Гидролиз солей органических кислот. Гидролиз органических соединений

Гидролиз сложных эфиров протекает обратимо в кислотной среде (в присутствии неорганической кислоты) с образованием соответствующего спирта и карбоновой кислоты.

Для смещения химическое равновесии в сторону продуктов реакции гидролиз проводят в присутствии щелочи.

Исторически первым примером такой реакции было щелочное расщепление сложных эфиров высших жирных кислот, что привело к получению мыла. Это произошло в 1811 г., когда французский ученый Э. Шеврёль. нагревая жиры с водой в щелочной среде, получил глицерин и мыла - соли высших карбоновых кислот. На основании этого эксперимента был установлен состав жиров, они оказались сложными эфирами, но только «трижды сложными., производными трехатомного спирта глицерина - триглицеридамн. А процесс гидролиза сложных эфиров в щелочной среде до сих пор называют «омылением».

Например, омыление эфира, образованного глицерином, пальмитиновой и стеариновой кислотами:

Натриевые соли высших карбоновых кислот - основные компоненты твердого мыла, калиевые соли - жидкого мыла.

Французский химик М. Бертло в 1854 г. осуществил реакцию этерификации и впервые синтезировал жир. Следовательно, гидролиз жиров (как и других сложных эфиров) протекает обратимо. Уравнение реакции можно упрощенно записать так:

В живых организмах происходит ферментативный гидролиз жиров. В кишечнике под влиянием фермента липазы жиры пищи гидратизуются на глицерин и органические кислоты, которые всасываются стенками кишечника, и в организме синтезируются новые жиры, свойственные данному организму. Они по лимфатической системе поступают в кровь, а затем в жировую ткань. Отсюда жиры поступают в другие органы и ткани организма, где в процессе обмена веществ в клетках опять гидролиэу-ются и затем постепенно окисляются до оксида углерода и воды с выделеиием энергии, необходимой для жизнедеятельности.

В технике гидролиз жиров используют для получения глицерина, высших карбоновых кислот, мыла.

Гидролиз углеводов

Как вы зияете, углеводы являются важнейшими компонентами нашей пищи. Причем ди- (сахароза, лактоза, мальтоза) и полисахариды {крахмал, гликогеи) непосредственно не усваиваются организмом. Они, так же как и жиры, сначала подвергаются гидролизу. Гидролиз крахмала идет ступенчато.

В лабораторных и промышленных условиях в качестве катализатора этих процессов используют кислоту. Реакции осуществляют при нагревании.
Реакцию гидролиза крахмала до глюкозы при каталитическом действии серной кислоты осуществил в 1811 г. русский ученый К. С. Кирхгоф.
В организме человека и животных гидролиз углеводов происходит под действием ферментов (схема 4).

Промышленным гидролизом крахмала получают глюкозу и патоку (смесь декстринов, мальтозы и глюкозы). Патоку применяют в кондитерском деле.
Декстрины как продукт частичного гидролиза крахмала обладают клеящим действием: с ними связано появление корочки на хлебе п жареном картофеле, а также образование плотной пленки на накрал малеином белье под действием горячего утюга.

Еще один известный вам полисахарид - целлюлоза - также может гидролизоваться до глюкозы при длительном нагревании с минеральными кислотами. Процесс идет стуненчато, но кратко. Этот процесс лежит в основе многих гидролизных производств. Они служат для получения пищевых, кормовых и технических продуктов из непищевого растительиого сырья - отходов лесозаготовок, деревообработки (опилки, стружка, щепа), переработки сельскохозяйственных культур (соломы, шелухи семян, кочерыжек кукурузы и т. д.).

Техническими продуктами таких производств являются глицерин, этиленгликоль. органические кислоты, кормовые дрожжи, этиловый снирт, сорбит (шестиатомвый спирт).

Гидролиз белка

Гидролиз можно подавить (значительно уменьшить коли чество подвергающейся гидролизу соли).

а) увеличить концентрацию растворенного вещества
б) охладить раствор;
а) ввести в раствор один из продуктов гидролиза; например, подкислять раствор, если его г|я*дя в результате гидролиза кислотная, или подщелачивать, если - щелочная.

Значение гидролиза

Гидролиз солей имеет и практическое, и биологическое значение.

Еще в древности в качестве моющего средства использовали молу. В золе содержится карбонат калия, который в воде гидролизуется по аниону, водный раствор приобретает мылкость за счет образующихся при гидролизе ионов ОН.

В настоящее время в быту мы используем мыло, стиральные порошки и другие моющие средства. Основной компонент мыла - это натриевые или калиевые соли высших жирных карбоновых кислот: стеараты, пальмитаты, которые гидролизуются.

В состав же стиральных порошков и других моющих средств специально вводят соли неорганических кислот (фосфаты, карбонаты), которые усиливают моющее действие за счет повышения рh среды.

Соли, создающие необходимую щелочную срелу раствора, содержатся в фотографическом проявителе. Это карбонат натрия, карбонат калия, бура и другие соли, гидролизующиеся но аниону.

Если кислотность почвы недостаточная, у растений появляется болезнь - хлороз. Ее признаки - пожелтение или побеление листьев, отставание в росте и развитии. Если рН> 7,5, то в нее вносят удобрение сульфат аммония, которое способствует повышению кислотности, благодаря гидролизу по катиону, проходящему в почве.

