Скачать методы настроек кварцевых фильтров. Кварцевый фильтр трансивера

Ф.Шарапов
Радио-Дизайн N 11

В радиолюбительской литературе приводилось несколько методик по настройке кварцевых фильтров. Все они примерно одинаковы и сводятся к предварительному макетированию с целью измерения параметров кварцев и довольно большому объему громоздких математических вычислений. Тем не менее, после монтажа, получаемая амплитуно-частотная характеристика (АЧХ) фильтра, как правило, весьма далека от желаемой. Очевидно, сказывается разброс параметров элементов фильтра и трудно учитываемых монтажных емкостей. В результате приходится затрачивать много времени на коррекцию АЧХ подбором емкостей фильтра и согласующих резисторов.

Исходя из вышеизложенного, возникла идея отказаться от расчетов вообще. Поскольку, их результаты несовершенны и вместо макетирования ограничиться проверкой работоспособности, собственно, кварцевых резонаторов (для этого достаточно простого генератора на одном транзисторе и осциллографа), а настройку основных параметров фильтра производить, используя конденсаторы переменной емкости (КПБ).

Рис.1 Кварцевые фильтры с "параллельными" емкостями

Стрелками ААи ББ показан второй вариант включения КПЕ. Резисторы R1, R4 (0 ... 300 Ом) устанавливаются при наличии больших выбросов на АЧХ. Конденсатор С4* подбирается в пределах от 0 до 30 пФ.

С целью минимизации числа конденсаторов, были выбраны схемы фильтров, содержащие только параллельные емкости, рис.1. Поскольку фильтры симметричны (относительно их входа-выхода), оказалось возможным использовать сдвоенные КПЕ от радиовещательных приемников емкостью 12 - 495 пФ. Кроме этого, понадобится еще один, заранее проградуированный в пФ, односекционный переменный конденсатор.

Настройка фильтра сводится к следующему.

Для настройки может понадобиться прибор для измерения амплитудно-частотных харакеристик Х1-38 или ему подобный. Я же использую осциллограф и самодельную приставку (см. ниже).

Первоначально все конденсаторы устанавливаются в положение, соответствующее емкости 30 ... 50 пФ. Контролируя АЧХ фильтра на экране прибора, вращением конденсаторов в небольших пределах, добиваемся требуемой полосы пропускания. Затем, подстройкой переменных резисторов (использовать только безиндукционные, например, СП4-1) на входе и выходе фильтра, стараемся выровнять вершину АЧХ. Приведенные выше операции, повторяются несколько раз до получения желаемой АЧХ.

Далее, вместо каждой отдельной секции КПЕ, припаиваем заранее проградуированный конденсатор, с помощью которого стараемся оптимизировать АЧХ фильтра. По его шкале определяем емкость постоянного конденсатора и производим замену. Таким образом, все секции КПЕ, поочередно, заменяются конденсаторами постоянной емкости. Точно также поступаем с переменными резисторами, которые впоследствии заменим на постоянные.

Окончательная "доводка" фильтра производится непосредственно по месту, например, в трансивере. После установки фильтра в трансивер возможно потребуется коррекция номиналов этих резисторов, при этом, для оптимального согласования фильтра с выходом смесителя и входом УПЧ, ГКЧ и осциллограф необходимо подключать согласно схемы, приведенной на рис.2.

Рис.2 Подключение кварцевого фильтра для окончательной настройки

По описанной методике было изготовлено несколько фильтров. Хочется отметить следующее. Настройка трех или четырех кристальных фильтров при некотором навыке занимает не более часа, однако с 8-ми кристальными фильтрами затраты времени гораздо выше. При этом, попытки предварительной настройки сначала двух отдельных 4-х кристальных фильтров, а затем их состыковка - оказались бесплодны. Малейший разброс их параметров (а это всегда имеет место) приводит к искажению результирующей АЧХ. Интересно также отметить, что теоретически равные емкости (например, С1=СЗ, на рис. 1а; С1=С7; СЗ=С5, на рис.1б) после настройки градуированным КПЕ по оптимальной АЧХ имели заметный разброс.

На мой взгляд, достоинством этой методики, является ее наглядность. На экране прибора хорошо видно каким образом меняется АЧХ фильтра в зависимости от изменения емкости каждого конденсатора. Например, выяснилось, что в отдельных случаях вполне достаточно поменять емкость одного конденсатора (с помощью реле) с тем, чтобы изменить полосу пропускания фильтра без особого ухудшения ее прямоугольности.

Как уже отмечалось выше, для настройки фильтра используется осциллограф С1-77 и переделанная приставка для измерения АЧХ .

Почему именно С1-77? Дело в том, что на его боковой стенке имеется разъем, на котором присутствует пилообразное напряжение генератора развертки. Это позволяет упростить саму приставку и исключить из ее схемы генератор пилообразного напряжения (ГПН). Поэтому, отпадает необходимость в дополнительной синхронизации и становится возможным наблюдение стабильной АЧХ при различных длительностях развертки. Очевидно, что можно приспособить и осциллографы других типов, может быть после небольшой доработки.

Поскольку, упрощенная приставка используется только при работе с кварцевыми фильтрами вблизи частоты 8 МГц, то все остальные поддиапазоны из нее были исключены.

Также, в используемой приставке, потребуется немного увеличить выходное напряжение. Для этого достаточно переделать выходной каскад в резонансный. Он должен настраиваться в резонанс каждый раз после того, как к его выходу будет подключаться новый фильтр.

Рис.3 Приставка к осциллографу для настройки кварцевых фильтров

Литература.

  1. В.Жалнераускас. Серия статей «Кварцевые фильтры» Журнал «Радио» № 1, 2, 6 1982 г., № 5, 7 1983 г.
  2. С.Бунин, Л.Яйленко «Справочник коротковолновика» изд. «Техника» 1984 г.
  3. В.Дроздов «Коротковолновые трансиверы» изд. «Радио и связь» 1988 г.
  4. Журнал «Радио» №5 1993 г. «Генератор качающейся частоты»

Кварцевый фильтр - это, как известно, “половина хорошего трансивера”. В предлагаемой статье приведены практическая конструкция двенадцати кристального кварцевого фильтра основной селекции для высококачественного трансивера и приставки к компьютеру, позволяющие настроить этот и любые другие узкополосные фильтры. В любительских конструкциях в последнее время в качестве фильтра основной селекции используют кварцевые восьми кристальные фильтры лестничного типа, выполненные на одинаковых резонаторах. Эти фильтры относительно просты в изготовлении и не требуют больших материальных затрат.

Для их расчета и моделирования написаны компьютерные программы. Характеристики фильтров вполне удовлетворяют требованиям качественного приема и передачи сигнала. Однако при всех преимуществах у этих фильтров имеется и существенный недостаток - некоторая асимметрия АЧХ (пологий низкочастотный скат) и, соответственно, невысокий коэффициент прямоугольности.

Загруженность радиолюбительского эфира определяет достаточно жесткие требования к избирательности современного трансивера по соседнему каналу, поэтому фильтр основной селекции должен обеспечивать затухание вне полосы пропускания не хуже 100 дБ при коэффициенте прямоугольности 1,5... 1,8 (по уровням -6/-90 дБ).

Естественно, что потери и неравномерность АЧХ в полосе пропускания фильтра должны быть минимальны. Руководствуясь рекомендациями, изложенными в , за основу был выбран десяти кристальный лестничный фильтр с чебышевской характеристикой при неравномерности АЧХ 0,28 дБ.

Чтобы увеличить крутизну скатов параллельно входу и выходу фильтра были введены дополнительные цепи, состоящие из последовательно включенных кварцевых резонаторов и конденсаторов.

Расчеты параметров резонаторов и фильтра проводились по методике, описанной в . Для полосы пропускания фильтра 2,65 кГц были получены исходные значения C1,2 = 82,2 пФ, Lкв = 0,0185 Гн, Rн = 224 Ом. Схема фильтра и расчетные значения номиналов конденсаторов показаны на рис. 1.

В конструкции использованы кварцевые резонаторы для телевизионных PAL-декодеров на частоту 8,867 МГц, выпускаемые ВНИИСИМС (г. Александров Владимирской области). Свою роль в выборе сыграли стабильная повторяемость параметров кристаллов, их малые габариты и невысокая стоимость.

Подбор частоты кварцевых резонаторов для ZQ2- ZQ11 проводился с точностью ±50 Гц. Измерения проводились с помощью самодельного автогенератора и промышленного частотомера. Резонаторы ZQ1 и ZQ12 для параллельных цепей подобраны из других партий кристаллов с частотами соответственно ниже и выше основной частоты фильтра примерно на 1 кГц.

