрощается, если секущая плоскость занимает проецирующее положение.

Способом перемены плоскостей проекций переведем плоскость α из общего положения в частное - фронтально-проецирующее. На фронтальной плоскости проекций V 1 построим след плоскости α и проекцию поверхности конуса ω плоскостью дает эллипс, так как секущая плоскость пересекает все образующие конуса. Эллипс проецируется на плоскости проекций в виде кривой второго порядка.
На следе плоскости α V берем произвольную точку 3" замеряем ее удаление от плоскости проекций H и откладываем его по линии связи уже на плоскости V 1 , получая точку 3" 1 . Через нее и пройдет след αV 1 . Линия сечения конуса ω - точки A" 1 , E" 1 совпадает здесь со следом плоскости. Далее построим вспомогательную секущию плоскость γ3, проведя на фронтальной плоскости проекций V 1 ее след γ 3V 1 . Вспомогательная плоскость пересекаясь с конической поверхностью ω даст окружность, а пересекаясь с плоскостью α даст горизонтальную прямую h3. В свою очередь прямая пересекаясь с окружностью дает искомые точки C`и K` пересечения плоскости α c конической поверхностью ω . Фронтальные проекции искомых точек C" и K" построим как точки принадлежащие секущей плоскости α .

Для нахождения точки E(E`, E") линии сечения, проводим через вершину конуса горизонтально-проецирующую плоскость γ 2 H , которая пересечет плоскость α по прямой 1-2(1`-2`, 1"-2") . Пересечение 1"-2" с линией связи дает точку E" - наивысшую точку линии сечения.

Для нахождения точки указывающей границы видимости фронтальной проекции линии сечения, проводим через вершину конуса горизонтально-проецирующую плоскость γ 5 H и находим горизонтальную проекцию F` искомой точки. Также, плоскость γ 5 H пересечет плоскость α по фронтали f(f`, f") . Пересечение f" с линией связи дает точку F" . Соединяем полученные на горизонтальной проекции точки плавной кривой, отметив на ней крайнюю левую точку G - одну из характерных точек линии пересечения.
Затем, строим проекции G на фронтальных плоскостях проекций V1 и V. Все построенные точки линии сечения на фронтальной плоскости проекций V соединяем плавной линией.

Дает - параболу, когда секущая плоскость параллельна одной образующей конуса.

При построении проекций кривых - конических сечений необходимо помнить о теореме: ортогональная проекция плоского сечения конуса вращения на плоскость, перпендикулярную к его оси, есть кривая второго порядка и имеет одним из своих фокусов ортогональную проекцию на эту плоскость вершины конуса.

Рассмотрим построение проекций сечения, когда секущая плоскость α параллельна одной образующей конуса (SD) .

В сечении получится парабола с вершиной в точке A(A`, A") . Согласно теореме вершина конуса S проецируется в фокус S` . По известному =R S` определяем положение директрисы параболы. В последующем точки кривой строятся по уравнению p=R .

Построение проекций сечения, когда секущая плоскость α параллельна одной образующей конуса, может быть выполнено:

С помощью вспомогательных горизонтально-проецирующих плоскостей проходящих через вершину конуса γ 1 H и γ 2 H .

Сначала определятся фронтальные проекции точек F", G" - на пересечении образующих S"1", S"2" и следа секущей плоскости α V . На пересечении линий связи с γ 1 H и γ 2 H определяться F`, G` .

Аналогично могут быть определены и другие точки линии сечения, например D", E" и D`, E` .

С помощью вспомогательных фронтально-проецирующих плоскостей ⊥ оси конуса γ 3 V и γ 4 V .

Проекциями сечения вспомогательных плоскостей и конуса на плоскость H , будут окружности. Линиями пересечения вспомогательных плоскостей с секущей плоскостью α будут фронтально- проецирующие прямые.

Дает - гиперболу, когда секущая плоскость параллельна двум образующим конуса.






















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • Образовательная : ввести понятие конуса, его элементов; рассмотреть построение прямого конуса; рассмотреть нахождение полной поверхности конуса; формировать умения решать задачи на нахождение элементов конуса.
  • Развивающая : развивать грамотную математическую речь, логическое мышление.
  • Воспитательная : воспитывать познавательную активность, культуру общения, культуры диалога.