Неоценима биологическая роль гидролиза некоторых солей, входящих в состав организма.

Обратите внимание, что во всех реакциях гидролиза степени окисления химических элементов не меняются. Окислительно-восстановительные реакции к реакциям гидролиза обычно не относят, хотя при этом и происходит взаимодействие вещества с водой.

Какие факторы способны воздействовать на степень гидролиза

Как вам уже известно, из определения – гидролиз является процессом разложения с помощью воды. В растворе соли присутствуют в виде ионов и их движущей силой, которая провоцирует такую реакцию, называют образование малодиссоциирующих частиц. Такое явление свойственно многим реакциям, происходящим в растворах.

Но не всегда ионы, взаимодействуя с водой, создают малодиссоциирующие частицы. Так, как вам уже известно, что соль складывается из катиона и аниона, то при этом возможны такие типы гидролиза, как:

В случае вступления реакции воды с катионом, мы получаем гидролиз по катиону;
Если же происходит реакция воды только с анионом, то получаем гидролиз по аниону;
При одновременном вступлении катиона и аниона в реакцию с водой мы получаем совместный гидролиз.

Потому как нам уже известно, что гидролиз имеет обратимую реакцию, то на состояние его равновесия влияют некоторые факторы, к которым относится: температура, концентрация продуктов гидролиза, концентрации участников реакции, добавки посторонних веществ. Но, когда газообразные вещества не берут участия в реакции, то на давление эти вещества не влияют, за исключением воды, поскольку ее концентрация является постоянной.

Теперь рассмотрим примеры выражений констант гидролиза:



Фактором, который воздействует на состояние равновесия гидролиза, может стать температура. Так при повышении температуры происходит смещение равновесия системы вправо и в таком случае степень гидролиза возрастает.

Если следовать принципам Ле Шателье, то мы видим, что при росте концентрации ионов водорода, происходит сдвиг равновесия влево, при этом уменьшиться степень гидролиза, а при повышении концентрации влияние для реакции мы видим на второй формуле.

При концентрации солей мы можем наблюдать, что равновесие в системе смещается вправо, однако при этом степень гидролиза, если следовать принципам Ле Шателье - уменьшается. Если мы этот процесс рассмотрим с точки зрения константы, то увидим, что про добавлении фосфат-ионов, равновесие сместиться вправо и их концентрация будет возрастать. То есть, для повышения концентрации гидроксид-ионов вдвое, необходимо концентрацию фосфат-ионов повысить в четыре раза, хотя значение константы меняться не должно. Из этого следует вывод, что отношение
уменьшится в 2 раза.

При факторе разбавления происходит одновременное уменьшение частиц, что находятся в растворе, кроме воды. Если следовать принципу Ле Шателье, то мы видим, что происходит смещение равновесия и увеличивается число частиц. Но такая реакция гидролиза происходит, не учитывая воду. При этом разбавление равновесия сдвигается в сторону протекания данной реакции, то есть вправо и естественно, что степень гидролиза возрастет.

На положение равновесия могут влиять добавки посторонних веществ, при условии что они дают реакцию с одним из участников реакции. К примеру, если к раствору сульфата меди мы добавим раствор гидроксида натрия, то в этом случае присутствующие в нем гидроксид-ионы начнут взаимодействовать с ионами водорода. В этом случае из принципа Ле Шателье следует, что в итоге концентрация уменьшиться, равновесие сместиться вправо, а степень гидролиза возрастет. Ну, а когда к раствору добавить сульфид натрия, то равновесие сместится влево, из-за связывания ионов меди в практически нерастворимый сульфид меди.

Подведем итог из изученного материала и придем к выводу, что тема гидролиза не является сложной, но необходимо четко усвоить, что такое гидролиз, иметь общие представления о смещении химического равновесия и запомнить алгоритм написания уравнений.

Задания

1. Выберите примеры органических веществ, подвергающихся гидролизу:
глюкоза, этанол, бромметан, метаналь, сахароза, метиловый эфир муравьиной кислоты, стеариновая кислота, 2-метил бутан.

Составьте уравнения реакций гидролиза; в случае обратимого гидролиза укажите условия, позволяющие сместить химическое равновесие в сторону образования продукта реакции.

2. Кикие соли подвергаются гидролизу? Какую среду могут иметь при этом водные растворы солей? Приведите примеры.

3. Какие из солей подвергаются гидролизу по катиону? Составьте уравнения их гидролиза, укажите среду.

Транскрипт

1 ГИДРОЛИЗ ОРГАНИЧЕСКИХ И НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

2 Гидро лиз (от древне греческого «ὕδωρ» вода и «λύσις» разложение) один из видов химических реакций, где при взаимодействии веществ с водой происходит разложение исходного вещества с образованием новых соединений. Механизм гидролиза соединений различных классов: - соли, углеводы, жиры, сложные эфиры и др. имеет существенные различия

3 Гидролиз органических веществ Живые организмы осуществляют гидролиз различных органических веществ в ходе реакций при участии ФЕРМЕНТОВ. Например, в ходе гидролиза при участии пищеварительных ферментов БЕЛКИ расщепляются на АМИНОКИСЛОТЫ, ЖИРЫ на ГЛИЦЕРИН и ЖИРНЫЕ КИСЛОТЫ, ПОЛИСАХАРИДЫ (например, крахмал и целлюлоза) на МОНОСАХАРИДЫ (например, на ГЛЮКОЗУ), НУКЛЕИНОВЫЕ КИСЛОТЫ на свободные НУКЛЕОТИДЫ. При гидролизе жиров в присутствии щёлочей получают мыло; гидролиз жиров в присутствии катализаторов применяется для получения глицерина и жирных кислот. Гидролизом древесины получают этанол, а продукты гидролиза торфа находят применение в производстве кормовых дрожжей, воска, удобрений и др.