Фильтр собран на печатной плате из двусторонне фольгированного стеклотекстолита толщиной 1 мм (рис. 2).

Верхний слой металлизации использован в качестве общего провода. Отверстия со стороны установки резонаторов раззенкованы. Корпусы всех кварцевых резонаторов соединены с общим проводом пайкой.

Перед установкой деталей печатная плата фильтра запаивается в коробочку из луженой жести с двумя съемными крышками. Также со стороны печатных проводников припаивается экран-перегородка, проходящая между выводами резонаторов по центральной осевой линии платы.


На рис. 3 приведена монтажная схема фильтра. Все конденсаторы в фильтре - КД и КМ.

После того как фильтр был изготовлен, возник вопрос: каким образом в домашних условиях измерить его АЧХ с максимальным разрешением?

Был задействован домашний компьютер с последующей проверкой результатов измерений построением АЧХ фильтра по точкам с применением селективного микровольтметра. Меня, как конструктора радиолюбительской аппаратуры, очень заинтересовала идея, предложенная DG2XK , использовать компьютерную программу низкочастотного (20 Гц...22 кГц) спектроанализатора для измерения АЧХ узкополосных радиолюбительских фильтров.

Ее суть заключается в том, что высокочастотный спектр АЧХ кварцевого фильтра с помощью обычного SSB детектора переносится в диапазон низких частот и компьютер с установленной программой анализатора спектра дает возможность посмотреть АЧХ этого фильтра на дисплее.

В качестве источника высокочастотного сигнала DG2XK использован генератор шума на стабилитроне. Проведенные мной эксперименты показали, что такой источник сигнала позволяет просматривать АЧХ до уровня не более - 40 дБ, что явно недостаточно для качественной настройки фильтра. Для того чтобы просмотреть АЧХ фильтра на уровне -100 дБ, генератор должен иметь

уровень боковых шумов ниже указанной величины, а детектор - хорошую линейность при максимальном динамическом диапазоне не хуже 90... 100 дБ.

По этой причине генератор шума был заменен традиционным генератором качающейся частоты (рис. 4). За основу взята схема кварцевого генератора , у которого относительная спектральная плотность мощности шумов равна -165 дБ/Гц. Это означает, что мощность шумов генератора при расстройке 10 кГц в полосе 3 кГц

меньше мощности основного колебания генератора на 135 дБ!

Схема первоисточника немного видоизменена. Так вместо биполярных транзисторов применены полевые, а последовательно с кварцевым резонатором ZQ1 включен контур, состоящий из катушки индуктивности L1 и варикапов VD2-VD5. Частота генератора перестраивается относительно частоты кварца в пределах 5 кГц, что вполне достаточно для измерения АЧХ узкополосного фильтра.

Кварцевый резонатор в генераторе аналогичный фильтровому. В режиме генератора качающейся частоты управляющее напряжение на варикапы VD2- VD5 подается с генератора пилообразного напряжения, выполненного на однопереходном транзисторе VT2 с генератором тока на VT1.

Для ручной перестройки частоты генератора применен многооборотный резистор R11. Микросхема DA1 работает как усилитель напряжения. От первоначально задуманного синусоидального управляющего напряжения пришлось отказаться ввиду неравномерной скорости прохода ГКЧ разных участков АЧХ фильтра, а для достижения максимальной разрешающей способности частота генератора снижена до 0,3 Гц. Переключателем SA1 выбирается частота генератора "пилы" - 10 или 0,3 Гц. Девиация частоты ГКЧ устанавливается подстроечным резистором R10.

Принципиальная схема блока детектора показана на рис. 5. Сигнал с выхода кварцевого фильтра подается на вход Х2, если контур L1C1C2 используется в качестве нагрузки фильтра.

Если измерения проводятся на фильтрах, нагруженных на активное сопротивление, этот контур не нужен. Тогда сигнал с резистора нагрузки подается на вход Х1, а на печатной плате детектора удаляется проводник, соединяющий входХ1 с контуром.

Истоковый повторитель с динамическим диапазоном более 90 дБ на мощном полевом транзисторе VT1 согласует сопротивление нагрузки фильтра и входного сопротивления смесителя. Детектор выполнен по схеме пассивного балансного смесителя на полевых транзисторах VT2, VT3 и имеет динамический диапазон более 93 дБ.

На объединенные затворы транзисторов через П-контуры C17L2C20 и C19L3C21 поступают противофазные синусоидальные напряжения уровнем 3...4В (эфф.) от опорного генератора. В опорном генераторе детектора, выполненном на микросхеме DD1, установлен кварцевый резонатор с частотой 8,862 МГц.

Образовавшийся на выходе смесителя низкочастотный сигнал усиливается примерно в 20 раз усилителем на микросхеме DA1. Так как звуковые карты персональных компьютеров имеют сравнительно низкоомный вход, в детекторе установлен мощный ОУ К157УД1. АЧХ усилителя скорректирована так, чтобы ниже частоты 1 кГц и выше частоты 20 кГц наблюдался спад усиления приблизительно -6 дБ на октаву.


Генератор качающейся частоты смонтирован на печатной плате из двусторонне фольгированного стеклотекстолита (рис. 6). Верхний слой платы служит общим проводом, отверстия под выводы деталей, не имеющие с ним контакта, раззенкованы.

Плата запаяна в коробку высотой 40 мм с двумя съемными крышками. Коробка изготовлена из луженой жести. Катушки индуктивности L1, L2, L3 намотаны на стандартных каркасах диаметром 6,5 мм с подстроечниками из карбонильного железа и помещены в экраны. L1 содержит 40 витков провода ПЭВ-2 0,21, L3 и L2 - соответственно 27 и 2+4 витка провода ПЭЛШО-0,31.

Катушка L2 намотана поверх L3 ближе к “холодному” концу. Все дроссели стандартные - ДМ 0,1 68 мкГн. Постоянные резисторы МЛТ, подстроечные R6, R8 и R10 типа СПЗ-38. Многооборотный резистор - ППМЛ. Постоянные конденсаторы - КМ, КЛС, КТ, оксидные - К50-35, К53-1.

Налаживание ГКЧ начинают с установки максимального сигнала на выходе генератора пилообразного напряжения. Контролируя осциллографом сигнал на выводе 6 микросхемы DA1, подстроечными резисторами R8 (усиление) и R6 (смещение) устанавливают амплитуду и форму сигнала, приведенную на эпюре в точке А. Подбором резистора R12 добиваются устойчивой генерации без вхождения в режим ограничения сигнала.

Подбирая емкость конденсатора С14 и подстраивая контур L2L3, настраивают выходную колебательную систему в резонанс, что гарантирует хорошую нагрузочную способность генератора. Подстроечником катушки L1 устанавливают границы перестройки генератора в пределах 8,8586-8,8686 МГц, что с запасом перекрывает полосу АЧХ испытуемого кварцевого фильтра. Для обеспечения максимальной перестройки ГКЧ

(не менее 10 кГц) вокруг точки соединения L1, VD4, VD5 верхний слой фольги удален. Без нагрузки выходное синусоидальное напряжение генератора равно 1В (эфф).

Блок детектора выполнен на печатной плате из двусторонне фольгированного стеклотекстолита (рис. 7).

Верхний слой фольги используется в качестве общего провода. Отверстия под выводы деталей, не имеющие контакт с общим проводом, зенкуют.

Плата запаивается в жестяную коробку высотой 35 мм со съемными крышками. От качества изготовления приставки зависит ее разрешающая способность.

Катушки L1 -L4 содержат по 32 витка провода ПЭВ-0,21, намотанных виток к витку на каркасах диаметром 6 мм. Подстроечники в катушках от броневых сердечников СБ-12а. Все дроссели типа ДМ-0,1. Индуктивность L5 - 16 мкГн, L6, L8 - 68 мкГн, L7- 40 мкГн. Трансформатор Т1 намотан на кольцевом ферритовом магнитопроводе 1000НН типоразмера К10 x 6 x 3 мм и содержит в первичной обмотке 7 витков, во вторичной - 2 x 13 витков провода ПЭВ-0,31.

Все подстроечные резисторы - СПЗ-38. Во время предварительной настройки блока высокочастотным осциллографом контролируют синусоидальный сигнал на затворах транзисторов VT2, VT3 и, при необходимости, подстраивают катушки L2, L3. Подстроечником катушки L4 частота опорного генератора уводится ниже полосы пропускания фильтра на 5 кГц. Это делается для того, чтобы на рабочем участке анализатора спектра меньше наблюдалось различных помех, уменьшающих разрешающую способность устройства.


Генератор качающейся частоты подключают к кварцевому фильтру через согласующий колебательный контур с емкостным делителем (рис. 8).