Форма урока: урок формирования новых знаний и умений.

Форма учебной деятельности: коллективная форма работы.

Методы, используемые на уроке: объяснительно-иллюстративный, продуктивный.

Дидактический материал: тетрадь, учебник, ручка, карандаш, линейка, доска, мел и цветные мелки, проектор и презентация «Конус. Основные понятия. Площадь поверхности конуса».

План урока:

  1. Организационный момент (1 мин).
  2. Подготовительный этап (мотивация) (5 мин).
  3. Изучение нового материала (15 мин).
  4. Решение задач на нахождение элементов конуса (15 мин).
  5. Подведение итогов урока (2 мин).
  6. Задание на дом (2 мин).

ХОД УРОКА

1. Организационный момент

Цель: подготовить к усвоению нового материала.

2. Подготовительный этап

Форма: устная работа.

Цель: знакомство с новым телом вращения.

Конус в переводе с греческого “konos” означает “сосновая шишка”.

Встречаются тела в форме конуса. Их можно рассмотреть в различных предметах, начиная с обычного мороженого и заканчивая техникой, так же в детских игрушках (пирамидка, хлопушка и др.), в природе (ель, горы, вулканы, смерчи).

(Используются Слайды 1-7)

Деятельность учителя Деятельность ученика

3. Объяснение нового материала

Цель: ввести новые понятия и свойства конуса.

1. Конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов. (Слайд 8)
Теперь рассмотрим, как строится конус. Сначала изображаем окружность с центром O и прямую OP, перпендикулярную к плоскости этой окружности. Каждую точку окружности соединим отрезком с точкой P (учитель поэтапно строит конус). Поверхность, образованная этими отрезками, называется конической поверхностью , а сами отрезки – образующими конической поверхности .
В тетрадях строят конус.
(диктует определение) (Слайд 9) Тело, ограниченной конической поверхностью и кругом с границей L, называется конусом . Записывают определение.
Коническая поверхность называется боковой поверхностью конуса , а круг – основанием конуса . Прямая OP, проходящая через центр основания и вершину, называется осью конуса . Ось конуса перпендикулярна плоскости основания. Отрезок OP называется высотой конуса . Точка P называется вершиной конуса , а образующие конической поверхности – образующими конуса . На чертеже подписывают элементы конуса.
Назовите две образующие конуса и сравните их? PA и PB, они равны.
Почему образующие равны? Проекции наклонных равны как радиусы окружности, значит и сами образующие равны.
Запишите в тетради: свойства конуса: (Слайд 10)
1. Все образующие конуса равны.

Назовите углы наклона образующих к основанию? Сравните их.
Почему, докажите это?

Углы: PСО, PDO. Они равны.
Так как треугольник PAB – равнобедренный.

2. Углы наклона образующих к основанию равны.

Назовите углы между осью и образующими?
Что можно сказать об этих углах?

СРО и DPO
Они равны.

3. Углы между осью и образующими равны.

Назовите углы между осью и основанием?
Чему равны эти углы?

POC и POD.
90 о

4. Углы между осью и основанием прямые.

Мы будем рассматривать только прямой конус.

2. Рассмотрим сечение конуса различными плоскостями.
Что представляет собой секущая плоскость, проходящая через ось конуса?
Треугольник.
Какой это треугольник? Он равнобедренный.
Почему? Две его стороны являются образующими, а они равны.
Что представляет собой основание данного треугольника? Диаметр основания конуса.
Такое сечение называется осевым. (Слайд 11) Начертите в тетрадях и подпишите это сечение.
Что представляет собой секущая плоскость, перпендикулярная оси OP конуса?
Круг.
Где расположен центр этого круга? На оси конуса.
Это сечение называется круговым сечением.(Сдайл 12)
Начертите в тетрадях и подпишите это сечение.
Существуют и другие виды сечений конуса, которые не являются осевыми и не параллельны основанию конуса. Рассмотрим их на примерах. (Слайд 13)
Чертят в тетрадях.
3. Теперь выведем формулу полной поверхности конуса. (Слайд 14)
Для этого боковую поверхность конуса, как и боковую поверхность цилиндра, можно развернуть на плоскость, разрезав ее по одной из образующих.
Что является разверткой боковой поверхности конуса? (чертит на доске) Круговой сектор.
Что является радиусом этого сектора? Образующая конуса.
А длина дуги сектора? Длина окружности.
За площадь боковой поверхности конуса принимается площадь ее развертки. (Слайд 15) , где – градусная мера дуги.
Чему равна площадь кругового сектора?
Значит, чему равна площадь боковой поверхности конуса?