4 1. Гидролиз органических соединений жиры гидролизуются с получением глицерина и карбоновых кислот (с NaOH омыление):

5 крахмал и целлюлоза гидролизуются до глюкозы:

7 ТЕСТ 1. При гидролизе жиров образуются 1) спирты и минеральные кислоты 2) альдегиды и карбоновые кислоты 3) одноатомные спирты и карбоновые кислоты 4) глицерин и карбоновые кислоты ОТВЕТ: 4 2. Гидролизу подвергается: 1) Ацетилен 2) Целлюлоза 3) Этанол 4) Метан ОТВЕТ: 2 3. Гидролизу подвергается: 1) Глюкоза 2) Глицерин 3) Жир 4) Уксусная кислота ОТВЕТ: 3

8 4. При гидролизе сложных эфиров образуются: 1) Спирты и альдегиды 2) Карбоновые кислоты и глюкоза 3) Крахмал и глюкоза 4) Спирты и карбоновые кислоты ОТВЕТ: 4 5. При гидролизе крахмала получается: 1) Сахароза 2) Фруктоза 3) Мальтоза 4) Глюкоза ОТВЕТ: 4

9 2. Обратимый и необратимый гидролиз Почти все рассмотренные реакции гидролиза органических веществ обратимы. Но есть и необратимый гидролиз. Общее свойство необратимого гидролиза - один (лучше оба) из продуктов гидролиза должен быть удален из сферы реакции в виде: - ОСАДКА, - ГАЗА. СаС₂ + 2Н₂О = Са(ОН)₂ + С₂Н₂ При гидролизе солей: Al₄C₃ + 12 H₂O = 4 Al(OH)₃ + 3CH₄ Al₂S₃ + 6 H₂O CaH₂ + 2 H₂O = 2 Al(OH)₃ + 3 H₂S = 2Ca(OH)₂ + H₂

10 Г И Д Р О Л И З С О Л Е Й Гидролиз солей разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или молекулярном виде («связывание ионов»). Различают обратимый и необратимый гидролиз солей. 1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону). 2. Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону). 3. Гидролиз соли слабой кислоты и слабого основания (необратимый) Соль сильной кислоты и сильного основания не подвергается гидролизу

12 1. Гидролиз соли слабой кислоты и сильного основания (гидролиз по аниону): (раствор имеет щелочную среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени) 2. Гидролиз соли сильной кислоты и слабого основания (гидролиз по катиону): (раствор имеет кислую среду, реакция протекает обратимо, гидролиз по второй ступени протекает в ничтожной степени)

13 3. Гидролиз соли слабой кислоты и слабого основания: (равновесие смещено в сторону продуктов, гидролиз протекает практически полностью, так как оба продукта реакции уходят из зоны реакции в виде осадка или газа). Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален.

14 СХЕМА ГИДРОЛИЗА КАРБОНАТА НАТРИЯ NaOH сильное основание Na₂CO₃ H₂CO₃ слабая кислота > [H]+ ЩЕЛОЧНАЯ СРЕДА СОЛЬ КИСЛАЯ, гидролиз по АНИОНУ

15 Первая ступень гидролиза Na₂CO₃ + H₂O NaOH + NaHCO₃ 2Na+ + CO₃ ² + H₂O Na+ + OH + Na+ + HCO₃ CO₃ ² + H₂O OH + HCO₃ Вторая ступень гидролиза NaHCO₃ + H₂O = NaOH + H₂CO ₃ CO₂ H₂O Na+ + HCO₃ + H₂O = Na+ + OH + CO₂ + H₂O HCO₃ + H₂O = OH + CO₂ + H₂O

16 СХЕМА ГИДРОЛИЗА ХЛОРИДА МЕДИ (II) Cu(OH)₂ слабое основание CuCl₂ HCl сильная кислота < [ H ]+ КИСЛАЯ СРЕДА СОЛЬ ОСНОВНАЯ, гидролиз по КАТИОНУ

17 Первая ступень гидролиза CuCl₂ + H₂O (CuOH)Cl + HCl Cu+² + 2 Cl + H₂O (CuOH)+ + Cl + H+ + Cl Cu+² + H₂O (CuOH)+ + H+ Вторая ступень гидролиза (СuOH)Cl + H₂O Cu(OH)₂ + HCl (Cu OH)+ + Cl + H₂O Cu(OH)₂ + H+ + Cl (CuOH)+ + H₂O Cu(OH)₂ + H+

18 СХЕМА ГИДРОЛИЗА СУЛЬФИДА АЛЮМИНИЯ Al₂S₃ Al(OH)₃ H₂S слабое основание слабая кислота = [H]+ НЕЙТРАЛЬНАЯ РЕАКЦИЯ СРЕДЫ гидролиз необратимый