В процессе настройки это позволит получить малые затухание и неравномерность в полосе пропускания фильтра.

Второй согласующий колебательный контур, как уже упоминалось, находится в детекторной приставке. Собрав схему измерения и подключив выход приставки (разъем ХЗ) на микрофонный или линейный вход звуковой карты персонального компьютера, запускаем программу спектроанализатора. Существует несколько таких программ. Автором была использована программа SpectraLab v.4.32.16, размещенная по адресу: http://cityradio.narod.ru/utilities.html. Программа удобна в пользовании и обладает большими возможностями.

Итак, запускаем программу “SpektroLab” и, подстраивая частоты ГКЧ (в режиме ручного управления) и опорного генератора в детекторной приставке, выставляем пик спектрограммы ГКЧ на отметку 5 кГц. Далее, балансируя смеситель детекторной приставки, пик второй гармоники уменьшают до уровня шумов. После этого включается режим ГКЧ и на мониторе появляется долгожданная АЧХ испытуемого фильтра. Вначале включается частота качания 10 Гц и, подстраивая с помощью R11 центральную частоту, а затем и полосу качания R10 (рис. 4), устанавливаем приемлемую “картинку” АЧХ фильтра в реальном времени. Во время измерений, подстраивая согласующие контуры, добиваются минимальной неравномерности в полосе пропускания.

Далее для достижения максимальной разрешающей способности устройства включаем частоту качания 0,3 Гц и устанавливаем в программе максимально возможное количество точек преобразования Фурье (FFT, у автора 4096...8192) и минимальное значение параметра усреднения (Averaging, у автора 1).

Так как характеристика рисуется за несколько проходов ГКЧ, то включается режим запоминающего пикового вольтметра (Hold). В итоге на мониторе получаем АЧХ исследуемого фильтра.

С помощью курсора мыши получаем необходимые цифровые значения полученной АЧХ на нужных уровнях. При этом надо не забыть измерить частоту опорного генератора в детекторной приставке, чтобы потом получить истинные значения частот точек АЧХ.

Оценив первоначальную “картинку”, подстраивают частоты последовательного резонанса ZQ1n ZQ12 соответственно на нижний и верхний скаты АЧХ фильтра, добиваясь максимальной прямоугольности на уровне - 90 дБ.

В заключение с помощью принтера получаем полновесный “документ” на изготовленный фильтр. В качестве примера на рис. 9 приведена спектрограмма АЧХ этого фильтра. Там же приведена спектрограмма сигнала ГКЧ. Видимая неравномерность левого ската АЧХ на уровне -3...-5 дБ устраняется перестановкой кварцевых резонаторов ZQ2-ZQ11.


В итоге получаем следующие характеристики фильтра: полоса пропускания по уровню - 6 дБ - 2,586 кГц, неравномерность АЧХ в полосе пропускания - менее 2 дБ, коэффициент прямоугольности по уровням - 6/-60 дБ - 1,41; по уровням - 6/-80 дБ 1,59 и по уровням - 6/-90 дБ - 1,67; затухание в полосе - менее 3 дБ, а за полосой - более 90 дБ.

Автор решил проверить полученные результаты и измерил АЧХ кварцевого фильтра по точкам. Для измерений потребовался селективный микровольтметр с хорошим аттенюатором, коим послужил микровольтметр типа HMV-4 (Польша) с номинальной чувствительностью 0,5 мкВ (в то же время хорошо фиксирующий сигналы с уровнем 0,05 мкВ) и аттенюатором в 100 дБ.

Для этого варианта измерений была собрана схема, приведенная на рис. 10. Согласующие контуры по входу и выходу фильтра тщательно экранированы. Соединительные экранированные провода применены хорошего качества. Также тщательно выполнены “земляные” цепи.

Плавно изменяя частоту ГКЧ резистором R11 и переключая по 10 дБ аттенюатор, снимаем показания микровольтметра, проходя по всей АЧХ фильтра. Используя данные измерений и тот же масштаб, строим график АЧХ (рис. 11).

Благодаря высокой чувствительности микровольтметра и малым боковым шумам ГКЧ хорошо фиксируются сигналы на уровне -120 дБ, что четко отражено на графике.

Результаты измерений получились следующие: полоса пропускания по уровню - 6 дБ - 2,64 кГц; неравномерность АЧХ - менее 2 дБ; коэффициент прямоугольности по уровням -6/-60 дБ равен 1,386; по уровням - 6/-80 дБ - 1,56; по уровням - 6/-90 дБ - 1,682; по уровням - 6/-100 дБ - 1,864; затухание в полосе - менее 3 дБ, за полосой - более 100 дБ.

Некоторые отличия результатов измерений от компьютерного варианта объясняются наличием накапливающихся ошибок цифроаналогового преобразования при изменении анализируемого сигнала в большом динамическом диапазоне.

Необходимо отметить, что приведенные графики АЧХ кварцевого фильтра получены при минимальном объеме настроечных работ и при более тщательном подборе компонентов, характеристики фильтра могут быть заметно улучшены.

Предложенная схема генератора может быть с успехом использована для работы АРУ и детекторов. Подав сигнал генератора качающейся частоты на детектор, на выходе приставки к ПК получаем сигнал низкочастотного генератора качающейся частоты, с помощью которого можно легко и быстро настроить любой фильтр и каскад НЧ тракта трансивера.

Не менее интересно использовать предлагаемую детекторную приставку в составе панорамного индикатора трансивера. Для этого следует подключить к выходу первого смесителя кварцевый фильтр с полосой пропускания 8...10 кГц. Далее полученный сигнал усилить и подать на вход детектора. В этом случае можно наблюдать сигналы своих корреспондентов с уровнями от 5 до 9 баллов с хорошей разрешающей способностью.

Г. Брагин (RZ4HK)

Литература:

1. Усов В. Кварцевый фильтр SSB. - Радиолюбитель, 1992, № 6, с. 39, 40.

2. Дроздов В. В. Любительские KB трансиверы. - М.: Радио и связь, 1988.

3. Klaus Raban (DG2XK) Optimizierung von Eigenbau-Quarzfiltern mit der PC-Soundkarte. - Funkamateur, № 11, 2001, S. 1246-1249.

4. Frank Silva. Shmutzeffekte vermeiden und beseitig. - FUNK, 1999, 11, S. 38.

Прежде чем приступать к изготовлению кварцевого фильтра, следует запастись кварцевыми резонаторами, по возможности, с некоторым запасом, так как их надо будет заранее проверить и отбраковать. Устанавливать в фильтр новые кварцы не рекомендуется - они как и другие детали подвержены старению. Наиболее интенсивно они меняют свою частоту в первый год после выпуска.

Так, кварц на 9 МГц за первый год может изменить свою частоту на 180 Гц, что весьма ощутимо. За последующие 2...4 года относительный уход частоты не скажется на работе фильтра. Старению подвержены и конденсаторы, поэтому, как и кварцы, они должны вылежаться несколько лет (от 3-х до 5-ти).

Кварцевые резонаторы следует покупать из одной партии, так как в ее пределах разброс параметров невелик. Для получения хороших параметров фильтров разброс частот последовательных резонансов кварцев не должен превышать 0,1 от полосы пропускания фильтра, для получения отличных - 0,01. Например, для полосы пропускания 3000 Гц разброс не должен превышать плюс-минус 150 (15) Гц, от среднеарифметического значения частот Fs всех кварцевых резонаторов.

Определение электрических параметров кварца.

Генератор Г4-102 лучше не применять, так как у него плохая форма сигнала и не очень стабильная амплитуда при перестройке частоты генератора, вместо ГСС и ВЧ-вольтметра лучше применить измеритель частотных характеристик Х1-38.

При отсутствии приборов, вместо ГСС можно использовать генератор шума плюс радиоприемник (рис.2). Вообще говоря, хороший RX - это универсальный прибор, который можно использовать самым разнообразным способом. В RX включается АРУ и по показаниям S-метра. Если его нет, на выходе УНЧ можно включить тестер.


На частоте последовательного резонанса Fs кварц эквивалентен последовательному колебательному контуру, следовательно, показания ВЧ-вольтметра или RX будут максимальны.

На частоте параллельного резонанса Fp кварц эквивалентен параллельному колебательному контуру - показания приборов минимальны.

PНо этот момент можно обойти, т.к. кварц описывается тем же уравнением, что и последовательный колебательный контур. Требуется лишь частотомер, позволяющий измерять частоту с точностью до 10 Гц и два эталонных конденсатора. С1 и С2, емкость которых известна с точностью до 0,1...1%. Для частот порядка 3...10 МГц С = 39 пФ и С2 = 20 пФ. Если нет возможности точно измерить величину емкости, то эталонные конденсаторы можно сделать самому.