Выразим через и . (Слайд 16)
Чему равна длина дуги?

С другой стороны эта же дуга представляет собой длину окружности основания конуса. Чему она равна?
Подставляя в формулу боковой поверхности конуса получим, .
Площадью полной поверхности конуса называется сумма площадей боковой поверхности и основания. .
Запишите эти формулы.

Записывают: , .

Конус (с греческого «konos») – сосновая шишка. Конус знаком людям с глубокой древности. В 1906 году была обнаружена книга «О методе», написанная Архимедом (287-212 гг. до н. э.), в этой книге дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед говорит, что это открытие принадлежит древнегреческому философу Демокриту (470-380 гг. до н.э.), который с помощью данного принципа получил формулы для вычисления объема пирамиды и конуса.

Конус (круговой конус) – тело, которое состоит из круга – основание конуса, точки, не принадлежащей плоскости этого круга, – вершины конуса и всех отрезков, соединяющих вершину конуса и точки окружности основания. Отрезки, которые соединяют вершину конуса с точками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым, если прямая, которая соединяет вершину конуса с центром основания, перпендикулярна плоскости основания. Прямой круговой конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси.

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого конуса называется прямая, содержащая его высоту.

Сечение конуса плоскостью, проходящей через образующую конуса и перпендикулярная осевому сечению, проведённому через эту образующую, называется касательной плоскостью конуса.

Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса.

Плоскость, перпендикулярная оси конуса отсекает от него меньший конус. Оставшаяся часть называется усечённым конусом.

Объём конуса равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.

Площадь боковой поверхности конуса можно найти по формуле:

S бок = πRl,

Площадь полной поверхности конуса находится по формуле:

S кон = πRl + πR 2 ,

где R – радиус основания, l – длина образующей.

Объём кругового конуса равен

V = 1/3 πR 2 H,

где R – радиус основания, Н – высота конуса

Площадь боковой поверхности усеченного конуса можно найти по формуле:

S бок = π(R + r)l,

Площадь полной поверхности усеченного конуса можно найти по формуле:

S кон = πR 2 + πr 2 + π(R + r)l,

где R – радиус нижнего основания, r – радиус верхнего основания, l – длина образующей.

Объём усечённого конуса можно найти следующим образом:

V = 1/3 πH(R 2 + Rr + r 2),

где R – радиус нижнего основания, r – радиус верхнего основания, Н – высота конуса.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Класс: 11 Урок №14 Дата проведения: ____________

Тема урока: «Прямой круговой конус, его элементы. Осевые сечения конуса. Сечения конуса плоскостью, параллельной основанию. Развертка конуса»

Цель урока:

    Ввести понятия конической поверхности, конуса, элементов конуса (боковая поверхность, основание, вершина, образующая, ось, высота), понятие усеченного конуса;

    Вывести формулы для вычисления площадей боковой и полной поверхностей конуса и усеченного конуса;

    Учить обучающихся решать задачи по этой теме.

    Содействовать творческому восприятию учащимися учебного материала и их желание самосовершенствоваться.

    Воспитывать организованность, дисциплинированность, ответственность за свой труд и труд одноклассников.

Тип урока: изучение нового материала.

Оборудование урока: интерактивная доска, таблицы, модели конусов, материал для изготовления моделей: спицы, модель плоскости (пенопласт), бумага, клей, ножницы, циркуль, транспортир, линейка.

Форма организации деятельности учащихся : г рупповая.

Ход урока

1. Фронтальная работа

    Из предложенных геометрических фигур выбрать конус

    Знакомство с конической поверхностью

Определение №1 Коническая поверхность называется поверхность, образованная движением прямой, которая проходит через данную точку и пересекает данную плоскую линию.

Прямая а - образующая;

Плоская линия MN - направляющая.

Незамкнутая коническая поверхность

Если направляющая - замкнутая, то коническая поверхность – замкнутая.