19 Al₂S₃ + 6 H₂O = 2Al(OH)₃ + 3H₂S ГИДРОЛИЗ ХЛОРИДА НАТРИЯ NaCl NaOH HCl сильное основание сильная кислота = [ H ]+ НЕЙТРАЛЬНАЯ РЕАКЦИЯ СРЕДЫ гидролиз не идет NaCl + H₂O = NaOH + HCl Na+ + Cl + H₂O = Na+ + OH + H+ + Cl

20 Преобразование земной коры Обеспечение слабощелочной среды морской воды РОЛЬ ГИДРОЛИЗА В ЖИЗНИ ЧЕЛОВЕКА Стирка Мытье посуды Умывание с мылом Процессы пищеварения

21 Напишите уравнения гидролиза: А) К₂S Б)FeCl₂ В) (NH₄)₂S Г) BaI₂ K₂S: KOH - сильное основание H₂S слабая кислота ГИДРОЛИЗ ПО АНИОНУ СОЛЬ КИСЛАЯ СРЕДА ЩЕЛОЧНАЯ K₂S + H₂O KHS + KOH 2K+ + S ² + H₂O K+ + HS + K+ + OH S ² + H₂O HS + OH FeCl₂ : Fe(OH)₂ - слабое основание HCL - сильная кислота ГИДРОЛИЗ ПО КАТИОНУ СОЛЬ ОСНОВНАЯ СРЕДА КИСЛАЯ FeCl₂ + H₂O (FeOH)Cl + HCl Fe+² + 2Cl + H₂O (FeOH)+ + Cl + H+ + Cl Fe +² + H₂O (FeOH)+ + H+

22 (NH₄)₂S: NH₄OH - слабое основание; H₂S - слабая кислота ГИДРОЛИЗ НЕОБРАТИМЫЙ (NH₄)₂S + 2H₂O = H₂S + 2NH₄OH 2NH₃ 2H₂O BaI₂ : Ba(OH)₂ - сильное основание; HI - сильная кислота ГИДРОЛИЗА НЕТ

23 Выполните на листе бумаги. На следующем уроке сдайте работу учителю.

25 7. Водный раствор какой из солей имеет нейтральную среду? а) Al(NO₃)₃ б) ZnCl₂ в) BaCl₂ г) Fe(NO₃)₂ 8. В каком растворе цвет лакмуса будет синим? а) Fe₂(SO₄)₃ б) K₂S в) CuCl₂ г) (NH₄)₂SO₄

26 9. Гидролизу не подвергаются 1) карбонат калия 2) этан 3) хлорид цинка 4) жир 10. При гидролизе клетчатки (крахмала) могут образовываться: 1) глюкоза 2) только сахароза 3) только фруктоза 4) углекислый газ и вода 11. Среда раствора в результате гидролиза карбоната натрия 1) щёлочная 2) сильно кислая 3) кислая 4) нейтральная 12. Гидролизу подвергается 1) CH 3 COOK 2) KCI 3) CaCO 3 4)Na 2 SO 4

27 13.Гидролизу не подвергаются 1) сульфат железа 2) спирты 3) хлорид аммония 4) сложные эфиры 14.Среда раствора в результате гидролиза хлорида аммония: 1) слабощёлочная 2) сильнощёлочная 3) кислая 4) нейтральная

28 ПРОБЛЕМА Объясните почему при сливании растворов - FeCl₃ и Na₂CO₃ - выпадает осадок и выделяется газ? 2FeCl₃ + 3Na₂CO₃ + 3H₂O = 2Fe(OH)₃ + 6NaCl + 3CO₂

29 Fe+³ + H₂O (FeOH)+² + H+ CO₃ ² + H₂O HCO₃ + OH CO₂ + H₂O Fe(OH)₃


Гидролиз это реакция обменного разложения веществ водой. Гидролиз Органических веществ Неорганических веществ Солей Гидролиз органических веществ Белков Галогеноалканов Сложных эфиров (жиров) Углеводов

ГИДРОЛИЗ Общие представления Гидролиз обменная реакция взаимодействия веществ с водой, приводящая к их разложению. Гидролизу могут подвергаться неорганические и органические вещества различных классов.

11 класс. Тема 6. Урок 6. Гидролиз солей. Цель урока: сформировать у учащихся понятие о гидролизе солей. Задачи: Обучающие: научить учащихся определять характер среды растворов солей по их составу, составлять

МОУ СОШ 1 г.серухова Московской области Антошина Татьяна Александровна, учитель химии «Изучение гидролиза в 11-ом классе». С гидролизами учащиеся знакомятся впервые в 9-м классе на примере неорганических

Гидролиз солей Работу выполнила Учитель высшей категории Тимофеева В.Б. Что такое гидролиз Гидролиз процесс обменного взаимодействия сложных веществ с водой Гидролиз Взаимодействие соли с водой, в результате

Разработал: преподаватель Химии ГБОУ СПО «Закаменский агропромышленный техникум» Салисова Любовь Ивановна Методическое пособие по химии тема «Гидролиз» В данном учебном пособии представлен подробный теоретический

1 Теория. Ионно-молекулярные уравнения реакций ионного обмена Реакциями ионного обмена называют реакции между растворами электролитов, в результате которых они обмениваются своими ионами. Реакции ионного

18. Ионные реакции в растворах Электролитическая диссоциация. Электролитическая диссоциация это распад молекул в растворе с образованием положительно и отрицательно заряженных ионов. Полнота распада зависит