Для этого берутся 5... 10 конденсаторов емкостью в 5. .10 раз меньше необходимой и соединяются параллельно. Дело в том, что кривая разброса погрешностей подчиняется закону нормального распределения Гаусса, она симметрична, и разброс величин в большинстве случаев гораздо меньше указанной величины допуска.

Точность эталонного конденсатора будет заведомо лучше 1%. ТКЕ (температурный коэффициент емкости) должен быть равен нулю. Пусть в нашем случае имеются конденсаторы с ненулевым ТКЕ.

Общее правило таково: - ТКЕ х С = +ТКЕ х С. У нас имеются С = 6,2 пФ, ПЗЗ - 3 шт, С = б,2 пФ М47 - 2 шт. и С = 6,2 пФ МП0 -1 шт. Получим; 6,2 х (+33) х 3 + 6,2 х 0 х 1 + 6,2 х (-47) х 2 = 6,2 пФ (+ 99 - 94) = 6,2 пФ П+0,03

Это означает, что при изменении температуры на 10°С, величина емкости возрастет на 3x10 -5 % (0,000003%). Сэт = 6,2 x 6 = 37,2 пФ П + 0.03. Аналогичным образом изготавливаем Сэт №2.

Чтобы измерить Fs, собирается схема на рис 4 из (2] - это схема мультивибратора с эмиттерной связью, в которой кварц возбуждается вблизи Fs Сначала пронумеровываемое кварцы.

Для каждого кварца измеряется Fso Данные измерений заносятся в таблицу. Затем последовательно с каждым кварцем включаем конденсатор С1 и производим измерения Fs1. Данные заносим в таблицу. Аналогично измеряем Fs2. После чего находим среднеарифметические значения Fs0, Fs1, Fs2. Для расчета кварцевых фильтров нам необходимо знать величину индуктивности кварцевых резонаторов, которую мы находим методом трех частот.

Lк = 1 /2665 x 10 10 (Fs2-Fs1)/ , (1) где LK - в Гн; С1 и С2 - в пФ; Fs0, Fs1, Fs2 - в Гц,

Погрешность расчета по формуле (1) не превышает 2,5 %, Ниже будут приведены необходимые данные для расчета 4, 6 и 8-ми кристальных фильтров с Чебышевской характеристикой для приема SSB и с характеристикой Баттерворта - для приема телеграфных сигналов, они меньше "звенят", но обладают меньшим затуханием за полосой пропускания и худшим коэффициентом прямоугольности Кп, рис.5.


Кп представляет собой отношение полос пропускания кварцевого фильтра при заданном уровне ослабления к поносе пропускания на уровне 0,7 (-ЗдБ).

Например, Кп 1,7 по уровням -60 дБ/-3 Дб = 4,25/2,5 = 1,7. Фильтры рассчитаны для неравномерности АЧХ = 0,28 дБ, но на практике из-за неизбежной неточности изготовления, она получается несколько больше.

Фильтры рассчитаны по методике приведенной в , но входные и выходные емкости (С2,3) из последовательных пересчитаны в параллельные, т.к. фильтры неудобно согласовывать, потому что влияет емкость монтажа, образовывая к тому же емкостный делитель, уменьшающий полезный сигнал на 8...15%.

Чтобы уменьшить влияние емкости монтажа в 8 кристальных фильтрах, Т-звенья пересчитаны в П-звенья. Согласовывать кварцевые фильтры лучше всего с помощью колебательных контуров (не имеющих ферромагнитных сердечников, чтобы не ухудшить динамику приемной части), они улучшают соотношение сигнал/ шум в корень квадратный из нагруженной добротности.

Расчет (SSB) кварцевых фильтров с Чебышевской характеристикой и неравномерностью АЧХ в полосе пропускания 0,28 дБ.

Четырехкристальный фильтр, рис 6.

С1.2 = 33354/(Fs0 + П/2) x Lк х П (пФ), где

  • Fs0 - среднеарифметическое значение (кГц),
  • LK - индуктивность кварца, рассчитанная по формуле (1) (Гн).
  • П - полоса пропускания фильтра (кГц).
  • С2.3 = 1.149 х С1,2; С1 = 0,419 x С1,2

    Сопротивление нагрузки фильтра

    Rф = 8.63 х Lк х П (Ом), где Lк в Гн, П в Гц.


    Шестикристальный фильтр, рис7.

  • С1 =39 пФ и С2 = 20 ПФ.
  • С1,2 = 35383/ (Fs0+ П/2) x Lк x П, пФ
  • С1 = 0,439 х С1.2;
  • С2,3=1,213 x С1,2.
  • С3,4=1,344 x С1,2;
  • С = 3,907 х С1,2
  • Rф = 7,715xLк x П.
  • Восьмикристальный фильтр, рис 8.

  • С1.2 = 36007/(Fs0 + П/2) x Lк x П, пФ,
  • С1 = 0,578 х С1,2;
  • С2,3 =1,227 x С1,2;
  • С3,4 = 1,357 х С1,2;
  • С4,5 = 1,297 x С1,2
  • С2 = 0,832 x 01,2;
  • С3 =1,471 x С1,2;
  • С4 = 0,525x C1,2,
  • Rф = 8,862 х Lк х П
  • Как видно из приведенных формул, чтобы получить например, телеграфный фильер с Чебышевской характеристикой достаточно в рассчитанном SSB фильтре увеличить все величины емкостей в число раз, равное Пssb/Пcw/ Rф уменьшится во столько же раз. Этим приемом можно воспользоваться, если П изготовленного SSB кварцевого фильтра оказалась меньше требуемой из-за малого резонансного промежутка используемых кварцев. Для получения требуемой полосы пропускания в соответствующее число раз уменьшаем все емкости фильтра. Но если попались некачественные кварцы, этот способ не сможет помочь.

    Расчет телеграфных (CW) кварцевых фильтров с характеристикой Баттерворта.

    (Обозначения аналогичны приведенным на рис 6-8).

    Четырехкристальный кварцевый фильтр.

  • С1,2 = 30125/(Fs0 + П/2) х Lк х П, пФ, (кГц, Гн)
  • С1 = 0,22 7x
  • С1,2; = C2,3 = 1.554 x C1,2;
  • Rф = 9,62 х Lк х П. (Гн, Гц) Ом
  • Шестикристальный фильтр.

  • С1,2 = 21670/(Fs0 + П/2) x Lк x П
  • С1 = 0,173 x С1,2;
  • С = 1,795 x С1,2;
  • С2.3 = 1,932 х С1,2;
  • С3,4 = 2,258 x С1,2
  • Rф = 17,429 х Lк х П.
  • Восьмикриcтальный фильтр.

  • С1,2 = 16678/(Fs0 + П/2) x Lк х П.
  • C1 = 0,157 x С1,2;
  • C2,3 = 2,064 x C1,2;
  • C3,4 = 2,743 x C1.2;
  • C4.5 = 2,979 x C1 2
  • С2 = 0,583 x С1,2;
  • С3 = 0,359 x С1,2;
  • С4 = 0,625 x С1,2;
  • Rф = 17,429 х Lк х П
  • Для того, чтобы работать CW на той же частоте что и SSB надо использовать один и тот же опорный кварцевый генератор, но, чтобы прием CW не был слишком низкочастотным, надо полосу пропускания CW фильтра сдвинуть вверх на 400....700 Гц, тогда тон сигнала будет оптимальным и составит 0,8.....1,2 кГц. Подбирать кварцы имеющие Fs = 400...700 Гц не всегда есть возможность, да и делать отдельный CW фильтр дороговато. Лучше воспользоваться методом, предложенным EU1TT в .

    Конденсатор С2 включается последовательно с кварцевым резонатором и Fs вверх на 400. .700 Гц. Конденсатор С1 сужает резонансный промежуток образовавшегося эквивалентного резонатора Величина С2 рассчитывается по формуле:

    С2 = 0,0253302/Lк х (2Fs0 x f + f 2 ), пФ (2), где Lк в Гн, Fs0 и f в Гц. Fs = 400...700 Гц. С2 = 50...200 пФ и может быть подобран экспериментально. С1 по рекомендации UP2NV находится в пределах 20..70 пф, причем большей величине емкости соответствует меньшая полоса пропускания фильтра. Конденсаторы подключаются малогабаритными реле (например, РЭС-49). Т.е. одни и те же кварцы используются одновременно и в SSB и CW фильтрах.