Определение №2 Конусом называется тело, ограниченное замкнутой конической поверхностью и пересекающей её плоскостью.

Знакомство с конусом и его элементами

А ) Конус

SO a (SO= Н , SO=h)

SO - высота конуса

SA - образующая

S - вершина конуса

Кривая ABA - направляющая .

Б) Пусть прямоугольный прямоугольник SOA вращается вокруг катета SO; при полном обороте гипотенуза AS описывает коническую поверхность, катет OA описывает круг.

Такое тело называется конусом вращения . (прямой круговой конус).

Прямой круговой конус

S - вершина конуса

SA - образующая

SO=h - высота конуса

(ось конуса - а)

Основание конуса – круг (О; r)

О - центр основания,

AO=OB=r - радиус основания круга

D SAB - осевое сечение

a||b, b SO, a SO

Круг (о;r) ~ Круг (о1; r1)


Понятие боковой (полной) поверхности.

II. Работа в группах (3-5 человек)

(задания раздается каждой группе на карточке)

Задание по теме «Конус»

1) Изобразите конус. По рисунку определите все элементы конуса.

2) По заданной модели конуса постройте развертку этого конуса. Определите соответствие элементов развертки конуса, чертежа и модели конуса.

3) Из листа плотной бумаги изготовить конус, чтобы его полная поверхность: S 110 см2 при радиусе основания r 3.1 см.

Определите какие инструменты вам для этого понадобятся, какие расчеты необходимы сделать, какие формулы придется вспомнить, а какие вывести новые?

4) Оформите работу на месте по плану:

А) Какие у вас распределились обязанности в группе в процессе выполнения заданий:

    генератор идей;

    конструктор;

    расчетчик;

    оформитель;

    изготовитель.

Б) Опишите способы и подходы к решению задачи.

    Необходимые расчеты для изготовления модели конуса. (Чертеж. Формулы. Вывод)

    Изготовление конуса.

5) Модель конуса готова.

6) Составьте формулу для расчета площади сечения, параллельного основанию конуса и делящего высоту конуса в отношении 1:3, считая от вершины

7) Составьте формулу для расчета площади сечения, проходящего через ось конуса. Чему равен угол при вершине данного сечения?

8) Каким образом можно из вашей модели получить усеченный конус? Рассчитать его полную поверхность используя задания (6).

9) Составьте и решите еще три задачи на данную тему.

Замечание: учитель выступает в роли консультанта при решении задач, пользуясь вопросами- подсказками и опираясь на ключевые слова.

Одной из групп были даны более легкие задания:

1. Заполнить пропуски:

    Прямая, которая при движении образует коническую поверхность, называется…;

    Линия, которую пересекает образующая, называется…..;

    Конус вращения - частный случай…, когда основание конуса - .., а основание высоты - ..;

    Сечение конуса вращения плоскостью, параллельной основанию, - …. Найдите площадь сечения.

    Если осевое сечение конуса- равносторонний треугольник, то конус…..Сделать чертеж:

2. Решите задачу, заполняя пропуски.

В развертке боковой поверхности конуса центральный угол равен 200 o . Найти угол между образующей и основанием конуса.

Дано: ВSB=200 o , SA=L, ОВ=r

Найти SAO

Решение:

1) a =360 o …..| cos x=…

2) 200 o =…

3) cos x =… , x -

А) … образующей;

Б) … направляющей;

В) …конус, …. Круг…, центр основания

Г) …круг, …расстояния сечения от вершины конуса;

Д) … называется равносторонним

А)

Б) 200 o = 360 o *cos x;

Задание на дом.

Изучить усеченный конус, решить задачи №

Итог урока.

    В результате работы ученики

    Сами вывели формулы для вычисления боковой и полной поверхностей конуса

    Нарисовали развертку

    Сделали необходимые расчеты

Группы

L(см)

9,2

3,1

21,1754

89,5528

110,7282

7,8

28,26

73,476

101,74

9,4

28,26

88,548

116,808

10,4

4,9

75,3914

160,0144

235,4058

    Провели исследовательскую работу,

    Решили задачи,

    Постоянно общались между собой, учились мыслить и мотивировать своих товарищей по работе.

    Получили не только необходимые знания, но и большое удовольствие.

    Выяснили, что слово «Конус» произошло от греческого слова «xwnos», что означает шишка.