Дивергенция и конвергенция возбуждения. Нервный центр: свойства и виды

Все особенности распространения возбуждения в ЦНС объясняются ее нейронным строением: наличием химических синапсов, многократным ветвлением аксонов нейронов, наличием замкнутых нейронных путей. Этими особенностями являются следующие.

1. Иррадиация (дивергенция) возбуждения в ЦНС. Она объясняется ветвлением аксонов нейронов, их способностью устанавливать многочисленные связи с другими нейронами, наличием вставочных нейронов, аксоны которых также ветвятся (рис. 4.4, а).

Иррадиацию возбуждения можно наблюдать в опыте на спинальной лягушке, когда слабое раздражение вызывает сгибание одной конечности, а сильное - энергичные движения всех конечностей и даже туловища. Дивергенция расширяет сферу действия каждого нейрона. Один нейрон, посылая импульсы в кору большого мозга, может участвовать в возбуждении до 5000 нейронов.

Рис. 4.4. Дивергенция афферентных дорсальных корешков на спинальные нейроны, аксоны которых, в свою очередь, ветвятся, образуя многочисленные коллатерали (в), и конвергенция эфферентных путей от различных отделов ЦНС на α-мотонейрон спинного мозга (6)

1. Конвергенция возбуждения (принцип общего конечного пути) - схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу (принцип шеррингтоновской воронки). Конвергенция возбуждения объясняется наличием многих аксонных коллатералей, вставочных нейронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных нейронов. На одном нейроне ЦНС может располагаться до 10 000 синапсов. Явление конвергенции возбуждения в ЦНС имеет широкое распространение. Примером может служить конвергенция возбуждения на спинальном мотонейроне. Так, к одному и тому же спинальному мотонейрону подходят первичные афферентные волокна (рис. 4.4, б), а также различные нисходящие пути многих вышележащих центров ствола мозга и других отделов ЦНС. Явление конвергенции весьма важно: оно обеспечивает, например, участие одного мотонейрона в нескольких различных реакциях. Мотонейрон, иннервирующий мышцы глотки, участвует в рефлексах глотания, кашля, сосания, чиханья и дыхания, образуя общий конечный путь для многочисленных рефлекторных дуг. На рис. 4.4, я показаны два афферентных волокна, каждое из которых отдает коллатерали к 4 нейронам таким образом, что 3 нейрона из общего их числа, равного 5, образуют связи с обоими афферентными волокнами. На каждом из этих 3 нейронов конвергируют два афферентных волокна.



На один мотонейрон может конвергировать множество коллатералей аксонов, до 10 000-20 000, поэтому генерация ПД в каждый момент зависит от общей суммы возбуждающих и тормозящих синаптических влияний.ПД возникают лишь в том случае, если преобладают возбуждающие влияния. Конвергенция может облегчать процесс возникновения возбуждения на общих нейронах в результате пространственной суммации подпороговых ВПСП либо блокировать его вследствие преобладания тормозных влияний (см. раздел 4.8).

3. Циркуляция возбуждения по замкнутым нейронным цепям. Она может продолжаться минуты и даже часы (рис. 4.5).

Рис. 4.5. Циркуляция возбуждения в замкнутых нейронных цепях по Лоренто де-Но (а) и по И.С.Беритову (б). 1,2,3- возбуждающие нейроны

Циркуляция возбуждения - одна из причин явления последействия, которое будет рассмотрено далее (см. раздел 4.7). Считают, что циркуляция возбуждения в замкнутых нейронных цепях - наиболее вероятный механизм феномена кратковременной памяти (см. раздел 6.6). Циркуляция возбуждения возможна в цепи нейронов и в пределах одного нейрона в результате контактов разветвлений его аксона с собственными дендритами и телом.

4. Одностороннее распространение возбуждения в нейронных цепях, рефлекторных дугах. Распространение возбуждения от аксона одного нейрона к телу или дендритам другого нейрона, но не обратно объясняется свойствами химических синапсов, которые проводят возбуждение только в одном направлении (см. раздел 4.3.3).

5. Замедленное распространение возбуждения в ЦНС по сравнению с его распространением по нервному волокну объясняется наличием на путях распространения возбуждения множества химических синапсов. Время проведения возбуждения через синапс затрачивается на выделение медиатора в синаптическую щель, распространение его до постсинаптической мембраны, возникновение ВПСП и, наконец, ПД. Суммарная задержка передачи возбуждения в синапсе достигает примерно 2 мс. Чем больше синапсов в нейрональной цепочке, тем меньше общая скорость распространения по ней возбуждения. По латентному времени рефлекса, точнее по центральному времени рефлекса, можно ориентировочно рассчитать число нейронов той или иной рефлекторной дуги.

6. Распространение возбуждения в ЦНС легко блокируется определенными фармакологическими препаратами, что находит широкое применение в клинической практике. В физиологических условиях ограничения распространения возбуждения по ЦНС связаны с включением нейрофизиологических механизмов торможения нейронов.

Рассмотренные особенности распространения возбуждения дают возможность подойти к пониманию свойств нервных центров.

СВОЙСТВА НЕРВНЫХ ЦЕНТРОВ

Рассматриваемые ниже свойства нервных центров объясняются некоторыми особенностями распространения возбуждения в ЦНС, особыми свойствами химических синапсов и свойствами мембран нервных клеток. Основными свойствами нервных центров являются следующие.

А. Фоновая активность нервных центров (тонус) объясняется следующим:

Спонтанной активностью нейронов ЦНС;

Гуморальным влиянием циркулирующих в крови биологически активных веществ (метаболиты, гормоны, медиаторы и др.), влияющих на возбудимость нейронов;

Афферентной импульсацией от различных рефлексогенных зон;

Суммацией миниатюрных потенциалов, возникающих в результате спонтанного выделения квантов медиатора из аксонов, образующих синапсы на нейронах;

Циркуляцией возбуждения вЦНС.

Значение фоновой активности нервных центров заключается в обеспечении некоторого исходного уровня деятельного состояния центра и эффекторов. Этот уровень может возрастать или снижаться в зависимости от колебаний суммарной активности нейронов нервного центра-регулятора.

Б. Трансформация ритма возбуждения - это изменение числа импульсов, возникающих в нейронах центра на выходе, относительно числа импульсов, поступающих на вход данного центра.

Трансформация ритма возбуждения возможна как в сторону увеличения, так и в сторону уменьшения. Увеличению числа импульсов, возникающих в центре в ответ на афферентную импульсацию, способствуют иррадиация процесса возбуждения (см. раздел 4.6) и последействие. Уменьшение числа импульсов в нервном центре объясняется снижением его возбудимости за счет процессов пре- и постсинаптического торможения, а также избыточным потоком афферентных импульсов. При большом потоке афферентных влияний, когда уже все нейроны центра или нейронного пула возбуждены, дальнейшее увеличение афферентных входов не увеличивает число возбужденных нейронов.

В. Инерционность - сравнительно медленное возникновение возбуждения всего комплекса нейронов центра при поступлении к нему импульсов и медленное исчезновение возбуждения нейронов центра после прекращения входной импульсации. Инерционность центров связана с суммацией возбуждения и последействием.

I. Явление суммации возбуждения в ЦНС открыл И.М.Сеченов (1868) в опыте на лягушке: раздражение конечности лягушки слабыми редкими импульсами не вызывает реакции, а более частые раздражения такими же слабыми импульсами сопровождается ответной реакцией - лягушка совершает прыжок. Различают временную (последовательную) сулилацию и пространственную суммацию (рис. 4.6).

Временна́я суммация. На рис. 4.6 слева показана схема для экспериментального тестирования эффектов, вызываемых в нейроне ритмической стимуляцией аксона. Запись вверху позволяет видеть, что если ВПСП быстро следуют друг за другом, то они суммируются благодаря своему относительно медленному временному ходу (несколько миллисекунд), достигая в конце концов порогового уровня. Временная суммация обусловлена тем, что ВПСП от предыдущего импульса еще продолжается, когда приходит следующий импульс. Поэтому данный вид суммации называют также последовательной суммацией. Она играет важную физиологическую роль, потому что многие нейронные процессы имеют ритмический характер и, таким образом, могут суммироваться, давая начало надпороговому возбуждению в нейронных объединениях нервных центров.

Пространственная суммация (см. рис. 4.6, б). Раздельная стимуляция каждого из двух аксонов вызывает подпороговый ВПСП, тогда как при одновременной стимуляции обоих аксонов возникает ПД, что не может быть обеспечено одиночным ВПСП. Пространственная суммация связана с такой особенностью распространения возбуждения, как конвергенция.

2. Последействие - это продолжение возбуждения нервного центра после прекращения поступления к нему импульсов по афферентным нервным путям. Причинами последействия являются:

Длительное существование ВПСП, если ВПСП полисинаптический и высокоамплитудный; в этом случае при одном ВПСП возникает несколько ПД;

Многократные появления следовой деполяризации, что свойственно нейронам ЦНС; если следовая деполяризация достигает Екр, то возникает ПД;

Циркуляция возбуждения по замкнутым нейронным цепям (см. раздел 4.6).

Первые две причины действуют недолго - десятки или сотни миллисекунд, третья причина - циркуляция возбуждения - может продолжаться минуты и даже часы. Таким образом, особенность распространения возбуждения (его циркуляция) обеспечивает другое явление вЦНС- последействие. Последнее играет важнейшую роль в процессах обучения - кратковременной памяти.

Г. Большая чувствительность ЦНС к изменениям внутренней среды: например, к изменению содержания глюкозы в крови, газового состава крови, температуры, к вводимым с лечебной целью различным фармакологическим препаратам. В первую очередь реагируют синапсы нейронов. Особенно чувствительны нейроны ЦНС к недостатку глюкозы и кислорода. При снижении содержания глюкозы в 2 раза ниже нормы могут возникнуть судороги. Тяжелые последствия для ЦНС вызывает недостаток кислорода в крови. Прекращение кровотока всего на 10 с приводит к очевидным нарушениям функций мозга: человек теряет сознание. Если кровоток прекращается на 8-12 мин, то возникают необратимые нарушения деятельности мозга; погибают многие нейроны, в первую очередь корковые, что ведет к тяжелым последствиям.

Д. Утомляемость нервных центров продемонстрировал Н.Е.Введенский в опыте на препарате лягушки при многократном рефлекторном вызове сокращения икроножной мышцы с помощью раздражения большеберцового (п . tibialis) и малоберцового (п . peroneus) нервов. В этом случае ритмическое раздражение одного нерва вызывает ритмическое сокращение мышцы, приводящее к ослаблению силы ее сокращения вплоть до полного отсутствия сокращения. Переключение раздражения на другой нерв сразу же вызывает сокращение той же мышцы, что свидетельствует о локализации утомления не в мышце, а в центральной части рефлекторной дуги (рис. 4.7).

При этом развиваетсяпостсинаптическая депрессия (привыкание, габитуация) - ослабление реакции центра на раздражения (афферентные импульсы), выражающееся в снижении постсинаптических потенциалов во время длительного раздражения или после него. Это ослабление объясняется расходованием медиатора, накоплением метаболитов, закислением среды при длительном проведении возбуждения по одним и тем же нейронным цепям.

Е. Пластичность нервных центров - способность нервных элементов к перестройке функциональных свойств. Основные проявления этого свойства следующие: посттетаническая потенциация и депрессия, доминанта, образование временных связей, а в патологических случаях - частичная компенсация нарушенных функций.

1. Посттетаническая потенциация (синаптическое облегчение) - это улучшение проведения в синапсах после короткого раздражения афферентных путей. Кратковременная активация увеличивает амплитуду постсинаптических потенциалов. Облегчение наблюдается и во время раздражения (вначале); в этом случае феномен называют тетанической потенциацией. Степень выраженности облегчения возрастает с увеличением частоты импульсов; облегчение максимально, когда импульсы поступают с интервалом в несколько миллисекунд.

Рис. 4.7. Схема опыта Н.Е.Введенского, иллюстрирующего локализацию утомления в рефлекторной дуге.

  • Аллергия (определение). Общая этиология и общий патогенез. Виды гиперчувствительности
  • Анатомия верхних дыхательных путей собаки с брахиоцефалическим синдромом. Розовым отмечены места сужения дыхательных путей.
  • Нейронные сети l

    Нейронные сети - это раздел искусственного интеллекта, в котором для обработки сигналов используются явления, аналогичные происходящим в нейронах живых существ. Важнейшая особенность сети, свидетельствующая о ее широких возможностях и огромном потенциале, состоит в параллельной обработке информации всеми звеньями. При громадном количестве межнейронных связей это позволяет значительно ускорить процесс обработки информации. Во многих случаях становится возможным преобразование сигналов в реальном времени. Кроме того, при большом числе межнейронных соединений сеть приобретает устойчивость к ошибкам, возникающим на некоторых линиях. Функции поврежденных связей берут на себя исправные линии, в результате чего деятельность сети не претерпевает существенных возмущений.

    l Другое не менее важное свойство - способность к обучению и обобщению накопленных знаний. Нейронная сеть обладает чертами искусственного интеллекта. Натренированная на ограниченном множестве данных сеть, способна обобщать полученную информацию и показывать хорошие результаты на данных, не использовавшихся в процессе обучения.

    l Характерная особенность сети состоит также в возможности ее реализации с применением технологии сверхбольшой степени интеграции. Различие элементов сети невелико, а их повторяемость огромна. Это открывает перспективу создания универсального процессора с однородной структурой, способного перерабатывать разнообразную информацию.

    l Использование перечисленных свойств на фоне развития устройств со сверхбольшой степенью интеграции (VLSI) и повсеместного применения вычислительной техники, вызвало в последние годы огромный рост интереса к нейронным сетям и существенный прогресс в их исследовании. Создана база для выработки новых технологических решений, касающихся восприятия, искусственного распознавания и обобщения видеоинформации, управления сложными системами, обработки речевых сигналов и т.п. Искусственные нейронные сети в практических приложениях, как правило, используются в качестве подсистемы управления или выработки решений, передающей исполнительный сигнал другим подсистемам, имеющим иную методологическую основу.

    l Функции, выполняемые сетями, подразделяются на несколько групп: аппроксимация; классификация и распознавание образов; прогнозирование; идентификация и оценивание; ассоциативное управление. l Аппроксимирующая сеть играет роль универсального аппроксиматора функции нескольких переменных, который реализует нелинейную функцию вида у = f{x), где х - входной вектор, а у - реализованная функция нескольких переменных. Множество задач моделирования, идентификации, обработки сигналов удается сформулировать в аппроксимационной постановке. l Для классификации и распознавания образов сеть накапливает в процессе обучения знания об основных свойствах этих образов, таких, как геометрическое отображение структуры образа, распределение главных компонентов (РСА), или о других характеристиках. При обобщении акцентируются отличия образов друг от друга, которые и составляют основу для выработки классификационных решений.Функции нейронных сетей l В области прогнозирования задача сети формулируется как предсказание будущего поведения системы по имеющейся последовательности ее предыдущих состояний. По информации о значениях переменной в моменты времени, предшествующие прогнозированию, сеть вырабатывает решение о том, чему должно быть равно оцениваемое значение исследуемой последовательности в текущий момент времени. l

    В задачах управления динамическими процессами нейронная сеть выполняет, как правило, несколько функций. Во-первых, она представляет собой нелинейную модель этого процесса и идентифицирует его основные параметры, необходимые для выработки соответствующего управляющего сигнала. Во-вторых, сеть выполняет функции следящей системы, отслеживает изменяющиеся условия окружающей среды и адаптируется к ним. Она также может играть роль нейрорегулятора, заменяющего собой традиционные устройства. Важное значение, особенно при управлении роботами, имеют классификация текущего состояния и выработка решений о дальнейшем развитии процесса.Функции нейронных сетей l

    В задачах ассоциации нейронная сеть выступает в роли ассоциативного запоминающего устройства. Здесь можно выделить память автоассоциативного типа, в которой взаимозависимости охватывают только конкретные компоненты входного вектора, и память гетероассоциативного типа, с помощью которой сеть определяет взаимосвязи различных векторов. Даже если на вход сети подается вектор, искаженный шумом, либо лишенный отдельных фрагментов данных, то сеть способна восстановить полный и очищенный от шумов исходный вектор путем генерации соответствующего ему выходного вектора. l

    Различные способы объединения нейронов между собой и организации их взаимодействия, привели к созданию сетей разных типов. Каждый тип сети, в свою очередь, тесно связан с соответствующим методом подбора весов межнейронных связей (т.е. обучения). Функции нейронных сетей l Интересным представляется объединение различных видов нейронных сетей между собой, особенно сетей с самоорганизацией и обучаемых с учителем. Такие комбинации получили название "гибридные сети". Первый компонент - это сеть с самоорганизацией на основе конкуренции, функционирующая на множестве входных сигналов и группирующая их в кластеры по признакам совпадения свойств. Она играет роль препроцессора данных. Второй компонент - в виде сети, обучаемой с учителем (например, персептронной), сопоставляет входным сигналам, отнесенным к конкретным кластерам, соответствующие им заданные значения (постпроцессинг). Подобная сетевая структура позволяет разделить фазу обучения на две части: вначале тренируется компонент с самоорганизацией, а потом - сеть с учителем. Дополнительное достоинство такого подхода заключается в снижении вычислительной сложности процесса обучения, а также в лучшей интерпретации получаемых результатов

    Возбуждение в центральной нервной системе распространяется по различным конфигурациям нервных цепочек. Во всех изученных нервных сетях обнаружены:

    1) конвергенция путей, передающих информацию в высшие, а также в исполнительные центры;

    2) дивергенция путей, передающих те или иные сигналы;

    3) реверберация, или нейронные ловушки.

    Конвергенция - это схождение нескольких нервных путей к одним и тем же нейронам или нервным центрам.

    Конвергенция многих нервных путей к одному нейрону делает этот нейрон (или нервный центр) интегратором соответствующих сигналов. Его состояние (импульсация или торможение) в каждый момент времени определяются алгебраическим сложением массы возбуждающих и тормозных входов. Иными словами, суммой всех его ВПСП и ТПСП, поступающих на данный нейрон. Если речь идет о мотонейроне, т. е. конечном звене нервного пути к мускулатуре, говорят о принципе общего конечного пути. Например, у позвоночных на каждом мотонейроне спинного мозга и ствола головного мозга образуют синоптические окончания тысячи сенсорных, а также возбуждающих и тормозных вставочных нейронов разных уровней. Мощная конвергенция обнаруживается и на нейронах ретикулярной формации ствола мозга. Еще одной областью «применения» конвергенции являются «сенсорные воронки». Сущность воронок заключается в том, что количество входов в нее меньше, чем количество выходов. Благодаря конвергенции происходит «сжатие», уменьшение объема информации, поступающей от рецепторов к центральной нервной системе. Конвергенция участвует и в процессах пространственного облегчения и окклюзии.

    Дивергенция - это контактирование одного нейрона или нервного Центра со множеством нейронов или нервных центров. Так, существует разделение аксона чувствительного нейрона в спинном мозге на множество коллатералей. Получившиеся разветвления направляется к разным сегментам спинного мозга и в головной мозг.

    Дивергенция пути сигнала наблюдается у многих вставочных нейронов, у командных клеток. Благодаря дивергенции могут формироваться процессы параллельных вычислений, что обеспечивает высокий уровень быстродействия ЦНС. Дивергенция пути обеспечивает расширение области распространения сигнала. Тем самым формируется распространение процесса возбуждения на другие нервные центры, т. е. иррадиация, возбуждение или торможение.

    Процесс иррадиации играет положительную роль при формировании новых реакций организма, поскольку активация большого количества различных нервных центров позволяет выделить из их числа наиболее нужные для последующей деятельности и сформировать между ними функциональные связи, т. е. совершенствовать ответную реакцию организма. Благодаря этому процессу между различными нервными центрами возникают условные рефлексы.

    Иррадиация возбуждения может оказать и отрицательное воздействие на состояние и поведение организма. Так, иррадиация сильного возбуждения в центральной нервной системе нарушает тонкие взаимоотношения, сложившиеся между процессами возбуждения и торможения в нервных центрах, и приводит к расстройству двигательной деятельности. Например, при эпилепсии возбуждение из патологического очага иррадиирует на большое количество нервных центров коры больших полушарий.

    центре ?

    1. Конвергенция (convergere , лат. – сходиться) это схождение различных импульсных потоков от нескольких нейронов к одному вставочному или эфферентному нейрону. Шеррингтон называл это явление «принципом общего конечного пути». Например, сокращение мышцы (за счёт возбуждения альфа-мотонейрона) можно вызвать путём растяжения этой мышцы (рефлекс с мышечных веретён) и путём раздражения кожных рецепторов (сгибательный рефлекс) и т.п.
    2. Дивергенция (divergere , лат. – расходиться) – это способность нейрона устанавливать многочисленные синаптические связи с другими нейронами. Благодаря этому один нейрон может участвовать в нескольких разных реакциях, передавая возбуждение другим нейронам, которые в свою очередь могут возбудить ещё большее количество нейронов, обеспечивая путём иррадиации распространение возбудительного процесса по ЦНС.

    103.Что такое пролонгирование возбдужения в нервном центре ?

    Этим термином обозначается явление, при котором рефлекторный ответ сохраняется после прекращения действия раздражителя, т.е раздражение прекратилось, а, например, мышца продолжает сокращаться.

    Существует 2 механизма этого феномена:

    1. Следовая деполяризация мембраны нейрона, возникающая еще на фоне сохраняющегося ВПСП, создает условия для ритмической генерации потенциалов действия. Это кратковременное последствие.

    2. Циркуляция возбуждения по замкнутым цепям нейронов в рефлекторном центре (принцип Лоренто-де-Но).

    До прихода тормозного импульса или утомления одного из синапсов возбуждения может достаточно долго циркулировать по этим цепям. Бала выдвинута гипотеза о тем, что кратковременная память обусловлена реверберацией возбуждения в цепях положительной обратной связи.

    104. Что такое феномен облегчения и каков его механизм ?

    Явление облегчения. Отдельные нейроны являются общими для каких-то двух рефлексов. При изолированной реализации одного из рефлексов эти нейроны не дают ответной реакции, так как раздражение для них оказывается подпороговым. При совместной реализации двух рефлексов их подпороговые эффекты суммируются и достигают пороговой величины. В результате суммации ответная реакция оказывается больше простой суммы изолированных эффектов.

    Пул нейронов, расположенных в передних рогах спинного мозга состоит из высоковозбудимых (1,2) и низковозбудимых неронов (3). При раздражении только 1 афферентного нервного волокна в состояние возбуждения приходит нейрон 1, а в нейроне 3 возникает деполяризация, не достигающая критического уровня потенциала (т.е. его возбудимость увеличивается). При этом на выходе регистрируется сигнал равный 120 мВ.



    При раздражении только II афферентного волокна возбуждается нейрон 2, а в нейроне 3 возникает увеличение возбудимости и на выходе регистрируется потенциал, например, равный 120 мВ. При одновременном раздражении I и II афферентных волокон в состояние возбуждения переходят нейроны 1,2,3. При данном воздействии регистрируется суммарный потенциал 320 мВ, т.е. не равный арифметической сумме отдельных потенциалов (120+120=240 мВ). Это обусловлено тем, что при одновременном раздражении волокон I и II дополнительно включается нейрон 3. Таким образом облегчение – это усиление поступающего сигнала.

    Временное

    пространственное

    105. Что такое суммация возбуждения в нервном центре и ее механизм ?

    Особенностью ЦНС является то, что, как правило одни потенциал действия не вызывает возбуждение эффекторного нейрона. Только на ритмический раздражитель одного рецептора или одновременное раздражение нескольких нейронов возникает возбуждение эффекторного нейрона.

    В зависимости от ситуации суммация бывает: 1) временная или 2) пространственная.



    В случае временной суммации происходит суммирование квантов медиатора на постсинаптической мембране. Если в область постсинаптической мембраны ввести электрод и соединить его с усилителем постоянного тока и осциллографом, то можно наблюдать, что на одиночный раздражитель возбуждение нейрона не возникает, но на постсинаптической мембране возникает небольшой по амплитуде ВПСП.

    С точки зрения возникновения возбуждения данный ВПСП является недостаточным, так как не может достигнуть критического уровня деполяризации. Если последующий импульс накладывается на первый, то есть суммируется и общий ВПСП достигает критического уровня. Это приводит к развитию потенциала действия. Таким образом 1) временная суммация – это суммация квантов медиатора, в первую очередь, в области аксонального холмика нейрона 2) временная суммация ВПСП обусловлена тем, что ВПСП продолжается дольше, чем рефрактерный период аксона, из окончания которого выделяется медиатор.

    Пространственная суммация - это явление, когда раздельная стимуляция каждого из двух аксонов вызывает подпороговый ВПСП, однако при одновременной стимуляции обоих аксонов возникает потенциал действия, т.е. процесс, который не может быть обеспечен одиночным ВПСП.

    Пространственная суммация может быть линейная и нелинейная. Если стимуляция будет пропорциональная каждому возбуждающему постсинаптическому потенциалу (ВПСП), то она называется линейной. Подобная ситуация возникает, когда возбуждающие синапсы на мембране одного нейрона удалены друг от друга на достаточном удалении.

    Если синапсы находятся близко друг возле друга, силовые линии соседних ВПСП уменьшают их ВПСП и общий постсинаптический потенциал не будет пропорционален каждому ВПСП.

    Пространственная суммация лежит в основе эффекта облегчения и окклюзии.

    106. Что такое торможение? Классификация торможения .

    Если на зрительный бугор поместить кристаллы соли (NaCl), то возникает торможение – удлинение времени рефлекса (замедление времени выдёргивания лапки из кислоты). Это наблюдение позволило И.М.Сеченову высказать мнение о явлении торможения в ЦНС. В последующем такой вид торможения получил название сеченовского торможения, или центральное торможение. Периферическое торможение было открыто ещё в 1845 году братьями Вебер (торможение деятельности сердца при раздражении блуждающих нервов).

    Если спинальную собаку (собаку с удалённым головным мозгом) удерживать в вертикальном положении и при этом легко надавить на подошву стопы, то она начнёт производить шагательные движения. Механическое раздражение хвоста задержит это шагание. Такое торможение наличного рефлекса раздражением другого рецептивного поля получило название «торможением Гольца». Аналогичным образом можно затормозить у таламической лягушки квакательный рефлекс путём механического раздражения боковых поверхностей спинки. Гольц показал, что торможение может быть не только в специальных центрах, но и в любом отделе ЦНС.

    В ЦНС огромное число тормозных нейронов. Некоторые из этих нейронов имеют «собственное» имя – в честь открывателя этих структур, например, клетки Реншоу, клетки Уилсона и т.д. Наличие специальных тормозных нейронов доказал в 1946 г Реншоу. Каждый тормозной нейрон вырабатывает какой-то тормозной медиатор (например, глицин, или гамма-аминомасляную кислоту, ГАМК).

    Торможение – это активный процесс, связанный с возбуждением и ограничивающий его. Торможение это такой же врождённый процесс как и возбуждение, но общим для всех видов торможения является отсутствие способности к распространению по мембране нейрона и его отросткам. Различают два принципиально различных механизма торможения в ЦНС (рис. 20): первичное и вторичное. Первичное торможение развивается в клетках, примыкающих к тормозному нейрону. Оно инициировано возбуждением специальных тормозных нейронов, которые выделяют тормозные медиаторы. Вторичное торможение возникает в тех же нейронах, которые генерируют возбуждение.

    Постсинаптическое торможение – это основной вид первичного торможения. Его вызывает возбуждение вставочных нейронов и клеток Реншоу (афферентные нейроны тормозными не бывают). При этом торможении происходит гиперполяризация постсинаптической мембраны, в результате чего нейрон затормаживается (блокируется). Блокатором ГАМК-ергических рецепторов является бикукулин, а блокатором глициновых рецепторов – стрихнин, столбнячный токсин. Примерами постсинаптического торможения являются возвратное (аутогенное) торможение, реципрокное торможение, латеральное торможение и возвратное облегчение.
    Возвратное торможение. От альфа-мотонейрона отходит аксон к соответствующим мышечным волокнам. В начальном сегменте аксона от него отходит коллатераль, которая возвращается в ЦНС – она заканчивается на тормозном нейроне (клетке Реншоу) и активирует её, в результате чего клетка Реншоу вызывает торможение альфа-мотонейрона, который запустил всю эту цепочку. Таким образом, альфа-мотонейрон, активируясь, через систему тормозного нейрона сам себя тормозит.
    Реципрокное (reciprocus , лат. – взаимный) торможение . Сигнал (нервный импульс) от мышечного веретена скелетной мышцы через афферентный нейрон поступает в спинной мозг, где переключается на альфа-мотонейрон сгибателя и одновременно на вставочный тормозной нейрон, который тормозит активность альфа-мотонейрона разгибателя. Это торможение описал Н.Е.Введенский, а изучил Ч.Шеррингтон.
    Латеральное торможение. Суть этого торможения сводится к тому, что тормозная клетка формирует тормозные синапсы не только на активирующем её нейроне, но и на рядом расположенных, которые также затормаживаются. Например, фоторецептор, возбуждаясь, активирует биполярную клетку в сетчатке, и одновременно активирует рядом расположенный тормозной нейрон, который блокирует проведение возбуждения от соседнего фоторецептора к ганглиозной клетке. Этим самым происходит «вытормаживание» информации в соседних участках. Таким способом создаются условия для чёткого видения предмета (две точки на сетчатке рассматриваются как две раздельные точки в том случае, если между ними есть невозбуждённые участки).
    Возвратное облегчение. Некоторые тормозные клетки (например, клетки Уилсона), имеют синаптические связи с аксонами других тормозных клеток. При возбуждении последних тормозятся сами тормозные клетки, которые в результате снижают своё тормозное действие на мотонейрон. Другими словами, происходит суммирование двух отрицательных воздействий, что приводит к «возвратному облегчению» влияния тормозного нейрона.
    Пресинаптическое торможение (Экклс, 1962) осуществляется путём вытормаживания какого-то определённого пути, идущего к данному нейрону. Например, к нейрону подходят 10 аксонов, и к каждому из этих аксонов подходят аксоны от тормозных нейронов. Они могут тормозить проведение соответственно по каждому из аксонов в отдельности. Пресинаптическое торможение чаще развивается у окончаний афферентных соматических и вегетативных нервов. Морфологической основой являются аксо-аксональные синапсы. При этом торможение развивается в связи с уменьшением или полной блокадой выброса медиатора в синаптическую щель того синапса, который передаёт возбуждение. Таким образом, торможение передачи импульсов происходит благодаря изменению свойств его пресинаптической мембраны. В аксо-аксональном синапсе выделяется ГАМК, которая вызывает увеличение проницаемости постсинаптической мембраны для натрия.
    Не исключается роль кальция и хлора. При этом для деполяризации мембраны хлор должен быть активно выведен из клетки против градиента концентрации, что вызывает стойкую деполяризацию и нарушает проведение волны возбуждения через этот участок. Это вызывает уменьшение амплитуды или полное угнетение потенциала действия, приходящего к возбуждающей терминали, что приводит к уменьшению высвобождаемого медиатора, и амплитуда возбуждающего постсинаптического потенциала снижается. Возможным механизмом пресинаптического торможения может быть уменьшение поступления кальция в пресинаптическую структуру, или истощение его внутриклеточных резервов. Это ведёт к ослаблению или прекращению секреции медиатора из пресинаптической структуры в синаптическую щель.
    – это вторичное торможение. После окончания возбуждения нейрона в нём может развиваться сильная следовая гиперполяризация. При этом возбуждающий постсинаптический потенциал не может довести деполяризацию мембраны до критического уровня, и потенциал действия не возникает.
    Пессимальное торможение – это вторичное торможение, которое развивается в возбуждающих синапсах в результате сильной деполяризации постсинаптической мембраны под влиянием слишком большого количества нервных импульсов. По современным представлениям оно играет небольшую роль в механизмах работы мозга.

    107. Что такое первичное торможение ?

    Первичное торможение развивается в клетках, примыкающих к тормозному нейрону. Оно инициировано возбуждением специальных тормозных нейронов, которые выделяют тормозные медиаторы.

    Первичное – возникает в специальных тормозных структурах под влиянием процесса возбуждения и проявляется подавлением другого возбуждения, развивающегося в соседних с этой структурой клетках. Следовательно, для тормозимой клетки этот процесс является первичным, т.е. без предварительного возбуждения.

    Первичное торможение

    108. Что такое вторичное торможение и его виды ?

    Вторичное – это торможение возникает в той же самой клетке, в которой наблюдалось первичное возбуждение, т.е. торможение – это результат возбуждения.

    Ко вторичному торможению относится пессимальное торможение и торможение вслед за возбуждением.

    Пессимальное торможение – заключается в том, что в единицу времени к нейрону поступает очень большое количество потенциалов действия. В результате этого может происходить инактивация потенциал-зависимых натриевых каналов или десинситизация (потеря чувствительности) рецепторов, расположенных на постсинаптической структуре (десинситизация рецепторов обусловлена тем, что при большой частоте поступления медиатора он не успевает разрушаться и тем самым освобождать рецепторы для взаимодействия с новыми порциями медиатора).

    Торможение вслед за возбуждением обусловлено тем, что в некоторых нейронах после потенциала действия развивается длительная следовая гиперполяризация, снижающая возбудимость клетки на долгое время.

    Если возбуждение распространяется на все большее количество нейронов, то такое явление называется дивергенцией .

    Лат. diverqere - направляется в разные стороны - способность одиночного нейрона устанавливать многочисленные синаптические связи с различными нервными клетками. Благодаря процессу дивергенции одна и та же клетка может участвовать в организации различных реакций и контролировать большее число нейронов. В то же время каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.

    Если же наоборот, от нескольким нейронов пути идут к меньшему количеству, такой механизм называется конвергенцией (рис).

    Конвергенция означает объединение сигналов множественных входов на одном нейроне. На рисунке схематически изображена конвергенция сигналов, исходящих из одного источника. Это значит, что на одном нейроне заканчиваются многочисленные терминали нервных волокон одиночного тракта. Этот тип конвергенции важен, поскольку нейроны почти никогда не возбуждаются потенциалом действия одной входящей терминали. Но потенциалы действия многих терминалей, конвергирующих на нейроне, обеспечивают достаточную пространственную суммацию, чтобы сдвинуть мембранный потенциал нейрона до порогового уровня, необходимого для его возбуждения.

    Возможна также конвергенция сигналов (возбуждающих или тормозящих), исходящих из многих источников. Например, на вставочных нейронах спинного мозга конвергируют сигналы от:

    (1) периферических нервных волокон, входящих в спинной мозг;

    (2) проприоспинальных волокон, идущих от одного сегмента спинного мозга к другому;

    (3) кортикоспинальных волокон из коры большого мозга;

    (4) нескольких других длинных нисходящих путей из головного в спинной мозг. Затем сигналы от вставочных нейронов сходятся на мотонейронах спинного мозга, непосредственно управляющих функцией скелетных мышц.

    Такая конвергенция позволяет осуществлять суммацию информации из различных источников, а ответная реакция нейрона является результатом интеграции всей этой информации. Конвергенция - один из важных способов, с помощью которых центральная нервная система коррелирует, интегрирует и сортирует различные типы информации.

    Иногда в ответ на сигнал, входящий в нервный пул, на выходе одновременно появляются возбуждающий сигнал, идущий в одном направлении, и тормозной сигнал, направляющийся по другому пути. Например, когда в спинном мозге одна группа нейронов посылает возбуждающий сигнал для движения ноги вперед, через другую группу нейронов передается сигнал, тормозящий мышцы, двигающие эту ногу назад, чтобы они не мешали движению вперед. Этот тип контура, называемый контуром с реципрокным торможением , характерен для всех нервных центров, управляющих мышцами-антагонистами.

    На рисунке показан механизм развития такого торможения.

    Входящее волокно одновременно стимулирует возбуждающий выход пула (нейрон 1) и вставочный тормозной нейрон (нейрон 2), секретирующий медиатор, который тормозит второй выход пула. Этот тип контура важен также для предупреждения гиперактивности во многих частях мозга.

    Например, к одному мотонейрону могут подходить нервные окончания от нескольких афферентных нейронов. В таких сетях вышележащие нейроны управляют ниже лежащими.

    Иерархические системы обеспечивают очень точную передачу информации.

    В результате конвергенции (когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня) или дивергенции (когда контакты устанавливаются с большим числом клеток следующего уровня) информация фильтруется и происходит усиление сигналов.

    Конвергенция нервных импульсов сенсорно-биологическая - схождение к одному нейрону двух или нескольких возбуждений от сенсорных и биологических раздражителей одновременно (например, звук, голод, свет и жажда). Этот вид конвергенции является одним из механизмов обучения, образования условных рефлексов и афферентного синтеза функциональных систем.

    Конвергенция нервных импульсов эфферентно-афферентная - схождение к одному нейрону двух или нескольких афферентных и эфферентных возбуждений одновременно. Эфферентное возбуждение отходит от нейрона, затем через несколько вставочных нейронов возвращается к нейрону и взаимодействует с афферентным возбуждением, приходящим к нейрону в этот момент. Этот вид конвергенции является одним из механизмов акцептора результата действия (предвидение будущего результата), когда афферентное возбуждение сличается с эфферентным.

    Но подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена. Любая инактивация любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему.

    Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении. Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети.

    Иерархические системы существуют, конечно, не только в сенсорных или двигательных путях. Тот же тип связей характерен для всех сетей, выполняющих какую-то специфическую функцию.

    БЕЗВЕРХОВА

    Локальные сети .

    3. Дивергентные сети с одним входом. В них один нейрон, т.е. вход образует большое количество связей с нейронами многих центров.

    В связи с наличием многочисленных связей между нейронами сети в них может возникать иррадиация возбуждения. Это его распространение на все нейроны. В результате иррадиации возбуждение может переходить на другие нервные центры и даже охватывать всю нервную систему.

    В нервных сетях большое количество вставочных нейронов, ряд из которых является тормозными. Поэтому в них может возникать несколько типов тормозных процессов:

    Нейроны локальных сетей действуют как фильтры, удерживая поток информации в пределах какого-то одного иерархического уровня. Они широко распространены во всех мозговых сетях.

    Локальные сети могут оказывать на нейроны-мишени возбуждающее или тормозящее действие. Сочетание этих особенностей с дивергентным или конвергентным типом передачи на данном иерархическом уровне может еще более расширять, сужать или снова фокусировать поток информации.

    Процессы обработки информации, поступающей в нервный центр (если он сенсорный), или формирование команд к исполнительным органам (в ефекторному центре) обусловлены взаимодействием нейронов посредством синаптических контактов. В таком случае можно обнаружить явления, что называют дивергенцией и конвергенцией (рис. 37).

    Дивергенция - это способность нейрона устанавливать многочисленные связи с другими нейронами. Вследствие этого одна и та же клетка может участвовать в различных нервных процессах и реакциях, контролировать большое число других нейронов, то есть каждый нейрон может обеспечить распространение импульсов - иррадиацию возбуждения. Процессы дивергенции более типичны для афферентных отделов ЦНС.

    Конвергенция - схождение различных путей проведения нейрон-ных импульсов к одной и той же нервной клетки, больше присуща нервным центрам эфферентных отделов.

    Большинство нервных центров представлено скоплением разнообразных нейронов. Среди них бывают как возбуждающие, так и тормозные нейроны, нейроны сенсорные и моторные (афферентные или эфферентные). их довольно сложное взаимодействие и обеспечивает выполнение соответствующих функций.

    Взаимодействие рефлексов

    В процесс регуляции большинства сложных функций организма, организации рефлекторного ответа очень часто привлекаются несколько нервных центров, которые могут размещаться даже на различных этажах ЦНС. Обусловлено это філогенетичними особенностями формирования ЦНС. Появление "младшего" отдела сопровождалась формированием в нем новых центров регуляции. Но и "старые" нервные центры, расположенные в низших отделах, сохраняли свойственные им функции. При этом терялась абсолютная автономность отдельных сегментов ЦНС, все большая часть функций "переходила" высшим отделам. Этот процесс получил название енцефалізації функций. Поскольку головной мозг формировался поэтапно, от заднего мозга до переднего с его большими полушариями, то с формированием коры больших полушарий происходит подчинение ей других отделов ЦНС, то есть кортикалізація функций.

    Поскольку каждый из нервных центров отвечает за определенные рефлексы, во время их взаимодействия можно говорить о взаимодействии различных рефлексов. Это взаимодействие осуществляется на основе определенных закономерностей, которые позволяют ЦНС решать свои функциональные задачи как с целенаправленного регулирования различных систем организма, так и организации его поведения в конкретных, постоянно меняющихся условиях внешней среды.

    Можно выделить такие принципы координации функций ЦНС.

    1. Торможение в ЦНС.

    Важной частью нейронных цепей, образующих рефлекторные дуги, является наличие тормозных нейронов (рис. 38). Вследствие этого ослабляется или совсем прекращается интенсивный процесс возбуждения, что в основном обеспечивает упорядочение проявления рефлекса. Пример торможения - реципрокне торможения мышц-антагонистов на уровне мотонейронов спинного мозга (рис. 38, а). Процесс тормозного влияния запускается через специальные тормозные клетки Реншо, содержащихся в спинном мозге. При поступлении афе

    Рис. 38. Торможение в ЦНС : а - участие тормозных интернейронов спинного мозга (Г) в регуляции деятельности мышц-антагонистов: торможение (-) мотонейрона мышцы-разгибателя (МР) во время возбуждения (+) мотонейрона мышцы-сгибателя (МЗ); б - поворотное (постсинаптичне) торможения (МН - мотонейрон, Г - тормозная клетка Реншо; М - мышца); в - торможения нейронов промежуточного мозга с участием тормозной корзинного клетки (Г); г - пресинаптичне торможения (Г - тормозная клетка; Н - нейрон; Пр - пресинаптичне волокно; за Екклсом)

    рентной импульсации они активируются одновременно с нейронами, которые возбуждаются, обеспечивая реципрокный взаимосвязь при осуществлении двигательных рефлексов: мотонейроны одних мышц возбуждаются, а их антагонистов - тормозятся.

    Второй, довольно распространенный, тип первичного торможения - возвратное торможение (рис. 38, б). Клетки Реншо располагаются еще и таким образом, что через коллатерали возбужденного мотонейрона вызывают его торможение. Это типичный пример отрицательной обратной связи, когда подавляется чрезмерная импульсация.

    2. Иррадиация и концентрация нервных процессов.

    Возбуждение, возникшее в одном из центров, может распространяться через коллатерали и синапсы на другие центры. Процесс иррадиации чаще всего развивается в случае действия сильного раздражителя. Например, во время сильного давления на лапку лягушки сокращаются не одна, а все конечности. Через некоторое время иррадиация меняется на явление концентрации возбуждения в необходимом центре. Это обусловлено действием тормозных синаптических связей. Процессы иррадиации и концентрации основываются на свойствах конвергенции и дивергенции.

    3. Явления суммации и окклюзии

    (рис. 39). Суммация (облегчение) оказывается во время воздействия нескольких подпороговых стимулов (с разных рецепторов), каждый из которых, действуя отдельно, не вызывает ответа. А их суммация (при условии рядом расположенных синаптических полей) способствует проявлению ответа нервного центра (явление облегчения).

    Рис. 39. Схема, иллюстрирующая явление облегчения (1) и окклюзии (2) нервного импульса: а - в центральных кругах изображены нейроны, которые возбуждаются как при изолированной, так и одновременного раздражения нервных волокон (В, 2); пунктирными линиями обведены нейроны, которые возбуждаются только за одновременного раздражения обеих нервных волокон; б -в центральной части, образованной кругами, перекрещивающихся расположены нейроны, которые возбуждаются как при изолированной, так и одновременного раздражения нервных волокон

    Противоположное явление - окклюзии (заклинивания) - развивается при тех же условиях расположения синаптических полей, но при одновременном действии нескольких раздражителей надграничної силы. Суммарная ответ может быть меньшим, чем арифметическая сумма ответов на каждый из раздражителей в отдельности, что происходит за "перекрытия" как на уровне рецептора, так и общих центральных нейронов.

    4. Принцип "общего конечного пути"

    (рис. 40). Он основывается на явлении конвергенции. Афферентных входов в ЦНС значительно больше, чем эфферентных выходов. Следовательно, один и тот же рефлекс можно вызвать, раздражая различные рефлекторные поля.

    5. Принцип доминантного очага.

    Содержание принципа заключается в том, что в случае одновременного возбуждения нескольких нервных центров один из очагов может стать доминантным. Вследствие этого к нему могут активно привлекаться (иррадиировать) возбуждения из других очагов, что приведет к суммации возбуждения, усиливая доминантное возбуждение. Высокую возбудимость нейронов обусловливают соответствующая аферентна импульсация (например из переполненного мочевого пузыря), гуморальные влияния. В результате оказывается, что для организма функция этого центра в конкретный временной промежуток становится важнейшей.

    Основные признаки доминантного очага следующие:

    1) стойкость возбуждения во времени;

    2) повышенная возбудимость;

    3) способность к суммации. Доминанта - это физиологическое основание возникновения взаимосвязей между отдельными нервными центрами при формировании условных рефлексов, основа внимания.

    Рис. 40. а - клетки спинномозговых

    ганглий; б - промежуточные нейроны; в - мотонейроны; г - мышцу (зачеркнуто тела нейронов, которые тормозят нервные импульсы; за Шеррингтоном)