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КРАСНОДАРСКОГО КРАЯ государственное бюджетное профессиональное образовательное учреждение Краснодарского края «Краснодарский информационно-технологический техникум» Перечень

12. Карбонильные соединения. Карбоновые кислоты. Углеводы. Карбонильные соединения К карбонильным соединениям относятся альдегиды и кетоны, в молекулах которых присутствует карбонильная группа Альдегиды

Водородный показатель ph Индикаторы Суть гидролиза Типы солей Алгоритм составления уравнений гидролиза солей Гидролиз солей различных типов Способы подавления и усиления гидролиза Решение тестов В4 Водородный

П\п Тема Урок I II III 9 класс, 2014-2015 учебный год, базовый уровень, химия Тема урока Колво часов Примерные сроки Знания, умения, навыки. Теория электролитической диссоциации (10 часов) 1 Электролиты

Соли Определение Cоли сложные вещества, образованные атомом металла и кислотным остатком. Классификация солей 1. Средние соли, состоят из атомов металла и кислотных остатков: NaCl хлорид натрия. 2. Кислые

Задания А24 по химии 1. Одинаковую реакцию среды имеют растворы хлорида меди(ii) и 1) хлорида кальция 2) нитрата натрия 3) сульфата алюминия 4) ацетата натрия Хлорид меди(ii)- соль, образована слабым основанием

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 4 г. Балтийска Рабочая программа учебного предмета «Химия» 9 класс, ступень базовый уровень Балтийск 2017год 1.Пояснительная

Банк заданий к промежуточной аттестации учащихся 9 класса А1. Строение атома. 1. Заряд ядра атома углерода 1) 3 2) 10 3) 12 4) 6 2. Заряд ядра атома натрия 1) 23 2) 11 3) 12 4) 4 3. Число протонов в ядре

3 Растворы электролитов Жидкие растворы подразделяют на растворы электролитов, способные проводить электрический ток, и растворы неэлектролитов, которые не электропроводны. В неэлектролитах растворенное

Основные положения теории электролитической диссоциации Фарадей Майкл 22. IX.1791 25.VIII. 1867 Английский физик и химик. В первой половине 19 в. ввел понятие об электролитах и неэлектролитах. Вещества

Требования к уровню подготовки учащихся После изучения материала 9 класса учащиеся должны: Называть химические элементы по символам, вещества по формулам, признаки и условия осуществления химических реакций,

Занятие 14 Гидролиз солей Тест 1 1. Щелочную среду имеет раствор l) Pb(NO 3) 2 2) Na 2 CO 3 3) NaCl 4) NaNO 3 2. В водном растворе какого вещества среда нейтральная? l) NaNO 3 2) (NH 4) 2 SO 4 3) FeSO

СОДЕРЖАНИЕ ПРОГРАММЫ Раздел 1. Химический элемент Тема 1. Строение атомов. Периодический закон и периодическая система химических элементов Д.И. Менделеева. Современные представления о строении атомов.

Химические свойства солей (средних) ВОПРОС 12 Соли это сложные вещества состоящие из атомов металлов и кислотных остатков Примеры: Na 2 CO 3 карбонат натрия; FeCl 3 хлорид железа (III); Al 2 (SO 4) 3

1. Какое из следующих утверждений справедливо для насыщенных растворов? 1) насыщенный раствор может быть концентрированным, 2) насыщенный раствор может быть разбавленным, 3) насыщенный раствор не может

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 1 станицы Павловской муниципального образования Павловский район Краснодарского края Система подготовки учащихся

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КРАСНОДАРСКОГО КРАЯ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НОВОРОССИЙСКИЙ КОЛЛЕДЖ РАДИОЭЛЕКТРОННОГО ПРИБОРОСТРОЕНИЯ»

I.Требования к уровню подготовки учащихся Учащиеся в результате усвоения раздела должны знать/понимать: химическую символику: знаки химических элементов, формулы химических веществ и уравнения химических

Промежуточная аттестация по химии 10-11 классы Образец А1.Сходную конфигурацию внешнего энергетического уровня имеют атомы углерода и 1) азота 2) кислорода 3) кремния 4) фосфора А2. В ряду элементов алюминий

Повторение А9 и А10 (свойства оксидов и гидроксидов); А11 Характерные химические свойства солей: средних, кислых, оснóвных; комплексных (на примере соединений алюминия и цинка) А12 Взаимосвязь неорганических

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа составлена на основе Примерной программы основного общего образования по химии, а также программы курса химии для учащихся 8 9 классов общеобразовательных учреждений

Тест по химии 11 класс (базовый уровень) Тест «Типы химических реакций (химия 11 класс, базовый уровень) Вариант 1 1. Закончить уравнения реакций и указать их тип: а) Al 2 O 3 +HCl, б) Na 2 O + H 2 O,

Задание 1. В какой из данных смесей можно отделить соли друг от друга, используя воду и прибор для фильтрования? а) BaSO 4 и CaCO 3 б) BaSO 4 и CaCl 2 в) BaCl 2 и Na 2 SO 4 г) BaCl 2 и Na 2 CO 3 Задание

Растворы электролитов ВАРИАНТ 1 1. Написать уравнения для процесса электролитической диссоциации йодноватистой кислоты, гидроксида меди (I), ортомышьяковистой кислоты, гидроксида меди (II). Записать выражения