    В правильно спроектированном приемнике между величиной затухания за пределами полосы пропускания Ао, динамическим диапазоном по блокированию ДД1, динамическим диапазоном по интермодуляции ДДЗ, усилением по промежуточной частоте RX Кус. ПЧ (все в дБ), существуют зависимости: Ао = ДД1, и До = ДД3 + Кус.ПЧ Применительно к трансиверу RA3AO это составит Ао = 140 Дб и Ао = 100 + 60 = 160 дБ.

    Из двух величин выбираем большую. (У автора применено 8 кварцев в SSB фильтре. 6 в CW фильтре и 2 в подчисточном фильтре. Всего 8 + 6 + 2 = 16 кварцев). Лучше их распределить так: ФОС -13 шт, второй ФОС - 6 шт включенный между первым и вторым каскадами усилителя ПЧ, и в подчисточном фильтре SSB/CW фильтры. Это позволит реализовать высокую динамику приемного тракта трансивера и резко улучшить реальную избирательность


    Большое значение имеет правильное изготовление фильтров. Монтаж на печатной плате не подходит из-за влияния емкостей монтажа и вносимых потерь. Лучше всего навесной монтаж на выводах кварцев Удачную конструкцию предложил UY50N в , рис 9.

    Вид на фильтр со стороны монтажа (снизу), со стороны выводов кварцевых резонаторов (в металлических корпусах). Расположение резонаторов - вертикальное. Монтаж аккуратный, проводится непосредственно на их выводах. Устанавливаются на плату из 2-х стороннего фондированного стеклотекстолита. Отверстия в фольге разенковываются.

    Все эти узлы следует выполнять в экранированных корпусах, соединяя корпус смесителя с корпусом кварцевого фильтра в одной точке, а корпус усилителя промежуточной частоты с корпусом кварцевого фильтра также в одной точке, около выхода фильтра. Экран должен быть значительной толщины, чтобы через него не смешивались токи смесителя и усилителя промежуточной частоты. Реле для изменения полосы пропускания следует располагать рядом с кварцами и питание на них следует подавать через проходные конденсаторы и развязывающие LC цепочки.

    Кварцы следует разбить на пары с наиболее близкими Fs. Пары с минимальным разносом следует ставить, в крайние (ZQ1-ZQ8) звенья фильтра, пары с максимальным разносом ставить в центральные звенья (ZQ4-ZQ5), применительно к 8-ми кристальному фильтру. При измерении параметров изготовленного фильтра надо правильно подключать приборы, чтобы не исказить ФЧХ фильтра, рис.10. Если есть возможность, конденсаторы надо подобрать с точностью не хуже 1%, но и применение их с допуском 5 % слабо ухудшит параметры фильтра, и вполне допустимо.

    Применять надо малогабаритные керамические конденсаторы с минимальным ТКЕ Можно даже применять устаревшие конденсаторы КТ-1 от различной, приведшей в негодность аппаратуры. Они удобны еще и тем, что допускают подгонку емкости путем осторожного соскабливания скальпелем части обкладки с наружной стороны в сторону уменьшения величины емкости. Удаленное место для изоляции покрывается тонким споем клея БФ-2. От других типов конденсаторов можно отламывать кусочки, не забыв проверить подогнанный" конденсатор на отсутствие замыкания между обкладками.

    После установки в аппаратуру кварцевые фильтры должны быть обязательно согласованы (нагружены на требуемые величины сопротивлений), иначе АЧХ (амллитудно-частотная характеристика или форма полосы пропускания) будет далека от расчетной (ожидаемой). Величину входных емкостей фильтра (С2,3) следует уменьшить на величину емкости монтажа, она может сильно увеличить как неравномерность АЧХ в полосе пропускания фильтра, так и затухание в полосе пропускания фильтра. Правильно изготовленный и установленной фильтр не нуждается в на: тройке.

    Если не удалось подобрать требуемое количество кварцев с допустимым разносом Fs, то частоты можно подогнать, но не механически, а электрически, рис.10, что предложено также EU1TT. Можно также воспользоваться формулой (2), преобразованной к виду:

    С2 = 0.0253302/Lк x (Fs max - Fs I) (3)

    Имея осциллограф, можно создать систему, которая будет эквивалентна измерителю частотных характеристик. Для этого на вход трансивера или приемника нужно подать через аттенюатор сигнал от генератора, рис 4, а на цепи управления варикапом расстройки через переменный резистор 150 кОм подать пилообразное напряжение от осциллографа, выход которого выведен на разъем. Этот способ удобен тем, что мы наблюдаем АЧХ фильтра в том месте, где он и должен находиться. Если осциллограф низкочастотный, его можно включить на выход детектора. При таком способе наблюдения АЧХ в фильтре можно применять кварцы с большим разбросом по частоте, меняя их местами, добиваясь требуемой АЧХ. Но это менее надежно, более трудоемко, и не позволяет изготовить комплект кварцевых фильтров с идентичными АЧХ.

    По предлагаемой методике были изготовлены два комплекта 6 + 6 + 4 кварцевых фильтров на частоты 8,002 МГц и 5,503 МГц Разнос полос пропускания составил плюс/минус 50 Гц. т.е. следует рассчитывать с полосой пропускания шире на 100 Гц - не 2500, а 2600 Гц. Характеристики хорошо совпали с расчетными и фильтры не потребовали дополнительной настройки, а были только согласованы непосредственно в схеме. В данной статье обобщены результаты труда многих авторов и собственный многолетний опыт [б], .

    А Кузьменко (RV4LK)

    1, Радио, 1975 г. №3, Л. Лабутин "Кварцевые резонаторы".

    2. Инфотех, А. Каракаптан, UY50N "Методика изготовления кварцевых фильтров".

    3. Радио, 1982-1983 г.г. статьи В. Жалнераускаса, ex UP2NV.

    4. Радиолюбитель, 1991 г. №11. И. Гончаренко, EU1TT, "Совмещение полос пропускания SSB/CW в кварцевом фильтре с переменной полосой пропускания".

    5. Радио, 1992 г. №1, И. Гончаренко, EU1TT, "Лестничные фильтры на неодинаковых резонаторах".

    6. Радиодизайн, 1996 г, №3, А. Кузьменко, RV4LK, ex UA4FON, "Определение, параметров кварцевых резонаторов для расчета и изготовления кварцевых фильтров".

    7. Радиолюбитель, 1993, №6, А. Кузьменко, RV4LK, ex UA4FON, "Определение параметров кварцевых резонаторов для расчета лестничных фильтров"

    (MS Word, ZIP) - 1,7 Мб. 10 мин @ 28,8 кБ/сек

    Одной из основных задач при создании аппаратуры для любительской КВ и УКВ радиосвязи является селекция, которая решается с помощью различного рода фильтров. Получение высоких параметров фильтров требует применения высокодобротных элементов. Такими элементами служат магнитострикционные диски в электромеханических фильтрах и кварцевые резонаторы в пьезоэлектрических фильтрах. В радиолюбительской практике широкое распространение получили квазиполиноминальные лестничные кварцевые фильтры на одинаковых резонаторах.

    Все полосовые фильтры строятся на основании преобразований фильтров НЧ прототипов. Полиноминальные фильтры содержат последовательные и параллельные контуры. Такие фильтры имеют геометрически симметричные характеристики относительно средней частоты. Но при проектировании в ряде случаев (узкая полоса, высокие частоты и др.) не очень удобны с точки зрения конструирования, изготовления и настройки из-за значительной разницы величин элементов последовательных и параллельных контуров. Для достаточно узкополосных фильтров соотношение значений индуктивностей и емкостей в параллельных и последовательных плечах настолько велико, что величины элементов становятся неприемлемыми. Поэтому полосовые фильтры часто реализуются в виде схем, состоящих из только последовательных или параллельных контуров, связанных между собой индуктивными или емкостными связями. Ярким примером могут служить фильтры сосредоточенной селекции – ФСС на связанных контурах и лестничные кварцевые фильтры. Характеристики затухания полосового фильтра на связанных контурах при относительной полосе пропускания, не превышающей 10-20% от средней частоты фильтра, может быть весьма близкой к характеристике затухания полиноминального полосового фильтра с тем же числом колебательных контуров. Расчет таких фильтров может производиться с помощью таблиц полиноминальных НЧ прототипов. Поэтому эти фильтры именуются квазиполиноминальными.

    Вопросы проектирования и изготовления квазиполиноминальных лестничных кварцевых SSB и CW фильтров в любительских условиях остаются актуальными на протяжении четверти века. За прошедшее время в печати было опубликовано много статей, посвящённых этой теме. Пионером, признанным специалистом и популяризатором лестничных кварцевых фильтров среди радиолюбителей считается J. Hardcastle (G3JIR). Он одним из первых уделил достойное внимание и вложил много труда и таланта в разработку методики расчёта указанных выше фильтров. Его статья стала бестселлером.

    Расчёт и моделирование качественных кварцевых фильтров с заданными параметрами сложная задача, требующая выполнения большого количества математических расчётов. Помочь в решении этой задачи может применение компьютеров. Первым энтузиастом этого направления в радиолюбительской практике стал U. Rohde (DJ2LR). Его знания и опыт в расчёте мостовых фильтров отражен в программе для семейства малых компьютеров и подробно описан в .

    Но не только за рубежом уделялось внимание кварцевым фильтрам. В. Жалнераускас опубликовал на страницах журнала «Радио» цикл статей , в которых осветил новые, нераскрытые его предшественниками, страницы в теории и практике изготовления кварцевых фильтров. Достойное внимание уделили этой теме Бунин С. Г. и Яйленко Л. П. в . «Справочник радиолюбителя-коротковолновика» украинского дуэта, «широко известного в узких кругах», печатался многотысячными тиражами.

    C момента выхода в свет указанных выше трудов прогресс, а вместе с ним компьютерные и информационные технологии, глубоко проникли во все области деятельности человека. Не обошли они стороной и радиолюбительское движение. Компьютеры всё больше и больше находят применение в любительской радиосвязи и конструировании. Многие радиолюбители стали применять компьютеры в решении вопросов, связанных с расчётом и проектированием кварцевых фильтров.

    Использование компьютерных программ позволяет быстро и качественно выполнить большой объём математических вычислений, провести анализ результатов и выбрать наиболее приемлемый вариант. В Интернете на сайтах, посвящённых любительской радиосвязи можно найти до десятка различных программ по расчёту лестничных кварцевых фильтров. Но в основном эти программы рассчитывают только величины конденсаторов связи и входных сопротивлений проектируемых фильтров. Кроме этого упомянутые программы имеют довольно большую погрешность в результатах расчётов, в некоторых случаях доходящую до 50%. Эта погрешность обусловлена наличием в эквивалентной схеме замещения кварцевого резонатора Cs и Rd (Рис. 1), никак не участвующих в расчётах при использовании упомянутых программ.

    При расчёте электрических цепей кварцевый резонатор, согласно стр. 39, может быть заменён эквивалентной схемой замещения (рис. 1) с соответствующими параметрами.

    Рис. 1. Эквивалентная схема замещения кварцевого резонатора.

    Эти параметры связаны между собой следующей зависимостью:

    В радиолюбительской практике получили распространение в основном фильтры с характеристиками двух типов – Баттерворта и Чебышева. Фильтр Баттерворта характеризуется монотонным изменением затухания в полосе пропускания и задерживания. Затухание в полосе задерживания изменяется приблизительно на 6 дБ за октаву для каждого элемента схемы. Например, пятиэлементный фильтр будет иметь затухание 30 дБ при двойной частоте среза и 60 дБ при учетверенной частоте среза. За нормированную частоту среза для фильтра Баттерворта принимается частота, на которой затухание составляет 3 дБ. Такие фильтры характеризуются меньшим «звоном» и в основном применяются для приема CW и при работе цифровыми видами связи (RTTY, AMTOR, PACTOR, PACKET RADIO и т.п.).

    АЧХ фильтров Чебышева имеет колебательный характер в полосе пропускания и монотонный - в полосе задерживания. Неравномерность затухания dA в полосе пропускания однозначно связана с максимальным коэффициентом отражения – Котр и коэффициентом стоячей волны - КСВ. Эта связь показана в таблице 1 . Основным достоинством этих фильтров перед фильтрами с характеристиками Баттерворта является меньший коэффициент прямоугольности при одинаковом количестве колебательных контуров.

    Табл. 1

    Зависимость АЧХ, полосы пропускания, затухания, вносимого фильтром, и коэффициента прямоугольности по уровням -6/-60 дБ от Cs наглядно представлена на рис. 2 и в табл. 2, а от Rd на рис. 3 и в табл. 3. В качестве примера приводятся амплитудно-частотные характеристики восьмикристальных фильтров Чебышева Т08-10-3100 с коэффициентом отражения Котр=10%.

    Рис. 2 . Зависимость АЧХ от Сs

    Таблица 2.

    Рис. 3. Зависимость АЧХ от Rd

    Таблица 3.

    Анализ полученных данных показывает, что Cs и Rd в значительной мере влияют на полосу пропускания, затухание, вносимое фильтром, и коэффициент прямоугольности. Отсюда вывод, что для качественного фильтра следует подбирать кварцевые резонаторы с минимальными значениями Cs и Rd.

    Устранить указанные выше недостатки попытались авторы программы «Расчёт кварцевых фильтров». В мае 2001 года одна из первых версий программы была размещена на сайтах краснодарских (http://www.cqham.ru/ua1oj_d.htm ) и сайт (). Эта программа позволяет рассчитать параметры трёх, четырех, шести и восьми кристальных фильтров с характеристиками Баттерворта и Чебышева по методике, описанной в и , и построить амплитудно-частотные характеристики проектируемых фильтров. В расчётах использованы коэффициенты из таблиц . Положительной отличительной особенностью этой программы является реализация оригинального алгоритма расчёта и построения амплитудно-частотной характеристики квазиполиноминальных лестничных кварцевых фильтров с использованием полной эквивалентной схемы замещения кварцевого резонатора. Алгоритм построен на основе анализа линейных четырёхполюсников, подробно описанного в .

    Вид одной из последней версии (V-6.1.8.0.) программы представлен на рис. 4. Форму, созданную программой, можно условно разделить на пять функциональных зон. Большую часть площади формы занимают графики АЧХ. Над ними расположены панели с принципиальными схемами фильтров и результатами расчётов. Справа от АЧХ находятся панели исходных данных резонатора и фильтра. В нижней части формы расположен статус-бар, который отражает порядковый номер АЧХ и краткое наименование рассчитанного фильтра, дату и время проведения вычислений, некоторые подсказки по работе с программой.

    Рис. 4. Скриншот программы.

    Следует пояснить сокращения, принятые в программе:

    Амин – минимальное вносимое затухание;
    F(Амин) – частота минимального затухания;
    А(Fo) – затухание на частоте последовательного резонанса;
    dF(-N дБ) – полоса пропускания по уровню – N дБ;
    Ck – емкость коррекции при расчёте фильтров со сдвигом полосы.

    В дополнение к функциям предыдущих версий в программу введены несколько новых:

    1. Сохранение и открытие файла с данными резонатора и фильтра (Рис. 5.);

    Рис. 5.

    2. Построение с наложением до пяти АЧХ различных фильтров (Рис. 6.);

    Рис. 6.

    3. В программу введён расчёт и построение АЧХ 4-х, 6-ти и 8-ми кристальных узкополосных фильтров со сдвигом вверх средней частоты полосы пропускания. Идея сдвига полосы пропускания заимствована из . Она заключается в том, что частота последовательного резонанса каждого кварцевого резонатора повышается с помощью включенного последовательно с ним корректирующего конденсатора небольшой емкости (Рис. 7).

    Рис. 7.

    4. Программа позволяет провести расчёт фильтров с характеристиками Баттерворта и Чебышева с Котр от 10 до 25% (Рис. 8).

    Рис. 8.

    5. Построение АЧХ производится с точностью до 1 Гц по частоте. Максимальная полоса АЧХ составляет +/-30 кГц. При превышении этого значения, программа выдаёт сообщение об ошибке (Рис. 9).

    Рис. 9.

    6. В программе имеется возможность с помощью масштабирования просмотреть любой участок АЧХ (Рис. 10). Для этой цели нажатием левой клавиши мыши выделяется прямоугольный фрагмент графика диагонально из верхнего правого угла в левый нижний. Так можно поступить несколько раз, добиваясь необходимого масштаба изображения АЧХ. Возврат к исходному виду производится обратным движением мыши – из правого нижнего угла в левый верхний.

    Рис. 10.

    Минимальные системные требования для работы программы: Pentium MMX-166MHz, SVGA 800x600x16bit, RAM-16MB, Windows 9x/ME/XP/NT/2000.

    Проверка на практике работы этой программы показывает высокую точность результатов расчётов. Погрешность во многом зависит от качества проведения измерений параметров кварцевых резонаторов и может не превышать 2-5%. В качестве примера приводятся результаты расчёта трёх кварцевых фильтров для коротковолнового трансивера, подобного .

    При изготовлении этих фильтров использовались малогабаритные кварцевые резонаторы UTECH на частоту 8867,238 кГц. Выбор пал на эти резонаторы ввиду высокой точности их изготовления. Разброс по частоте последовательного резонанса в партии из 30 шт. не превышал +/- 150 Гц, а отклонения значений Ld и Cs укладывались в допуск 0,1%. Измерение частоты последовательного резонанса для этих резонаторов дало результат:

    Fo=8861,736 кГц

    С помощью программы было рассчитано несколько вариантов фильтров и наиболее приемлемые изображены на рис. 11.

    Рис. 11. Принципиальные схемы и основные параметры фильтров.

    ZQ1 – Т08-10-2800, фильтр 8-го порядка, с характеристиками Чебышева, неравномерностью в полосе пропускания dA =0,044 дБ, коэффициентом отражения 10%, расчётной полосой пропускания 2800 Гц, используется в качестве фильтра основной селекции в режиме SSB.

    ZQ2 – В06С-760, фильтр 6-го порядка, с характеристиками Баттерворта, с корректирующими емкостями, расчётной полосой пропускания 760 Гц, используется в качестве фильтра основной селекции в режиме CW. Сдвиг вверх средней частоты полосы пропускания относительно опорной частоты составляет 1000 Гц.

    ZQ3 – Т04-10-2400, фильтр 4-го порядка, с характеристиками Чебышева, неравномерностью в полосе пропускания dA =0,044 дБ, коэффициентом отражения 10%, расчётной полосой пропускания 2400 Гц, используется в качестве подчисточного фильтра в режиме SSB.

    Для изготовления этих кварцевых фильтров потребовалось 18 предварительно испытанных и отобранных резонаторов. Испытание и отбраковку резонаторов проводили с помощью автогенератора «ёмкостная трёхточка» и частотомера (например - Ч3-57 или т. п.). Один из многих вариантов генератора показан на рис. 12.

    Рис. 12 . Схема автогенератора.

    Особенность этой схемы заключается в отсутствии катушки индуктивности. Её функции в этой схеме выполняет кварцевый резонатор. Возбуждается генератор вблизи частоты параллельного резонанса кварца, в зоне, где его реактивное сопротивление носит положительный индуктивный характер. Основное требование к резонаторам на данном этапе – близкие значения частоты, отклонение которой не должно превышать четверти полосы пропускания фильтра. В противном случае получить заданные характеристики будет довольно сложно.

    При отборе кварцевых резонаторов обязательным параметром является Cs - статическая ёмкость резонатора, которую можно определить с помощью прибора МТ-4080А, MIC-4070D или т. п. При отсутствии подобных приборов можно воспользоваться несложным генератором, мостовой схемой и индикатором баланса (Рис. 13). Этот прибор позволяет измерить величины Cs и Rd .

    Рис. 13. Прибор для измерения Cs и Rd.

    В последнюю очередь следует определить динамическую индуктивность Ld кварцевого резонатора. В литературе описано несколько методов определения этого параметра. Наиболее точным и простым из них является моделирование четырёхкристального кварцевого фильтра Баттерворта и по его характеристикам расчёт Ld . Для этого с помощью упомянутой выше программы рассчитывается фильтр, на макете или в реальной конструкции он моделируется и настраивается. В расчётах исходным значением Ld для частот порядка 8-9 МГц можно принять 15-20 мГн. При настройке следует добиться АЧХ по своей форме наиболее близкой к рассчитанной. У настроенного фильтра измеряется полоса пропускания по уровню –3 дБ. Исходные и полученные в результате моделирования данные позволяют определить истинную величину динамической индуктивности кварцевого резонатора Ld . Изменяя в программе исходные значения Ld и dF , добиваются в результатах расчётов величин конденсаторов связи и полосы пропускания, близких к значениям настроенного фильтра. При полном совпадении этих данных Ld примет истинное значение.

    ПРИМЕР:

    Из партии кварцевых резонаторов выбираем 4 шт. с наиболее близкими параметрами:

    Fo=8861,736 кГц; Cs =6,3 пФ; Rd =5,7 Ом.

    С помощью программы рассчитываем четырехкристальный фильтр Баттерворта. При заданных исходных значениях:

    Ld =15 мГн; dF =2265 Гц;

    получили емкости связи в фильтре:

    С2=С4=100 пФ; С3=155,5 пФ.

    На макете по схеме рис. 16 или в реальном тракте приема трансивера с помощью ГКЧ настраиваем фильтр и измеряем полосу пропускания по уровню –3 дБ. Получили:

    dF =3363 Гц.

    В программе, изменяя исходные значения только Ld и dF, добиваемся в результатах расчетов:

    С2=С4=100 пФ; С3=155,5 пФ; dF =3363 Гц.

    Все параметры совпали при:

    Ld =10,1 мГн.

    Это значение динамической индуктивности кварцевого резонатора следует считать истинным и использовать его в дальнейших расчетах фильтров.

    При изготовлении фильтра можно использовать технологию, когда кварцевые резонаторы крепятся пайкой на плату из двухстороннего фольгированного стеклотекстолита выводами вверх, а все конденсаторы фильтра монтируются между этими выводами и заземляющей поверхностью платы (Рис. 14а).

    Рис. 14. Конструкция кварцевого фильтра.

    Пайка резонаторов производится в двух угловых точках на предварительно облуженную поверхность платы хорошо прогретым паяльником мощностью 60-80 Вт. Время пайки не должно превышать 2-3 секунд. В противном случае есть риск повредить резонатор. Размеры платы для 8-ми и 6-ти кристальных фильтров - 47,5х25 мм (Рис. 14b), а для 4-х кристального - 25х25 мм. По окончании насторойки фильтров, они закрываются крышками из лужёной жести и для герметичности пропаиваются по периметру. Пример использования 8-ми кристального фильтра можно увидеть в .

    Настройка фильтров сводится в получении амплитудно-частоных характеристик, близких к рассчитанным с помощью программы. В процессе настройки фильтров использовался самодельный генератор качающейся частоты с медленной, порядка 8-12 Гц, разверткой на базе осциллографа С1-76. На рис. 16 приводится схема, печатная плата и расположение деталей этого ГКЧ.


    b) c)

    Рис. 15. Генератор качающейся частоты.

    Особое внимание следует уделить согласованию фильтра с каскадами УПЧ. В процессе экспериментов с различными схемами включения фильтров, была выбрана наиболее оптимальная с точки зрения получения заданной АЧХ и минимального затухания. Такая схема представлена на рис. 16.

    Рис. 16. Согласование кварцевого фильтра и УПЧ.

    Кварцевый фильтр установлен между двумя контурами и имеет в каждый контур неполное включение с помощью емкостного делителя. Крайние ёмкости фильтра при этом входят в состав емкостного делителя. Эти контура позволяют трансформировать активное сопротивление и компенсировать емкостную реактивную составляющую входного импеданса фильтра. В такой схеме согласования обеспечивается режим с минимальными потерями сигнала, что в свою очередь приводит к минимальным шумам в цепях селекции приёмного тракта. Каскад усиления, включенный перед фильтром, рекомендуется установить в стабильный режим по постоянному току. Изменение тока транзистора сопровождается изменением выходного сопротивления каскада. Это приводит к рассогласованию каскада усиления и фильтра. На рис. 17 показаны АЧХ на примере фильтра Т08-10-3100 при различном режиме согласования с отклонением величины в пределах +/-20% от Rопт .

    АЧХ1 - Rн=Rопт ; АЧХ2 - ; АЧХ3 - Rн>Rопт .

    Рис. 17. Зависимость АЧХ от согласования нагрузок.

    Следующий за фильтром каскад усиления на полевом транзисторе имеет большое, порядка десятка килоом, сопротивление, которое слабо изменяется при изменении коэффициента усиления. Поэтому рекомендуется регулируемые каскады устанавливать после фильтра. Для уменьшения коэффициента шума этого каскада первый затвор следует включить непосредственно в контур. Наличие разделительной емкости и высокоомного делителя, задающего режим транзистора по первому затвору, увеличивает напряжение шумов усилителя промежуточной частоты. В усилителях на полевых транзисторах серии КП306, КП350 для обеспечения оптимального режима работы каскада в цепи истока потребуется стабилизированное отрицательное смещение порядка –3…-5 В. Для этой цели можно использовать интегральные стабилизаторы 79L05 или цепочку из нескольких диодов с минимальным дифференциальным сопротивлением типа КД409 или т.п. .

    На рис. 18, 19 и 20 приводятся реальные амплитудно-частотные характеристики рассчитанных, изготовленных и настроенных фильтров. Результаты настройки фильтров с высокой точностью совпали с результатами расчётов этих фильтров. Это лишний раз показывает, что не только серьезные фирмы с всемирной известностью могут создавать качественные кварцевые фильтры с заданными параметрами. При наличии некоторых навыков работы с паяльником и измерительными приборами радиолюбитель средней квалификации может удовлетворить свои потребности в одном из самых значимых узлов своей аппаратуры – кварцевом фильтре. Причем это ему обойдется как минимум в несколько раз дешевле, нежели приобретение его в сети розничной торговли.

    Рис. 18. АЧХ фильтра Т04-10-2400.

    Рис. 19. АЧХ фильтра Т08-10-2800.

    Рис. 20. АЧХ фильтра В06С-760.

    Все желающие ознакомиться с программой «Расчёт кварцевых фильтров» могут загрузить её последнюю демонстрационную версию с по указанным выше адресам. Для получения полной бесплатной версии программы необходимо с помощью утилиты регистрации, которая находится там же, заполнить бланк и выслать его по E-mail: ua1oj (at) atnet.ru . Программа имеет защиту от несанкционированного копирования и распространения, компилируется для каждого зарегистрированного пользователя индивидуально, и работоспособна только на том компьютере, на котором проходила регистрация.

    В небольшой журнальной статье сложно подробно ответить на все затронутые вопросы. Каждый из них достоин изложения, как минимум, в большом фолианте. Но если читатели считают, что некоторые из вопросов не раскрыты или не достаточно точно изложены, то автор приглашает всех неравнодушных радиолюбителей к диалогу. Наиболее оперативно можно обмениваться мнениями по E-mail. Работы по совершенствованию программы не прекращаются и все поступившие замечания и предложения не останутся без внимания.

    В заключение автор выражает свою глубокую благодарность и признательность Дмитрию Курносову (г. Северодвинск) за сотрудничество при создании программы. Также хочется высказать слова благодарности Владимиру Полянскому (u102835 (at) dialup.podolsk.ru ) и Игорю Афанасьеву (UN9GW (at) mail.ru ) за советы и конструктивные критические замечания, сделанные в ходе обсуждения материалов при подготовке последних версий программы.

    Список литературы

    1. Hardcastle J. A. (G3JIR) «Ladder crystal filter design»; «Radio Communication», February 1979.
    2. Dr. Ulrich L. Rohde (DJ2LR) «Crystal Filter Design with Small Computers»; «QST» May 1981.
    3. Жалнераускас В. (UP2NV) «Кварцевые фильтры на одинаковых резонаторах»; «Радио» №1,2,6-1982, №5,7-1983.
    4. Матханов П. Н. «Основы анализа электрических цепей. Линейные цепи»; Москва, «Высшая школа», 1972.
    5. Глюкман Л. И. «Пьезоэлектрические кварцевые резонаторы»; Москва, «Радио и связь», 1981.
    6. Бунин С. Г. (UB5UN), Яйленко Л. П. (UT5AA) «Справочник радиолюбителя-коротковолновика»; Киев, "Техника", 1984.
    7. Ханзел Г. Е. «Справочник по расчёту фильтров»; Москва, «Советское радио», 1974.
    8. Гончаренко И. (RC2AV) «Совмещение полос пропускания SSB/CW в кварцевом фильтре с переменной полосой пропускания»; «Радиолюбитель» №11-1991.
    9. Дроздов В. В. (RA3AO) «Любительские КВ трансиверы»; Москва,«Радио и связь», 1988.
    10. Белых А. В. (UA1OJ) «Балансный смеситель»; «Радiоаматор» №2-2001.

    Простой и дешевый фильтр для SSB

    Воронцов А. RW6HRM предлагает в качестве альтернативы ЭМФ-ам применять простую и главное-дешевую схему кварцевого фильтра. Статья актуальна ввиду дифицита и дороговизны данных элементов.

    В последнее время очень часто в Интернет-публикациях встречаются «слезы» начинающих радиолюбителей, мол, трудно достать ЭМФ, это дорого, кварцевый фильтр сделать сложно, необходимы приборы и т.п. Действительно, достать сейчас хороший новый ЭМФ достаточно проблематично, что предлагается на рынке – это глубокое б/у без гарантии нормальной работы, а сваять кварцевый фильтр даже на имеющихся в продаже кварцах на 8,86 МГц не обладая соответствующей контрольно-измерительной аппаратурой, «на глазок», невозможно. На первый взгляд ситуация не ахти…

    Однако есть вариант сделать простой кварцевый фильтр для низкочастотного SSB-передатчика или трансивера достаточно простым и самое главное – недорогим. Достаточно пройтись по радиомагазинам и узреть в продаже «двухножковые» кварцы для пультов ДУ на частоты от 450 до 960 кГц. Данные детали делают с достаточно большими допусками на генерируемые частоты, что дает нам право выбора как используемой промежуточной частоты, так и полосы пропускания делаемого фильтра. Сразу оговорюсь: идея не моя, ранее её апробировал шведский радиолюбитель HARRY LYTHALL, SM0VPO, а я просто сообщаю об этом Вам (предварительно сделав несколько фильтров для себя).

    Итак, что нам требуется для подбора кварцев – простой генератор типа «трехточка» и частотомер или радиоприемник с частотомером, перекрывающий любительский диапазон 160 метров. Из кучи кварцев нам требуется выбрать два с разносом генерируемых частот в 1 – 1,5 кГц. Если мы используем кварцы на частоту 455 кГц, то удобнее всего настраиваться на их четвертую гармонику (около 1820 кГц, добиваясь разноса в 4 – 4,5 кГц), а если 960 кГц, то на вторую (1920 кГц, разнос 2 – 2,5 кГц).

    Контур CL1 в данном примере является нагрузкой предыдущего каскада УПЧ, это стандартный контур на 455 кГц из любого зарубежного раскуроченного АМ-приемника. Можно также использовать данные из радиолюбительской литературы для самодельных контуров на частоту 465 кГц, уменьшив количество витков на 5%. Точками обозначено начало катушек связи L2 и L3, им достаточно по 10 – 20 витков. Вполне возможно поставить фильтр сразу после смесителя, к примеру, кольцевого на четырех диодах. В этом случае уже получится трансформатор 1:1:1, который можно выполнить на кольце Ф600 с внешним диаметром 10 – 12 мм, количество витков скрученного тройного провода ПЭЛ-0,1 – 10 – 30. Конденсатор С в случае трансформатора, естественно, не нужен. Если второй каскад УПЧ выполнен на транзисторе, то резистор 10 кОм возможно использовать в токозадающей базовой цепи, тогда разделительный конденсатор 0,1 мкФ не нужен. А если этот фильтр использовать в схеме простого радиотракта , то и резистор можно исключить.

    Теперь из оставшейся кучи кварцев нам надо подобрать подходящий для опорного генератора. Если к указанным на схеме номиналам мы подберем кварц на 455 кГц, то на выходе фильтра получим нижнюю боковую полосу, если на 454 кГц – верхнюю. Если кварцев больше не осталось, то вполне возможно собрать опорный генератор по схеме емкостной трехточки и, подбирая его частоту, настроить получившийся фильтр. При этом генератор должен быть выполнен с повышенными мерами в части его термостабильности.

    Настройку можно производить даже на слух, по несущим радиостанций, но это удовольствие оставим для более-менее опытных «музыкантов». Для настройки хорошо бы иметь звуковой генератор и осциллограф. Подаем сигнал со звукового генератора частотой 3 – 3,3 кГц на микрофонный усилитель (предположим, что фильтр уже стоит в схеме передатчика), подключаем осциллограф на выход фильтра и сдвигаем частоту опорного генератора до тех пор, пока выходной уровень сигнала после фильтра не уменьшится минимально. Далее проверяем нижнюю границу пропускания фильтра, подавая на микрофонный вход частоту 300 Гц со звукового генератора. Кстати, для повышения нижней границы пропускаемой полосы микрофонного усилителя по звуковым частотам, достаточно установить переходные конденсаторы емкостью около 6800 пФ и менее, а для верхней границы в любом случае хорошо бы установить хотя бы однозвенный ФНЧ.

    Вот и все. Как видите, вы не понесете больших затрат при изготовлении данного фильтра, а сигнал получится достаточно презентабельный. Конечно, из-за простоты применить его в передатчиках второй категории уже нежелательно, но для 1,8 – 7 МГц его будет более чем достаточно. По результатам измерений эта классическая конструкция полностью совпадает с описанным в справочниках (к примеру, Справочник коротковолновика Бунина и Яйленко) - нижняя часть характеристики несколько затянута. Затухание в полосе пропускания - около 1 - 2 дБ, оно зависит от качества примененных резонаторов. Но если вы найдете еще более дешевый способ выйти в эфир с SSB (кроме фазового) - сообщите

    Улучшение АЧХ "Ленинградского" кварцевого фильтра

    С. Попов RA6CS