Урок по химии. (9 класс) Тема: Реакции ионного обмена. Цель: Сформировать понятия о реакциях ионного обмена и условиях их протекания, полном и сокращѐнном ионно-молекулярном уравнениях и ознакомить с алгоритмом

ГИДРОЛИЗ СОЛЕЙ Т. А. Колевич, Вадим Э. Матулис, Виталий Э. Матулис 1. Вода как слабый электролит Водородный показатель (рн) раствора Вспомним строение молекулы воды. Атом кислорода связан с атомами водорода

Тема ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ. РЕАКЦИИ ИОННОГО ОБМЕНА Проверяемый элемент содержания Форма задания Макс. балл 1. Электролиты и неэлектролиты ВО 1 2. Электролитическая диссоциация ВО 1 3. Условия необратимого

18 Ключ к варианту 1 Написать уравнения реакций, соответствующих следующим последовательностям химических превращений: 1. Si SiH 4 SiО 2 H 2 SiО 3 ; 2. Cu. Cu(OH) 2 Cu(NO 3) 2 Cu 2 (OH) 2 CO 3 ; 3. Метан

Усть-Донецкий район х. Крымский муниципальное бюджетное общеобразовательное учреждение Крымская средняя общеобразовательная школа УТВЕРЖДЕНА Приказ от 2016г Директор школы И.Н. Калитвенцева Рабочая программа

Индивидуальное домашнее задание 5. ВОДОРОДНЫЙ ПОКАЗАТЕЛЬ СРЕДЫ. ГИДРОЛИЗ СОЛЕЙ ТЕОРЕТИЧЕСКАЯ ЧАСТЬ Электролиты вещества, проводящие электрический ток. Процесс распада вещества на ионы под действием растворителя

1. Основные свойства проявляет внешний оксид элемента: 1) серы 2) азота 3) бария 4) углерода 2. Какая из формул соответствует выражению степени диссоциации электролитов: 1) α = n\n 2) V m = V\n 3) n =

Задания А23 по химии 1. Сокращённому ионному уравнению соответствует взаимодействие Чтобы подобрать вещества, взаимодействие которых будет давать такое ионное уравнение, надо, используя таблицу растворимости,

1 Гидролиз Ответами к заданиям являются слово, словосочетание, число или последовательность слов, чисел. Запишите ответ без пробелов, запятых и других дополнительных символов. Установите соответствие между

Банк заданий 11 класс химия 1. Электронная конфигурация соответствует иону: 2. Одинаковую кофигурацию имеют частицы и и и и 3. Сходную конфигурацию внешнего энергетического уровня имеют атомы магния и

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ШКОЛА 72» ГОРОДСКОГО ОКРУГА САМАРА РАССМОТРЕНО на заседании методического объединения учителей (Председатель МО: подпись, ФИО) протокол от 20 г.

Согласно теории электролитической диссоциации в водном растворе частицы растворенного вещества взаимодействуют с молекулами воды. Такое взаи­модействие может привести к реакции гидролиза.

Гидролиз - это реакция обменного разложе­ния вещества водой.

Гидролизу подвергаются различные вещества: неорганические - соли, карбиды и гидриды метал­лов, галогениды неметаллов; органические - га­логеналканы, сложные эфиры и жиры, углеводы, белки, полинуклеотиды.

Водные растворы солей имеют разные значения рН и различные типы сред - кислотную (рН < 7), щелоч­ную (рН > 7), нейтральную (рН = 7). Это объясняется тем, что соли в водных растворах могут подвергаться гидролизу.

Сущность гидролиза сводится к обменному хи­мическому взаимодействию катионов или анио­нов соли с молекулами воды. В результате этого взаимодействия образуется малодиссоциирующее соединение (слабый электролит). А в водном рас­творе соли появляется избыток свободных ионов Н + или ОН — , и раствор соли становится кислотным или щелочным соответственно.

Классификация солей

Любую соль можно представить как продукт взаимодействия основания с кислотой. Например, соль KClO образована сильным основанием KOH и слабой кислотой HClO.

В зависимости от силы основания и кислоты можно выделить четыре типа солей .

Рассмотрим поведение солей различных типов в растворе.

1. Соли, образованные сильным основанием и слабой кислотой .

Например, соль цианид калия KCN образована сильным основанием KOH и слабой кислотой HCN:

В водном растворе соли происходят два процесса:

2) полная диссоциация соли (сильного электролита):

Образующиеся при этих процессах ионы Н + и CN — взаимодействуют между собой, связываясь в молекулы слабого электролита - цианистоводо­родной кислоты HCN, тогда как гидроксид - ион ОН — остается в растворе, обусловливая тем самым его щелочную среду. Происходит гидролиз по ани­ону CN — .

Запишем полное ионное уравнение происходя­щего процесса (гидролиза):

Этот процесс обратим, и химическое равновесие смещено влево (в сторону образования исходных веществ), т. к. вода - значительно более слабый электролит, чем цианистоводородная кислота HCN:

Уравнение показывает, что:

1) в растворе есть свободные гидроксид-ионы ОН — , и концентрация их больше, чем в чистой воде, поэтому раствор соли KCN имеет щелочную сре­ду (рН > 7);

2) в реакции с водой участвуют ионы CN — , в таком случае говорят, что идет гидролиз по аниону. Другие примеры анионов слабых кислот, кото­рые участвуют в реакции с водой:

Муравьиной HCOOH - анион HCOO — ;

Уксусной CH 3 COOH - анион CH 3 COO — ;

Азотистой HNO 2 - анион NO 2 — ;

Сероводородной H 2 S - анион S 2- ;

Угольной H 2 CO 3 - анион CO 3 2- ;

Сернистой H 2 SO 3 - анион SO 3 2- .

Рассмотрим гидролиз карбоната натрия Na 2 CO 3:

Происходит гидролиз соли по аниону CO 3 2- .

Продукты гидролиза - кис­лая соль NaHCO 3 и гидроксид натрия NaOH.

Среда водного раство­ра карбоната натрия - ще­лочная (рН > 7), потому что в растворе увеличивается концентрация ионов ОН — . Кислая соль NaHCO 3 тоже может подвергаться гидро­лизу, который протекает в очень незначительной степени, и им можно пренебречь.

Подведем итог тому, что вы узнали о гидролизе по аниону:

1) по аниону соли, как правило, гидролизуются обратимо;

2) химическое равновесие в таких реакциях силь­но смещено влево;

3) реакция среды в растворах подобных солей ще­лочная (рН > 7);

4) при гидролизе солей, образованных слабыми многоосновными кислотами, получаются кис­лые соли.

2. Соли, образованные сильной кислотой и сла­бым основанием .

Рассмотрим гидролиз хлорида аммония NH 4 Cl.

В водном растворе соли происходят два про­цесса:

1) незначительная обратимая диссоциация моле­кул воды (очень слабого амфотерного электро­лита), которую упрощенно можно записать с помощью уравнения:

2) полная диссоциация соли (сильного электро­лита):

Образующиеся при этом ионы OH — и NH 4 взаимодействуют между собой с получением NH 3 H 2 O (слабый электролит), тогда как ионы Н + остаются в растворе, обусловливая тем самым его кислотную среду.

Полное ионное уравнение гидролиза:

Процесс обратим, химическое равновесие сме­щено в сторону образования исходных веществ, т. к. вода Н 2 О - значительно более слабый элек­тролит, чем гидрат аммиака NH 3 H 2 O.

Сокращенное ионное уравнение гидролиза:

Уравнение показывает, что:

1) в растворе есть свободные ионы водорода Н + , и их концентрация больше, чем в чистой воде, поэтому раствор соли имеет кислотную среду (pH < 7);

2) в реакции с водой участвуют катионы аммония NH + ; в таком случае говорят, что идет гидролиз по катиону.

В реакции с водой могут участвовать и много­зарядные катионы: двухзарядные М 2+ (например, Ni 2 +, Cu 2 +, Zn 2+ …), кроме катионов щелочноземель­ных металлов, трехзарядные М 3 + (например, Fe 3 +, Al 3 +, Cr 3+ …).

Рассмотрим гидролиз нитрата никеля Ni(NO 3) 2 , гидролиз соли по катиону:

Происходит гидролиз соли по катиону Ni 2+ .

Полное ионное уравнение гидролиза:

Сокращенное ионное уравнение:

Продукты гидролиза - основная соль NiOHNO 3 и азотная кислота HNO 3 .

Среда водного раствора нитрата никеля кислот­ная (рН < 7), потому что в растворе увеличивается концентрация ионов Н + .

Гидролиз соли NiOHNO 3 протекает в значитель­но меньшей степени, и им можно пренебречь. Таким образом:

1) по катиону соли, как правило, гидролизуются обратимо;

2) химическое равновесие реакций сильно смеще­но влево;

3) реакция среды в растворах таких солей кислот­ная (рН < 7);

4) при гидролизе солей, образованных слабыми многокислотными основаниями, получаются основные соли.

3. Соли, образованные слабым основанием и слабой кислотой .

Такие соли подвергаются гидролизу и по кати­ону, и по аниону.

Катион слабого основания связывает ионы ОН — из молекул воды, образуя слабое основание; ани­он слабой кислоты связывает ионы Н + из молекул воды, образуя слабую кислоту. Ре­акция растворов этих солей может быть нейтральной, сла­бокислотной или слабощелоч­ной. Это зависит от констант диссоциации двух слабых электролитов - кислоты и основания, которые об­разуются в результате гидролиза.

Например, рассмотрим гидролиз двух солей: ацетата аммония NH 4 CH 3 COO и формиата аммония NH 4 HCCO:

В водных растворах этих солей катионы сла­бого основания NH + взаимодействуют с гидрок­сид-ионами ОН — (напомним, что вода диссоци­ирует H 2 O = H + + OH —), а анионы слабых кислот CH 3 COO — и HCOO — взаимодействуют с катионами Н + с образованием молекул слабых кислот - ук­сусной CH 3 COOH и муравьиной HCOOH.

Запишем ионные уравнения гидролиза:

В этих случаях гидролиз тоже обратимый, но равновесие смещено в сторону образования про­дуктов гидролиза - двух слабых электролитов.

В первом случае среда раствора нейтральная (рН = 7), т. к. K д (CH 3 COOH) = K д (NH 3 H 2 O) = 1,8 10 -5 . Во втором случае среда раствора будет сла­бокислотной (pH < 7), т. к. K д (HCOOH) = 2,1 10 -4 и K д (NH 3 H 2 O) < K д HCOOH), где K д - константа диссоциации.

Гидролиз большинства солей является обрати­мым процессом. В состоянии химического равно­весия гидролизована лишь часть соли. Однако не­которые соли полностью разлагаются водой, т. е. их гидролиз является необратимым процессом.

Сульфид алюминия Al 2 S 3 в воде подвергается необратимому гидролизу, т. к. появляющиеся при гидролизе по катиону ионы Н + связываются обра­зующимися при гидролизе по аниону ионами ОН — . Это усиливает гидролиз и приводит к образова­нию нерастворимого гидроксида алюминия и газо­образного сероводорода:

Поэтому сульфид алюминия Al 2 S 3 нельзя полу­чить реакцией обмена между водными растворами двух солей, например, хлорида алюминия AlCl 3 и сульфида натрия Na 2 S.

В результате гидролиза и по катиону, и по аниону:

1) если соли гидролизуются и по катиону, и по аниону обратимо, то химическое равновесие в реакциях гидролиза смещено вправо; реак­ция среды при этом или нейтральная, или сла­бокислотная, или слабощелочная, что зависит от соотношения констант диссоциации образу­ющихся основания и кислоты;

2) соли могут гидролизоваться и по катиону, и по аниону необратимо, если хотя бы один из про­дуктов гидролиза уходит из сферы реакции.

4. Соли, образованные сильным основанием и сильной кислотой , не подвергаются гидролизу .

Рассмотрим «поведение» в растворе хлорида калия KCl.

Соль в водном растворе диссоциирует на ионы (KCl = K + + Cl —), но при взаимодействии с водой сла­бый электролит образоваться не может. Среда рас­твора нейтральная (рН = 7), т. к. концентрации ио­нов Н + и ОН — в растворе равны, как в чистой воде.

Другими примерами подобных солей могут быть галогениды, нитраты, перхлораты, сульфаты, хроматы и дихроматы щелочных металлов, гало­гениды (кроме фторидов), нитраты и перхлораты щелочноземельных металлов.

Следует также отметить, что реакция обратимого гидролиза полностью подчиняется принципу Ле Шателье . Поэтому гидролиз соли можно усилить (и да­же сделать необратимым) следующими способами:

1) добавить воды (уменьшить концентрацию);

2) нагреть раствор, при этом усиливается эндотер­мическая диссоциация воды:

А значит, увеличивается количество Н + и ОН — , которые необходимы для осуществления гидро­лиза соли;

3) связать один из продуктов гидролиза в труд­норастворимое соединение или удалить один из продуктов в газовую фазу; например, ги­дролиз цианида аммония NH 4 CN будет зна­чительно усиливаться за счет разложения ги­драта аммиака с образованием аммиака NH 3 и воды Н 2 О:

Гидролиз можно подавить (значительно умень­шить количество подвергающейся гидролизу со­ли), действуя следующим образом:

1) увеличить концентрацию растворенного веще­ства;

2) охладить раствор (для ослабления гидролиза растворы солей следует хранить концентриро­ванными и при низких температурах);

3) ввести в раствор один из продуктов гидролиза; например, подкислять раствор, если его среда в результате гидролиза кислотная, или подще­лачивать, если щелочная.


Значение гидролиза

Гидролиз солей имеет и практическое, и био­логическое значение .

Еще в древности в качестве моющего средства использовали золу. В золе содержится карбонат калия K 2 CO 3 , который в воде гидролизуется по аниону, во­дный раствор приобретает мылкость за счет образу­ющихся при гидролизе ионов ОН — .

В настоящее время в бы­ту мы используем мыло, сти­ральные порошки и другие моющие средства. Основной компонент мыла - это на­триевые и калиевые соли высших жирных кар­боновых кислот: стеараты, пальмитаты, которые гидролизуются.

Гидролиз стеарата натрия C 17 H 35 COONa выра­жается следующим ионным уравнением:

т. е. раствор имеет слабощелочную среду.

Соли, создающие необходимую щелочную среду раствора, содержатся в фотографическом прояви­теле. Это карбонат натрия Na 2 CO 3 , карбонат калия K 2 CO 3 , бура Na 2 B 4 O 7 и другие соли, гидролизующи­еся по аниону.

Если кислотность почвы недостаточна, у рас­тений появляется болезнь - хлороз. Ее призна­ки - пожелтение или побеление листьев, отстава­ние в росте и развитии. Если рН > 7,5, то в нее почвы вносят удобрение сульфат аммония (NH 4) 2 SO 4 , которое способствует повышению кислотности благодаря гидролизу по катиону, проходящему в почве:

Неоценима биологическая роль гидролиза не­которых солей, входящих в состав нашего орга­низма.

Например, в состав крови входят соли гидро­карбонат и гидрофосфат натрия. Их роль заклю­чается в поддержании определенной реакции среды.

Это происходит за счет смещения равновесия процессов гидролиза:

Если в крови избыток ионов Н + , они связыва­ются с гидроксид-ионами ОН — , и равновесие сме­щается вправо. При избытке гидроксид-ионов ОН — равновесие смещается влево. Благодаря этому кислотность крови здорового человека колеблется незначительно.

Или например: в составе слюны человека есть ионы HPO 4 — . Благодаря им в полости рта поддер­живается определенная среда (рН = 7-7,5).

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости