Модернизация систем отопления жилого дома. Современные решения для реконструкции старых систем отопления

Компании «Теплорасчет-проект» и «ПСК «Прометей» оказывают услуги по расчету, проектированию, монтажу, реконструкции и модернизации систем отопления и теплоснабжения. Специалистами выполняется газификация объектов , включая подготовку проекта, монтаж, пусконаладочные работы и сервисное обслуживание.

Модернизация систем отопления представляет собой комплекс мероприятий по замене устаревшего или износившегося оборудования систем автономного и централизованного теплоснабжения.

Модернизированная система теплоснабжения соответствует следующим требованиям:

  • Экологичность. Производится на 20-40% меньше выбросов вредных веществ (СО2, СО, NOx, SO2, PbO2).
  • Энергоэффективность. Коэффициент полезного действия выше 80-90%.
  • Экономичность. Энергозатраты в системе снижаются до 30-40%.

В зависимости от состояния имеющегося оборудования, данные показатели достигаются как за счет частичной замены отдельных деталей и узлов, так и за счет полной модернизации систем отопления.

Модернизация источников отопления

В процессе модернизации источников отопления (котельных и ТЭЦ) выполняются следующие работы:

  • проектирование газовых котельных или иных источников производства тепловой энергии;
  • рассчитывается стоимость газификации ;
  • газификация предприятия , микрорайона, многофункционального здания или дома;
  • режимная наладка или замена оборудования химводоподготовки;
  • замена теплогенератора и действующих агрегатов (парообразователь, горелка, насос, отопительный котел);
  • автоматизация систем отопления и регулирования нагрузки.

Модернизация тепловых сетей

В тепловых сетях (подающие и возвратные трубы, транспортирующие тепловую энергию от источника отопления в пункт потребления) модернизация систем отопления выполняется в несколько этапов:

1. Производится детальное обследование на всех участках сети от источника тепла до входа в здание. Осуществляется для определения проблем и причин их появления.

2. Выполняются тепловые и гидравлические расчеты в нескольких вариантах. На основании полученных данных составляются схемы сетей и подбирается оборудование, осуществляющее регулировку (дроссели, клапаны балансировки, автоматические системы регулирования).

3. Проектируется тепловая сеть и способ регулирования нагрузки на основе максимально экономичного и эффективного варианта.

4. Разрабатываются и выполняются пусконаладочные мероприятия.

Модернизация систем теплопотребления

Система теплопотребления (радиаторы, конвекторы, газовые тепловентиляторы , калориферы и другое оборудование, передающее потребителю тепловую энергию) приводится в соответствие с характеристиками тепловой сети и источником отопления по тепловым и гидравлическим показателям. Модернизация систем отопления обеспечивается в случае, если устанавливаются следующие агрегаты:

  • Устройства регулирования объема приточного воздуха. Устанавливаются дополнительно на агрегаты отопления и вентиляции. Позволяют учитывать потребность в нагретом воздухе и контролировать объем подаваемого в помещение тепла в зависимости от времени года и суток;
  • Узлы смешения и регулирования температуры воды. Устанавливаются дополнительно на агрегаты отопления и вентиляции. Температура выдерживается за счет подачи остывшей воды из возвратного трубопровода в радиатор;
  • Газовое инфракрасное отопление . Устанавливается как альтернатива или дополнительно к системам водяного и воздушного отопления. Газификация коттеджа , многоквартирного здания или коммерческого объекта с помощью данного оборудования предполагает расположение нагревателей под потолком для направления теплового излучения на все поверхности в помещении.

Вышеперечисленные агрегаты снабжаются системами автоматического контроля для эффективного управления тепловым режимом отапливаемых помещений.

Чтобы модернизировать систему теплоснабжения, определить перечень работ, рассчитать стоимость или подготовить проект газификации , можно позвонить специалистам ООО «Теплорасчет-проект» и ООО «ПСК «Прометей» по телефонам, размещенным в разделе «Контакты».

Версия для печати

Утверждение плана работа по капремонту сроков и порядка их производства, сметной стоимости источников финансирования осуществляется решением общего собрания собственников помещений в МКД (ст 184 ЖК РФ). Руководители УО, ТСЖ и ЖСК должны довести до сведения собственников объективную информацию о целесообразности производства модернизации той или иной инженерной системы в процессе ремонта.

Принятие решения о модернизации инженерных сетей МКД

При организации капитального ремонта (КР) в субъек-тах РФ, например в Санкт-Петербурге, было обращено внимание на п. 9 ст. 29 Закона от 27.07.2010 № 190-ФЗ «О теплоснабжении», в котором сказано: «С 1 января 2022 г. использование централизованных открытых систем теплоснабжения (горячего водоснабжения) для нужд горячего водоснабжения, осуществляемого путем отбора теплоносителя на нужды горячего водоснабжения, не допускается».

Очевидно, что при планировании работ по КР необходимо предусмотреть и закрепить в нормативных актах субъекта РФ мероприятие по выполнению указанного требования.

При этом хороший хозяин заинтересован в одновременной модернизации систем горячего водоснабжения (ГВС) и отопительной. Но это вопрос не только технический, но и экономический.

Для принятия решения по КР инженерных систем горячего водоснабжения и отопления следует определить:

Соответствие федеральным нормативным актам;

Техническую необходимость;

Экономическую целесообразность.

Рассмотрим альтернативные решения для МКД, в индивидуальных тепловых пунктах (ИТП) которых установлены элеваторные узлы.

Через элеваторные узлы теплоноситель передается в систе-му отопления, а в систему ГВС - через терморегулятор в ИТП.

Возможны следующие варианты ремонта систем:

Модернизация системы ГВС, не затрагивая отопительную;

Замена устаревшего элеваторного узла на узел с автоматиче-ской регулировкой температуры и модернизация системы ГВС;

Замена элеваторного узла автоматизированным и модерни-зация систем ГВС и отопления.

Если используются газонагреватели, терморегулятор в ИТП отсутствует. Модернизацию таких систем ГВС не рассматриваем.

Модернизация системы ГВС

На вводе трубопроводов теплосети в элеваторный узел МКД устанавливается терморегулятор, через который вода с темпера-турой 65-70 °С подается в систему ГВС. Таким образом для нужд ГВС из тепловой сети отбирается теплоноситель. Обращаем вни-мание, что с 1 января 2022 г. такая схема будет запрещена.

Существует практически единственное решение - устрой-ство закрытой системы ГВС с установкой в ИТП теплообменни-ков и насосов, а также замена стальных оцинкованных труб на по-лимерные.

Проектно-сметная документация должна определять:

Состав и конструкцию контура подогрева воды;

Состав и трассировку внутренних трубопроводов;

Насосную установку, обеспечивающую циркуляцию воды в системе;

Автоматику, регулирующую температуру горячей воды и сво-евременную подпитку системы;

Компенсацию тепловых линейных расширителей полимер-ных трубопроводов.

Вывод. При КР следует обновить функционально устаревшие технические решения, в соответствии с требованием действую-щих норм использовать новые материалы. Это позволит улучшить потребительские качества системы ГВС.

Модернизация в данном случае вызвана новыми технически-ми требованиями. Выполнение их обязательно, что исключает превалирующую роль экономической оценки.

Однако стоимость полимерных труб в три раза меньше, а срок службы выше, чем у заменяемых стальных оцинкованных. Хотя модернизация системы ГВС в процессе КР не входит в перечень работ, предусмотренных ч. 1 ст. 166 ЖК РФ.

На основании ч. 2 ст. 166 ЖК РФ указанная работа может быть включена в состав работ по КР общего имущества в МКД, фи-нансируемых за счет средств фонда КР, сформированного исхо-дя из минимального размера взноса только нормативным право-вым актом субъекта РФ.

Заключая вопрос о КР системы ГВС, запитанной через терморе-гулятор на вводе теплосети в элеваторный узел, следует признать необходимой ее модернизацию по указанной схеме. Решение о модернизации должно быть принято субъектом РФ и оформ-лено соответствующим нормативным актом.

Замена элеваторного узла на автоматизированный

Модернизация системы ГВС, изолированной от элеваторного узла и имеющей в ИТП самостоятельный блок подогрева и цир-куляции горячей воды, обусловила желание установить автома-тизированный узел подачи теплоносителя в систему отопления.

Рассмотрим, насколько такая замена технологически необхо-дима и экономически целесообразна.

Элеваторный узел - это простейший и надежнейший агрегат. Он не требует ухода и эксплуатационных затрат в течение дли-тельного времени. При расчетной наружной температуре воз-духа (в Санкт-Петербурге - 26 °С) в элеваторный узел поступает перегретая вода с температурой 150 °С под большим давлением. Давление снижается до 6 бар, а температура - до 95 °С. При этом только на удаленных участках теплосети может потребоваться установка в ИТП повысительных насосов.

При современном строительстве высотных МКД без повы-сительных насосов не обойтись. Установка автоматизированных узлов подачи теплоносителя со своими насосами оправдана тех-нологической необходимостью и современными требованиями к регулировке параметров теплоносителя.

Автоматизированный узел подачи теплоносителя необходим для работы системы отопления в высотных МКД.

Замена элеваторных узлов автоматизированными не вызвана технологической необходимостью и может рассматриваться как модернизация. Установка систем автоматического регулирования давления и температуры в трубопроводах (автоматизированно-го узла управления) в п. 1.4 Методических рекомендаций к федеральному закону № 185-ФЗ «О Фонде содействия реформирова-нию ЖКХ» отнесена именно к модернизации ИТП.

При ограниченной величине финансовых ресурсов КР ука-занная рекомендация должна стать непреложным требованием.

Основное предназначение автоматизированного узла - не эко-номия тепловой энергии, а обеспечение подачи в систему отопле-ния ее расчетного количества для создания в помещениях ком-фортных условий в соответствии с санитарными нормами при любой температуре наружного воздуха. В случае подачи в ИТП избыточного тепла этот избыток не попадает в систему отопле-ния и не фиксируется приборами учета.

Автоматизированный узел при закрытой схеме отопления по-зволяет обеспечить работу системы при любой этажности здания независимо от величины давления в тепловой сети на вводе в ИТП.

Некоторые специалисты, занимающиеся продвижением авто-матизированных узлов, считают, что их установка позволит полу-чить до 20% экономии тепловой энергии за счет перекрытия до-ступа избыточного тепла в систему отопления.

Такая экономия может быть получена только в администра-тивно-бытовом здании, где температура воздуха в помещениях может быть снижена в нерабочее время до +8-10 °С.

В МКД значительно сэкономить можно только в отдельные пери-оды (дни, месяцы), но никак не в среднем по отопительному периоду.

ПРИМЕР

Еще в 2008-2009 гг. проводился мониторинг поступления тепло-вой энергии в один из МКД Санкт-Петербурга. МКД оснащен двумя ИТП с элеваторными узлами: ИТП-1 с тепловой нагрузкой 0,7 Гкал/ч и ИТП-2 - 0,4 Гкал/ч.

Проектные теплопотери дома по каждому ИТП определялись при различных температурах наружного воздуха расчетным путем на основании проектных данных.

Фактический расход тепла в каждом месяце определялся по отчету «Теплосети» на основе показаний приборов учета.

Результаты мониторинга сведены в таблицу.

ИТП-1 0,7 Гкал/ч

Перерасход

Недопоставка

ИТП-2 0,4 Гкал/ч

Перерасход

Недопоставка

ВСЕГО по дому

Перерасход

Недопоставка

Перерасход

Недопоставка

Автоматика не окупается

Оценить экономическую целесообразность модернизации ИТП путем замены элеваторных узлов автоматизированными уз-лами подачи теплоносителя при КР системы отопления возможно.

Стоимость установки одного автоматизированного узла с тепловой нагрузкой 0,4 Гкал/ч (для 70-квартирного дома) оценивается в 1,3 млн руб. с учетом создания проекта, приобретения оборудования, его монтажа и наладки.

Из таблицы видно, что через ИТП-2 с такой же тепловой нагрузкой 0,4 Гкал/ч поступило в систему отопления избыточное тепло в объеме 10,02 Гкал. Стоимость 1 Гкал в то время составляла 854 руб.

Можно было бы сэкономить за счет ликвидации избыточного тепла при установке автоматизированного узла следующую сумму:

854 х 10,02 = 8557,08 руб.

Учитывая, что показания перерасхода тепла в процентном от-ношении к поступившему теплу значительно отличаются в ИТП-1 от ИТП-2, можно определить среднее по дому количество из-быточного тепла, приходящегося на 0,4 Гкал тепловой нагрузки:

103,33 х 0,4: (0,7 + 0,4) = 37,57 Гкал.

Стоимость этого тепла оценивается в 32 085 руб.:

854 x 37,57 = 32 085.

Это означает, что при капитальных затратах в 1,3 млн руб. на модернизацию ИТП-2 ожидаемый экономический эффект оце-нивается всего в 12-32 тыс. руб. за один отопительный сезон. Срок окупаемости более 40 лет.

При этом не следует забывать об эксплуатационных расхо-дах. При элеваторном узле их практически нет, а при работе на-сосов, теплообменников, автоматики эти затраты будут весьма значительны. Управляющие компании, ТСЖ и ЖСК будут вынуж-дены соответствующим образом увеличивать расходы на содер-жание общего имущества, что неизбежно приведет к росту цены на содержание и ремонт МКД.

Из приведенной таблицы следует, что во многие месяцы ото-пительного периода происходит недопоставка тепловой энер-гии в ИТП МКД.

Объясняется это тем, что изношенные тепловые сети не вы-держивают теплоноситель с высокими параметрами температу-ры и давления. Поэтому поставщики тепла не подают в сеть пе-регретую воду в соответствии с графиком.

Автоматизированный узел, рассчитанный на определенную теп-ловую нагрузку, не сможет компенсировать при закрытой схеме ото-пления недостающее тепло при значительном отклонении темпера-турных параметров поступающего в ИТП теплоносителя от графика.

В Санкт-Петербурге тепловые сети в значительной степени приведены в порядок, что позволяет надеяться на исключение частых случаев «недотопа» и «перетопа».

Возвращаясь к вопросу об избыточном тепле и комфортной температуре в помещениях МКД, следует вспомнить о запорно-регулирующей арматуре. В соответствии с техническими и сани-тарными нормами она должна устанавливаться перед каждым отопительным прибором в жилом помещении.

Установленная еще в советские времена арматура (кра-ны двойной регулировки, трехходовые краны, межсекцион-ные краны ДГИ, чугунные вентили и пробочные краны) вви-ду длительной эксплуатации, не всегда удачной конструкции и некачественного исполнения практически пришла в негод-ность. В некоторых домах из-за дефицита арматуры она вооб-ще не была установлена.

При КР системы отопления должна устанавливаться перед каждым отопительным прибором современная запорно-регулирующая арматура, например шаровые краны. Это без каких-либо дополнительных затрат позволит не допустить в прибор излиш-нее тепло и сохранить в помещении комфортную температуру.

Обеспечение регулировки температуры в каждом жилом по-мещении МКД и снижение тем самым общего количества избы-точного тепла, поступающего в МКД, актуально.

Необходимо также помнить, что замена элеваторных узлов автоматизированными узлами не входит в состав работ по капитальному ремонту, указанных в ч. 1 ст. 166 ЖК РФ.

Итак, модернизация ИТП с заменой элеваторного узла на автоматизированный с технологической точки зрения не необходима, а с экономической нецелесообразна. Замена регулирующей арматуры в системах отопления - необходима.

Модернизация системы отопления

Экономически и технически привлекательна замена сталь-ных трубопроводов полимерными трубами в системе отопления.

Рассмотрим экономическую целесообразность такой модер-низации.

Основополагающие условия использования полимерных труб в системах отопления указаны в п. 6.1.2 СНиП 41-01-2003:

«В зданиях с системой центрального водяного отопления с трубопроводами из полимерных материалов следует предусматривать автоматическое регулирование параметров теплоносителя в инди-видуальных тепловых пунктах при любом расходе теплоты зданием. Параметры теплоносителя (температура, давление) не должны пре-вышать 90 °С и 1,0 Мпа, а также предельно допустимых значений, ука-занных в документации предприятий-изготовителей».

Автоматизированный узел подачи теплоносителя может обе-спечить все перечисленные условия, необходимые для исполь-зования полимерных труб в системе отопления.

При этом полимерные трубы должны отвечать следующим
требованиям:

Соответствовать ГОСТ Р 53630-2009 «Трубы напорные много-слойные для систем водоснабжения и отопления»;

Быть кислородонепроницаемыми (требование указанного ГОСТа и СНиП 41-01-2003);

Иметь сертификат соответствия и при необходимости тех-ническое свидетельство Минстроя России.

Для принятия решения о замене стальных труб полимерны-ми в процессе КР системы отопления следует определить эконо-мическую целесообразность такой замены.

Трудность этой задачи заключается в отсутствии технически обоснованных норм срока службы полимерных труб. Так, один из разработчиков ГОСТ Р 52134-2003 «Трубы напорные из термо-пластов и соединительные детали к ним для систем водоснаб-жения и отопления» ГУП «НИИ Мосстрой» в письме от 12.04.2013 № 44-07/242 сообщил, что для многослойных полимерных труб, соответствующих ГОСТ Р 53630-2009, методики определения сро-ка их службы не существует.

В то же время в своде правил по проектированию и строи-тельству (СП 41-102-98) указано, что срок службы металлополимерных труб должен составлять 25 лет. Этот срок в основном за-висит от температуры циркулирующего в трубах теплоносителя ивремени циркуляции. Учитывая, что эти параметры находятся в прямой зависимости от наружной температуры воздуха в ото-пительный период, можно сделать заключение о том, что одни ите же полимерные трубы будут иметь различный срок службы в разных климатических зонах. К сожалению, методика расчета срока службы многослойных полимерных труб отсутствует.

ПРИМЕР

Исходя из отчетов производителей, технических заключений Минстроя России, разъяснительного письма ГУП «НИИ Мосстрой», можно предположить, что гарантийный безаварийный срок эксплуа-тации наиболее надежных полипропиленовых труб с армированием алюминием составит порядка 20 лет в климатической зоне Санкт-Петербурга.

Нормативный срок службы стальных трубопроводов в соот-ветствии с Методикой определения физического износа граж-данских зданий - 30 лет.

Многолетняя практика эксплуатации зданий с открытой си-стемой отопления, использующей в качестве теплоносителя де-аэрированную воду, свидетельствует о безаварийном функциони-ровании системы отопления в течение минимум 50 лет.

Для корректного сравнения примем в расчет нормативный срок службы полимерных труб 20 лет, а стальных - 40 лет. При этом трубопроводы системы отопления из стальных труб «пере-живут» две системы отопления из полимерных труб.

Сметная стоимость системы отопления из полимерных труб в среднем в 1,8 раза меньше стоимости системы отопления из укрупненных узлов стальных трубопроводов.

Вывод. Одна система отопления из стальных труб будет де-шевле двух систем из полимерных труб на 10%.

Кроме того, следует учесть стоимость работ по выпуску проектно-сметной документации для использования полимерных труб с тепловым и гидравлическим расчетом. Она составит не менее 15% стоимости системы отопления из стальных труб.

Использование теплоносителя с температурой до 90 °С вме-сто 95 °С приведет к увеличению тепловой мощности приборов отопления, что в свою очередь увеличит сметную стоимость си-стемы отопления до 3%.

Таким образом, замена стальных труб полимерными в про-цессе КР увеличит стоимость работ на 28% и приведет к двум ре-монтам вместо одного, что обуславливает экономическую неце-лесообразность такой замены.

Учитывая, что и замена элеваторного узла автоматизиро-ванным, и замена стальных труб полимерными экономически не оправданы, можно сделать однозначный вывод об экономической нецелесообразности модернизации отопительной системы на основе такой замены.

Технические риски

Необходимо принять во внимание надежность функциониро-вания системы отопления после модернизации и стоимость капи-тальных и эксплуатационных затрат, обеспечивающих надежность.

При замене элеваторного узла автоматизированным возника-ет опасность остановки насосов или сбоя в работе теплообмен-ников, что может парализовать всю систему отопления и оста-вить весь дом без тепла.

Во избежание такой ситуации предусматривается резервиро-вание насосов и теплообменников, аварийное обеспечение элек-троэнергией, а это все увеличивает капитальные затраты.

Бесперебойную работу автоматизированного узла обеспе-чивают его квалифицированное обслуживание, систематические осмотры и профилактика, наличие аварийной службы, своевре-менный ремонт и замена оборудования. Все это обусловливает значительные финансовые вложения, которые до установки ав-томатизированного узла не требовались.

Сравнение надежности стальных и полимерных труб свидетельствует не в пользу последних.

В стальных трубопроводах в период длительной эксплуатации могут возникнуть неплотности в резьбовых соединениях, капель-ные течи в проблемных местах. Такие дефекты легко устраняют-ся с использованием современных уплотнительных материалов и стандартных хомутов в процессе работ по содержанию обще-го имущества в МКД. В редких случаях в процессе текущего ре-монта может быть заменен отдельный участок (участки) трубо-провода, на котором образовалось несколько капельных течей. Указанные дефекты не нарушают работу всей системы отопления и не приводят к аварийным ситуациям.

Полимерные трубы при длительном использовании в них теплоносителя под влиянием давления и главным образом тем-пературы теряют способность к сопротивлению и разрушаются.

Причиной разрушения металлопластиковых и полипропилено-вых труб с армированием алюминием могут быть также допущен-ные дефекты при изготовлении труб и некачественный монтаж.

В процессе изготовления труб может быть использована бракованная алюминиевая лента или нарушены технологические требования по ее укладке.

При монтаже может быть не выполнено торцевание концов трубы перед контактной сваркой. В таком случае теплоноситель под давлением проникает в образовавшееся пространство меж-ду слоем алюминиевой ленты и верхним слоем полипропилена, что приводит к вспучиванию этого слоя, протечке теплоносите-ля и разрушению трубы.

Главная опасность при использовании полимерных труб заклю-чается в отсутствии признаков, предвещающих разрушение труб и масштабность самого возможного разрушения, которое может сразу охватить весь дом или несколько этажей, в которые поступа-ет теплоноситель с более высокой температурой. Поэтому следу-ет строго соблюдать установленный для полимерных труб в системе отопления срок их эксплуатации и своевременно их заменять.

Очевидно, что надежность систем отопления при модерни-зации обеспечивается выполнением ряда условий, требующих определенных материальных затрат.

Следует также учесть, что документы Фонда содействия ре-формированию ЖКХ рекомендуют применять полимерные тру-бы только в системах водоснабжения.

При оценке целесообразности модернизации системы ото-пления следует принять во внимание социальный аспект.

Модернизация может предотвратить перетоп в МКД. Но он не воз-никает при нормальной работе теплосети, а его величину в значи-тельной степени снизит запорно-регулирующая арматура перец отопительными приборами. Модернизация несколько улучшит работу отопительной системы и комфортные температурные условияв жилых помещениях. Но возрастут эксплуатационные затраты.

ПРИМЕР

Капитальные затраты на замену элеваторного узла автоматизированным для 70-квартирного дома сопоставимы со стоимостью замены в этом доме всех трубопроводов системы отопления или замены всех отопительных приборов на алюминиевые радиаторы.

4 ВЫВОДА

1. Включение в программу КР МКД работ по модер-низации отопительных систем с элеваторными уз-лами экономически нецелесообразно.

2. Замена регулирующей арматуры в системах ото-пления - необходима.

3. Модернизация системы горячего водоснабжения своевременна и должна проводиться во исполнение требований Федерального закона «О теплоснабжении».

4. Модернизация инженерных систем не входит в перечень работ по КР, представленный в ч. 1 ст. 166, ЖК РФ. Их включение в этот перечень в соответ-ствии с ч. 2 ст. 166 ЖК РФ должно быть санкционировано нормативным правовым актом субъекта РФ.

Размещено 28.09.2011 (актуально до 28.09.2012)

Энергоэффективность новых зданий рассчитывается уже на стадии проектирования. Решения и меры, которые принимаются, нацелены на достижение минимального потребления энергии в здании. Как правило, эти меры изложены в национальных правилах строительства в каждой стране.


Необходимость реконструкции систем ОВК


Энергоэффективность новых зданий рассчитывается уже на стадии проектирования. Решения и меры, которые принимаются, нацелены на достижение минимального потребления энергии в здании. Как правило, эти меры изложены в национальных правилах строительства в каждой стране. Конечно, много информации о энергосберегающих решениях и технологиях могут быть найдены в многих доступных источниках или технических семинарах, которые проводят компании работающие в области ОВК.


Но ситуация, которая происходит в старых и не реконструированных зданиях, гораздо хуже. Эти здания используют огромное количество энергии, потому что при строительстве их использовались старые технологии, не позволяющие обеспечить соответствующую теплоизоляцию. Как следствие, большие потери тепла и повышенное потребление энергии. Системы ОВК этих зданий устарели, несбалансированны и не отлажены, поэтому не в состоянии обеспечить комфортный микроклимат и потребляют избыточное количество электрической и тепловой энергии.


Исследования подтвердили, что системы ОВК используют более 60% всей потребляемой энергии зданием. В жилом секторе затраты на энергию, используемую для отопления составляют приблизительно 80% от общих затрат. Поэтому, при реконструкции надо учитывать не только работы по улучшению теплоизоляции фасадов, замене старых окон на новые, остеклению балконов и лоджий, а также полный ремонт систем отопления и вентиляции.


Фазы реконструкции систем отопления


Если есть финансовые и технические возможности, старые системы отопления рекомендуется реконструировать полностью, при этом заменить оборудование на всех стадиях: производства (тепловые пункты, котельные), распределения (трубопроводы, регулирующая арматура) и потребления тепла (радиаторы, калориферы, газовые конвекторы , теплые полы и т.д.). Таким образом, мы сможем достичь наилучших показаний по энергосбережению. Не всегда возможно провести реконструкцию в полном объеме, но даже при минимальных улучшениях в системе можно увеличить ее эффективность работы и при этом обеспечить требуемые условия комфорта в каждом помещении. В обоих случаях, для достижения результата без гидравлической балансировки систем отопления не обойтись.


Реконструкция тепловых пунктов


Наиболее распространенным теплогенератором для системы отопления здания является тепловой пункт. Его цель заключается в обеспечении необходимого количества тепла, которое зависит от окружающих климатических условий и температурного графика системы, на индивидуальные потребности здания от централизованной системы теплоснабжения. Существует два типа тепловых пунктов, которые нашли широкое применение, это: тепловые узлы без автоматического контроля температуры теплоносителя на подаче с помощью элеватора или зависимые подстанции с автоматическим регулированием температуры (рисунок).


Основные недостатки таких систем:


*Поддержание микроклимата помещений зависит от тепловых сетей.

*Качество теплоносителя в системе отопления зависит от централизованного теплоснабжения.

*Нет возможности уменьшить потребление энергии - указанные системы не является нергоэффективными.

*Здание имеет гидравлическую зависимость.

*Отсутствуют установки поддержания давления - при этом статическое давление в системе зависит от давления в теплосети.


Лучшая энергоэффективность достигается при полной реконструкции тепловых пунктов, когда элеваторный зависимый узел заменяют на независимый с автоматическим контролем температуры (рисунок ниже).



Он состоит из теплообменника, который разделяет систему отопления здания и тепловую сеть, обеспечивая при этом ее независимое функционирование.


Для того, чтобы контролировать и регулировать тепловую энергию здания согласно реальным потребностям, требуется установка автоматической системы управления температурой теплоносителя на подаче. Она состоит из регулирующего клапана, который управляется электрическим приводом (рисунок слева) по сигналу от электронного контроллера с датчиками температуры. Система погодозависимого регулирования определяет, изменения внешней температуры, а также теплопотребления здания и автоматически увеличивает или уменьшает общую величину теплопоступлений.


Данные системы позволяют значительно снизить затраты на отопление (но только при условии, что система отопления является сбалансированной). Для обеспечения быстрого, точного и плавного регулирования, а также отсутствия проблем с закрытием регулирующего клапана, рекомендуется установка регулятора перепада давления (рисунок).


В связи с тем, что система отопления здания становится независимой от сети централизованного теплоснабжения, необходимо обеспечить в ней поддержание статического давления (рисунок ниже).



Эту функцию выполняют расширительный бак с отключающим и сливным клапаном для обслуживания (рисунок ниже слева), устройство подпитки и модуль контроля давления.


Предохранительный клапан в тепловых пунктах (рисунок справа) необходим для защиты слабых звеньев системы от слишком большого давления, когда установка поддержания давления находится на обслуживании или не работает.


Расширительный бак является одним из важнейших элементов системы отопления. Когда теплоноситель нагревается до рабочей температуры, он расширяется, увеличивая свой объем при этом. Если это дополнительное количество теплоносителя негде разместить, тогда статическое давление в системе будет повышаться.


При достижении, в этом случае, максимально допустимого давления, предохранительный клапан откроется и сбросит избыток объема теплоносителя, уменьшая при этом статическое давление системы. В случае отсутствия предохранительного клапана или не правильном его подборе и настройке, слишком большое давление может привести к повреждению потребителей, труб, соединений и других элементов системы. Если же предохранительный клапан открывается слишком рано или слишком часто, он освобождает значительное количество теплоносителя из системы. При этом, в период, когда система снижает свой температурный режим (требуется меньшая мощность нагрева или система выключается по окончании отопительного сезона), теплоноситель сжимается и это приводит к снижению статического давления. Если статическое давление упадет ниже минимально необходимого, в верхних участках системы будет создано разрежение, что приведет к завоздушиванию. Воздух в гидравлической системе препятствует нормальной циркуляции и может блокировать потоки в некоторых участках, что приводит к недогреву потребителей и нарушению микроклимата. Воздух также является дополнительной причиной шума в системе, а кислород, который находится в нем, вызывает коррозию деталей из стали. В тоже время, недостаток теплоносителя в системе должен быть компенсирован с помощью систем подпитки, что также влечет к дополнительным затратам и без водоподготовки приносит новые порции воздуха и новые проблемы.


Задача расширительного бака - это постоянное поддержание статического давления в системе между минимальным и максимально-допустимым значениями, с учетом возможного расширения или сжатия теплоносителя.


Что делает расширительный бак надежным?


Расширительный бак является одним из наиболее важных элементов в системе. По этому, важно знать, что именно обеспечивает его правильное функционирование, надежность и длительный срок службы.


Качественный и надежный бак должен иметь следующую конструкцию. Он состоит из специального резинового мешка, помещенного вовнутрь стального сосуда. Этот мешок позволяет разместить избыточный объем теплоносителя, образовавшийся при нагреве и как следствие расширении. При снижении температуры бак возвращает необходимое количество теплоносителя обратно в систему. В сосуд под давлением нагнетается воздух, который действует на резиновый мешок с теплоносителем, позволяя таким образом поддерживать необходимое давление в системе.


Ниже указаны технические характеристики, которые описывают качество расширительного бака:


* Герметичность конструкции для поддержания постоянного объема сжатого воздуха и качественной работы расширительного бака на протяжении многих лет эксплуатации. Это возможно только благодаря полностью сварной конструкции стального сосуда.

* Максимальная плотность резинового мешка для предотвращения диффузии сжатого воздуха из воздушной камеры через мешок в теплоноситель, что может создать проблемы с давлением и коррозией. Cамая высокая защита от диффузии - у мешков «Pneumatex» из бутил каучука. Бутил каучук - это резина с наибольшей герметичностью для воздуха среди всех известных типов резиновых эластомеров. По этой причине бутил каучук используется для производства автомобильных шин.

* Надежность соединения резинового мешка и стального сосуда. Проблемой простых расширительных баков является повреждение мембраны в месте, где она подключена к стенкам стального сосуда, по причине ее частого движения и растяжения. Чтобы избежать этой проблемы, соединение мешка с сосудом должно быть как можно меньше и растяжение в месте соединения, как можно меньше.

* Теплоноситель не должен находится в контакте со стальным сосудом для предотвращения коррозии внутри расширительного бака. Баки, где вода поступает в резиновый мешок, являются устойчивыми к коррозии.


Реконструкция системы отопления


Реконструкция тепловых пунктов является только одной из основных фаз в полном обновлении системы отопления. При этом, если сделать минимальные изменения и только в одном участке системы, энергосберегающий эффект может быть не полностью достигнут. Так что же мы все таки должны сделать, чтобы система отопления была надежной с минимально необходимым потреблением энергии?


В старых зданиях существующие системы отопления, как правило, имеют однотрубный тип подключения радиаторов без устройства контроля и управления температурой в помещении (рисунок). Его основными недостатками являются:


* Постоянный расход - максимальное потребление тепловой энергии без возможности изменения требуемой тепловой нагрузки.

* Отсутствие индивидуального управления температурой в помещении.

* Системы не сбалансированы - в них возникают проблемы с правильным распределением потоков.

* Старые и часто аварийные трубы, арматура, радиаторы и другое оборудование.

* Много воздуха в системе - что приводит к коррозии, шламу, дополнительному шуму и снижению производительности системы отопления.

* Проблемы со статическим давлением.

* Требуемый уровень комфорта в помещениях не достигнут и не поддерживается должным образом.


Индивидуальное регулирование комнатной температуры.


Для человеческого организма обеспечение комфорта, требует определенной температуры воздуха в помещении, при этом она должна постоянно поддерживаться и не изменяется. Эта температура зависит от целого ряда факторов - теплопоступления от нагревательных приборов (радиаторов), дополнительных источников тепла (солнечная энергия, люди, электрическая и бытовая техника, нагрев во время приготовления пищи) и теплопотери, которое зависят от температуры наружного воздуха, ветрености, географического расположения и ориентации здания, его конструкции, изоляции и т.д.


В помещениях, где температура автоматически не контролируется, нет возможности использовать эти дополнительные теплопоступления и таким образом уменьшить затраты энергии, что доставляется системой отопления здания. Обычно это приводит к перегреву помещений, при этом избыток тепла выпускают через открытые окна. Все это в итоге приводит к большим энергетическим и финансовым затратам.


В старых системах расход теплоносителя всегда постоянный и нету возможности свести к минимуму затраты на отопление и энергопотребление насосов, когда для помещений требуется лишь малая часть тепловой энергии.


Для обеспечения наилучшей энергоэффективности, рекомендуется заменить старые системы на новые с двухтрубной схемой разводки и автоматическим управлением температурой в помещении (на рисунке ниже). Если же нет возможности перейти к двухтрубной схеме, тогда необходимо установить устройства автоматического регулирования температуры в помещении. При этом системы должны быть гидравлически сбалансированы.



Чтобы обеспечить правильный индивидуальный контроль температуры в помещении, необходимо заменить старые радиаторы на более эффективные новые, при этом установить на каждый радиатор термостатический клапан (рисунки справа и слева) с термостатической головкой, что позволит контролировать теплоотдачу радиатора в помещение.


В случае однотрубной системы, одним из вариантов, для индивидуального контроля комнатной температуры, может быть применение термостатических вентилей с малым сопротивлением (рисунок 1) или же трехходовых термостатических клапанов (рисунок 2).

рисунок 1 рисунок 2


Термостатический клапан с термостатической головкой будут автоматически поддерживать температуру в диапазоне заданной настройки. Термоголовка имеет шкалу, где каждый знак соответствует значению поддерживаемой температуры в помещении.


Некоторые производители показывают эту информацию непосредственно на корпусе термостатической головки. Когда фактическая комнатная температура больше, чем требуется, жидкость в термоголовке расширяясь начинает закрывать термостатический клапан, уменьшая таким образом расход теплоносителя через радиатор. Мощность радиатора уменьшается и температура в помещении становится правильной. При уменьшении температуры, терморегулятор реагирует противоположным образом, открывая клапан, позволяя увеличить мощность радиатора и повысить температуру до заданного значения (рисунок ниже).



Радиаторы при этом получают только то количество энергии, которое требуется для обеспечения комфорта в каждом конкретном помещении, при этом тепловая энергия всей системы эффективно используется. Уровень комфорта и экономия энергии зависят от качества работы термоголовки. Чем точнее, стабильней и надежней термостатическая головка, тем больше тепловой энергии сохраняется. Термоголовки могут быть разных типов и предназначений. Например, термостатическая головка Heimeier тип K (рисунок 3) идеально подходит для контроля температуры в комнатах жилых зданий. Для школ, детских садов, офисов и других общественных зданий рекомендуется использовать термостатические головки К с защитой от кражи или головки тип В с большей степенью защиты (рисунок 4). В зданиях с высокими гигиеническими требованиями, рекомендуется использование термоголовки DX (рисунок 5), которая имеет гигиенические сертификаты.


Но главное условие для того, чтобы иметь качественное поддержание и контроль температуры в каждом отдельном помещении - это обязательная балансировка системы отопления.

рисунок 3 рисунок 4 рисунок 5


Балансировка систем отопления.


Еще одной большой проблемой в старых системах является избыток тепла (перегрев) в одних помещениях и недостаток его (недогрев) в других. Обычно перегреты те помещения, которые находятся близко к тепловому пункту и чем дальше от ИТП тем холоднее. Такие системы используют большое количество энергии.


Причиной этой проблемы, является неправильное распределение теплоносителя в системе, из-за ее гидравлического дисбаланса. Каким расход будет в каждом участке системы зависит от гидравлического сопротивления этого участка. Это сопротивление изменилось в старых системах вследствие коррозии и засорения труб, грязенакоплений, ремонта или реконструкции, при замене потребителей и т.д.


В старых системах устройства для балансировки не были предусмотрены. Не было возможности провести балансировку по той причине, что в то время не знали как это сделать. Проблемы, которые появлялись из-за дисбаланса системы, решались другими но не всегда удачными способами.


Одним из возможных решений, для устранения проблем в недогретых помещениях, является увеличение мощности насосов. Это приводит к тому, что в этих помещениях станет теплее, но комнаты, которые уже и так получали слишком много тепла, будут все более перегретыми и излишки тепла жильцы или арендаторы вынуждены выпускать через открытые окна. Кроме того, при увеличении мощности насосов их энергопотребление растет.


Вторым решением может быть повышение температуры теплоносителя. Но и в этом случае происходит похожая ситуация с перегревом части помещений при значительном увеличении затрат на отопление.


Основной целью балансировки систем отопления, является обеспечение всех участков системы необходимым количеством тепловой энергии при проектных (худших) условиях, когда наружная температура минимально возможная. В то же время, при всех других условиях, система будет работать, как и ожидалось.


Важно, чтобы после балансировки системы, использовалось минимально необходимое количество тепловой и электрической энергии.


Для достижения этой цели, необходимо три основных инструмента - это балансировочные клапаны с возможностью точного измерения, измерительные приборы и методы балансировки.


От того, как точно Вы можете измерять на балансировочных клапанах, и какие методы будете использовать, зависит результат балансировки.


Балансировочный клапан - это клапан Y-типа, с возможностью регулирования преднастройки, которая позволяет ограничивать расход, четко указанной шкалой на ручке, с двумя самоуплотняющими измерительными ниппелями для измерения перепада давления, расхода и температуры (рисунок).


Клапан называется Y-типа потому, что регулирующий конус, в таком случае, находится под оптимальным углом к направлению потока через клапан. Данная конструкция необходима для лучшей точности и сводит к минимуму влияние потока воды на измерения.


Балансировочный клапан выступает в качестве запорной арматуры и может быть также использован для дренажа. Для выполнения качественной балансировки, клапаны должны быть подобраны правильного размера и установлены с соблюдением правил. Все это должно быть предусмотрено инженером-проектировщиком системы отопления.


Для измерения расхода, перепада давления и температуры на установленных балансировочных клапанах, а также применения методов для проведения балансировки системы используется специальный прибор (рисунок).


Это многофункциональное компьютерное устройство с очень точными датчиками и интегрированными функциями измерения, балансировки и устранения ошибок, дополнительным гидравлическим калькулятором и другими полезными функциями, которые помогают быстрой и точной наладке системы. Балансировочный прибор может быть связан со специальным программным обеспечением для обновления и загрузки данных с ПК или же отправки результатов балансировки на компьютер.


Но использовать только балансировочные клапаны и измерительный прибор недостаточно. Вы должны знать, что и как с ними делать. В противном случае процесс наладки системы отопления на правильную работу, которая позволит обеспечить комфортный микроклимат и минимальное потребление энергии, покажется просто кошмаром. Как же тогда сбалансировать эту систему? Необходимо применить методику!


Прежде всего, гидравлическая система, должна быть разделена на отдельные части (гидравлические модули), с помощью так называемых «клапанов партнеров».


Следующая стадия сбалансировать все гидравлические модули используя ТА методы, начиная от потребителей, ответвлений, стояков, магистралей, коллекторов заканчивая тепловыми пунктами. При использовании методики, на всех балансировочных клапанах этой системы и участках на которых они установлены, будет достигнут проектный расход теплоносителя, при создании минимальных потерь давления на клапанах.


После этого, когда вся система сбалансирована с минимальными потерями давления - переключить насос на минимально необходимую скорость для этой системы (если система не сбалансирована, обычно насос работает на максимум) и настроить общий расход системы на главном клапане партнере, расположенном у насоса. В результате, насос будет использовать минимальное количество энергии, а тепловая энергия, необходимая для нагрева теплоносителя до соответствующей температуры будет эффективно использоваться. После завершения работ по балансировке, клиент получает протокол балансировки, где указаны необходимые и фактически достигнутые значения расходов и настройки балансировочных клапанов. Это документ, подтверждает балансировку системы и гарантирует ее работу, как это ожидалось по проекту.


Очень важной функцией балансировочных клапанов является возможность проводить диагностику системы. Когда система смонтирована и функционирует, очень трудно определить ее реальное качество работы и эффективность, если нет возможности это измерять. Используя балансировочные клапаны с измерительными ниппелями, можно определять неисправности в работе системы, узнавать ее реальное состояние, характеристики и принимать правильные решения в случае возникновения проблем. Диагностика позволяет обнаружить различные ошибки, причины сбоев и оперативно их ликвидировать, пока не стало слишком поздно.


Сепараторы воздуха и шлама в системах отопления.


Для того чтобы иметь возможность сбалансировать систему, она должна быть чистой и при этом без воздуха. Очень часто проблемы в системе появляются из-за попадания воздуха и коррозии. Воздух выступает в качестве теплоизоляции: где воздух, нет теплоносителя и тепло не передается от гидравлической системы в помещение. Пузырьки воздуха могут прилипать к внутренним стенкам радиатора, уменьшая его теплоотдачу. По причине воздушных пробок в верхней части системы и в потребителях, расход в них может уменьшиться или даже полностью остановиться. При этом, помещения перестанут отапливаться. Когда большое количество воздуха циркулирует в системе, появляется шум в радиаторах, трубах, клапанах.


Мы знаем, что воздух представляет собой смесь газов. В нем содержится 78% азота и 21% кислорода. Поэтому, когда воздух попадает в систему, кислород будет также находится в ней и вступать в реакцию с водой и металлами, вызывая при этом коррозию.


Коррозия не только разрушает оборудование, снижая при этом срок службы системы, но и уменьшает ее теплоэффективность и КПД. Ржавчина, как продукт коррозии, образуется слоями в теплообменниках котлов, радиаторах, трубах внутри уменьшая при этом их теплоотдачу, а также увеличивает их гидравлические сопротивления. Когда же ржавчина циркулирует вместе с потоком, она скапливается в разных участках системы (трубы, клапаны, потребители, насосы, фильтры и т.д.) (рисунок). В этом случае она может ограничить расход или заблокировать его.


Но как воздух может появиться в полностью закрытых и герметичных системах отопления?


Существует несколько основных возможностей. Первая возможность - воздух попадает в систему естественным образом растворяясь в воде, которая используется для заполнения системы или ее подпитки. При нагреве температура воды растет и растворенный воздух выделяется из нее в качестве свободного газа, вызывая вышесказанные проблемы при этом. Чем больше вода нагревается, тем больше воздуха из нее выходит.


Вторая возможность - недостаточное статическое давление. Если расширительный бак низкого качества, эго корпус, мембрана или мешок не достаточно надежен, через некоторое время сжатый воздух будет проникать в окружающую среду или систему. При этом давление в воздушной части расширительного бака будет падать или вовсе исчезнет. Бак будет заполнен водой полностью, а в верхней части системы будет создано разрежение.


Системы отопления, герметичны для жидкости и исключают ее утечку, но не для воздуха. Через автоматические воздухоотводчики, резиновые прокладки и другие соединения, воздух будет проникать в систему. Большое его количество может появиться при выполнении сервисных работ, а также при остановке и простое системы.


Для предотвращения вышеуказанных проблем, кроме качественных расширительных баков рекомендуется устанавливать сепараторы воздуха (сепараторы микропузырьков) (рисунок 1) или вакуумные деаэраторы.


Сепаратор за короткий период позволит собрать свободный воздух, циркулирующий с потоком, и удалит его из системы. Для удаления свободный воздух из карманов в верхних участках системы рекомендуются автоматические воздухоотводчики с отсутствием утечек (эффективны при отсутствии циркуляции). Они обеспечат простое и быстрое наполнение и опорожнение системы (рисунок 2).


Шлам или грязь в системе могут быть удалены с помощью сепараторов шлама (рисунок 3). Эти устройства позволяют собирать все, даже наименьшие частички, грязи и ржавчины в специальную камеру в нижней части корпуса.


Задачей обслуживающего персонала останется только открытие дренажного крана, для промывки сепаратора время от времени. Очищая теплоноситель сепараторы шлама не засоряются и не ограничивают циркуляцию. Для их очистки не требуется остановка системы.

рисунок 1 рисунок 2 рисунок 3


Итоги


Возрастающее с каждым годом потребление энергии и выбросы отходов, является одними из самых больших проблем в целом мире. Они имеют большое влияние на нашу окружающую среду, качество жизни, экологию, изменения климата и экономику. Это влияние может быть сведено к минимуму, если мы сделаем наши здания, которые используют более 40% всей производящейся энергии, гораздо более энергоэффективными.


Одним из способов является реконструкция старых систем отопления вентиляции и кондиционирования, которые используют более 60% всей энергии, необходимой для здания. Основными задачами реконструкции должны быть: замена старых элементов системы на более эффективные новые, применение энергосберегающих решений и технологий, качественные балансировка систем, удаление воздуха, очистка, поддержание давления и индивидуальный контроль температуры в каждом помещении.

Здравствуйте, уважаемый Читатель!

Хочу рассказать вам о том, с какими системами отопления мне приходилось сталкиваться.

Какие-то эксплуатировал, какие-то собирал сам, в том числе и системы отопления частных домов.

Об их плюсах и минусах узнал многое, хотя, наверное, не всё. В результате для своего дома сделал:

  • во-первых, собственную схему;
  • во-вторых, вполне надёжную;
  • в-третьих, допускающую модернизацию.

Я предлагаю не углубляться в подробное изучение различных схем отопления.

Давайте рассмотрим их с точки зрения применения именно в частном доме.

Частный дом ведь может быть и для постоянного проживания, и временного, как дача, например.

Так сказать, сузим нашу тему и приблизимся к практике.

Насчёт десяти лет, наверное, я ошибся. Обслуживать первую систему отопления я начал 33 года назад, когда был студентом Уральского Политехнического Института. Мне повезло устроиться на работу в котельную института дежурным слесарем. Правда, тогда я и не задумывался, какая она там, эта система? Работал и всё.

Работа была иногда нелёгкая, когда авария какая-нибудь. А если всё нормально – красота, сиди себе учи конспекты. Ночь отдежурил, утром на учёбу, «в школу», как мы тогда говорили. Через две ночи снова на дежурство. А главное, платили 110 – 120 рублей! В то время молодые специалисты получали столько же. Да плюс стипендия 40 рублей. Шикарная жизнь! Но, давайте поближе к теплу.

Из самого названия понятно, что отопление происходит нагретым воздухом. Воздух нагревается генератором тепла, а затем по каналам-воздуховодам поступает в помещения. По обратным каналам остывший воздух возвращается на подогрев. Довольно комфортная система.

Первым в истории теплогенератором была печь. Она нагревала воздух, который расходился по каналам в порядке естественной циркуляции. Такая система воздушного отопления использовалась в прошлых веках в продвинутых городских домах.

Сейчас используют самые разные теплогенераторы-котлы: газовые, твёрдотопливные, дизельные, электрические. Кроме естественной циркуляции используется и принудительная. Она, конечно, более эффективна:

  • Во-первых, гораздо быстрее прогревает помещения;
  • Во-вторых имеет более высокий КПД, так как гораздо эффективнее отводится тепло от теплогенератора;
  • В-третьих, её можно объединить с системой кондиционирования.

Вы, наверное, уже поняли, что здесь частным домом и «не пахнет». Да, верно, для частного дома эта схема отопления слишком громоздка и дорога. Одни расчёты чего стоят, а если допустить ошибку, то она будет, как говорят, фатальной.

Но давайте не будем расстраиваться. Если хочется все-таки обогреваться воздухом – выход есть. Это камин.

Причем, на мой взгляд, не обычный камин-пожиратель дров, а показанная на рисунке выше чугунная каминная топка. Это идеальный вариант домашнего уютного дровяного теплогенератора. Он и предназначен именно для нагрева воздуха, а не кирпича, как традиционный камин.

Воздух заходит в подкаминное пространство (где дрова лежат для антуража), обтекает его нагретый корпус. Затем обтекает раскалённую дымовую трубу по коробу камина и выходит через отверстия в верхней части короба. Кстати, к этим отверстиям можно подвести воздуховоды и распределять горячий воздух по помещениям.

Вполне достойный вариант, только если делать с воздуховодами, то при строительстве нужно не забыть их уложить в стены и перекрытия. Кое-кто ставит ещё и поддув, создавая принудительную вентиляцию. Но это, по-моему, уже перебор. У камина приятно слушать потрескивание дров, а не шум вентилятора.

Думаю, стоит упомянуть ещё тепловентиляторы и тепловые пушки. Это, так сказать, мобильные воздухоотопительные установки. Очень полезные приборы, особенно когда основная система отопления не работает или нужно быстро «догреть» воздух в помещении. Но в качестве основного варианта отопления их, по-моему, нельзя рассматривать.

Итак, каминная топка, как источник воздушного отопления – хорошее, а к тому же, приятное решение для частного дома.

Водяное отопление дома

В этом случае топлоноситель – вода или специальные жидкости, например, незамерзающие. Здесь источники тепла также самые разные в зависимости от топлива. Но если в воздушной системе теплый воздух приходит в помещение, то в водяной воздух помещения нагревается приборами , которые отдают ему накопленное водой тепло .

А накапливает вода тепла очень много. Есть такое понятие: «теплоёмкость», помните? Если своими словами,

Теплоемкость воды – это количество тепла, которое нужно передать воде, чтобы её температура поднялась на один градус.

Так вот этот показатель у воды очень неплохой. Посмотрите на таблицу справа.

Получается, шикарный теплоноситель мы получаем практически даром.

Да, водяная система несколько сложнее, но зато и более гибкая.

Представьте, нагретую воду по трубам можно подать куда угодно и там она отдаст накопленное тепло.

А трубы можно легко упрятать в стены, а можно и вообще не прятать, современные выглядят очень эстетично.

Как вода отдаёт тепло? Для этого создано несколько типов приборов:

  • Радиаторы – массивные, например чугунные, секции, собранные в батареи.

Внутри них протекает горячая вода. Тепловую энергию они отдают, в основном, за счёт инфракрасного излучения (радиации).

Они, как правило, стальные или алюминиевые, реже медные. Окружающий воздух, нагреваясь от конвектора, начинает естественное движение вверх. То есть создаётся поток (конвекция) воздуха, отводящего тепло от конвектора.

Современные алюминиевые приборы тоже относятся к конвекторам, хотя называют их радиаторами. Нужно отметить, что сейчас практически все тепловые приборы водяного отопления называют радиаторами, хотя строго говоря, это неправильно. Но не будем умничать.

Через них прокачивается воздух, который нужно нагреть. Используются часто в системах приточной вентиляции для нагрева поступающего снаружи холодного воздуха.

  • «Тёплые стены» — применялись в семидесятые годы в панельном домостроении. В бетонные панели вмуровывался змеевик из стальной трубы, в которую подавалась вода из системы отопления. Помню из детства тёплые стены панельных пятиэтажек.

Водяную систему с успехом можно применять в частном доме. Если это дача – можно залить вместо воды незамерзающий теплоноситель и не беспокоиться о размораживании системы.

Давайте немного подробнее разберём варианты систем отопления для малоэтажных домов.

Схема самотёчной системы отопления

Почему самотёчная? Потому что вода в ней на самом деле течёт сама. При нагревании в котле вода поднимается вверх, а затем, постепенно охлаждаясь в радиаторах, стекает вниз и снова возвращается в котел. Система простая, но обязательные условия необходимо соблюдать:

  • Труба должна быть довольно большого диаметра от 50 мм, а лучше 76 мм и больше.
  • Труба укладывается с уклоном для обеспечения самотёка воды.

Иногда эта самая труба и обогревает помещение без радиаторов и конвекторов за счёт своей большой массы и поверхности. Такие трубы называют регистрами, их можно встретить на вокзалах и автостанциях старых небольших городов. В частных домах сейчас редко её применяют – выглядит не очень эстетично. Представьте – в комнате толстенная труба, да ещё наклонная.

Очень большое достоинство этой системы – она не нуждается в циркуляционном насосе, вода циркулирует сама. Если котёл дровяной, угольный или газовый – никакие отключения электроэнергии не страшны, полная автономия и независимость. Говорю об этом, потому что сам имею неприятности с отключениями электроэнергии.

Особенность самотечной системы, которую считают недостатком – она открытая, то есть сообщается с воздухом и давления в ней нет. Значит, нужен открытый бак-расширитель и водичка постепенно испаряется, нужно за этим следить. Конечно, это не очень серьёзный недостаток. Меня больше отталкивают высоко расположенные наклонные трубы.

Для частного дома замкнутая система отопления, по-моему, оптимальный вариант. Лучше сказать закрытая. Закрытая, значит не имеющая контакта с воздухом. Здесь появляются новые элементы:

  • Мембранный бак-расширитель для компенсации расширения воды при нагревании;
  • Циркуляционный насос для прокачки воды по системе;
  • Группа безопасности – клапан подпитки (для добавления воды в систему при утечке), манометр, предохранительный клапан (для сброса пара при закипании воды).

Это более современный, эстетичный вариант. Здесь используются радиаторы, а чаще алюминиевые конвекторы, тонкие металлопластиковые или полипропиленовые трубы. Нет необходимости доливать воду, думать о наклоне труб, их можно вообще спрятать в стены или перекрытия.

Можно поставить красивые алюминиевые или биметаллические радиаторы, полотенцесушитель. Я использую два котла в одной системе – электрический котёл и водяной контур каминной топки. Как будто неплохо получилось.

Минус системы – без электроэнергии для циркуляционного насоса работать она не сможет. Более того, если топка «под парами», а электричество кончилось – может получиться «бумсик» с выбросом пара и большим шумом. По себе знаю. Такое впечатление, что по трубам стучат молотком.

Поэтому насос подключил к бесперебойному источнику (как у компьютера), чтобы было время безопасно остудить топку. А ещё выход предохранительного клапана – в канализацию.

Двухтрубная система отопления

Существует два варианта подключения радиаторов к системе отопления:


Единственный плюс однотрубной системы – экономия на трубах. Но минус существенный – ближний к котлу радиатор самый горячий, а самый дальний – самый холодный. А ещё проблематично отключить какой-то радиатор – они все в одной цепи. Если это не критично, почему бы не использовать такой вариант? Вполне нормальная схема.

Двухтрубная схема более гибкая:

  • Все радиаторы почти в равных условиях. К каждому вода подаётся одной температуры;
  • Можно на каждом радиаторе устанавливать свою температуру за счет регулирования потока воды через него;
  • Можно безболезненно перекрывать подачу воды в любой радиатор, например, когда жарко или нужно промыть радиатор;
  • Более удобна для наращивания количества радиаторов.

Таким образом, на мой взгляд, двухтрубная схема более предпочтительна.

Ради справедливости нужно сказать, что и в двухтрубном варианте последний радиатор несколько «обижен», ему меньше достаётся тепла. Причина в том, что на нём разница давлений между подачей и обраткой практически нулевая и поток воды минимальный.

Итак, какой же выбор я сделал?

В своём доме я установил воздушно-водяную систему отопления. За воздушную отвечает камин. Закрытая двухтрубная водяная схема включает в себя электрокотёл, водяной контур каминной топки и 40 алюминиевых радиаторных секций (6 радиаторов). 64 квадратных метра первого этажа в любой мороз отапливаются с избытком.

На сегодня всё. В следующих статьях предложу вашему вниманию систему газового отопления, тёплый пол, инфракрасное отопление. Комментируйте, задавайте вопросы. Спасибо, до встречи!

Обратился владелец загородного жилого дома площадью более 500 кв.м с проблемой эксплуатации системы отопления. Затруднение владельца заключалось в отсутствии возможности управления температурой в помещениях, что приводило к дискомфорту для всех членов семьи.

Ситуацию, в которой оказался владелец, можно сравнить с эксплуатацией дорогого автомобиля класса люкс, в котором печка есть, а регулятора температуры нет, не говоря уже о климат-контроле.

Единственным найденным способом регулировки служила отвертка, с помощью которой прикрывался клапан, подключенный снизу к радиатору. И, конечно же, таким ручным способом увеличения и уменьшения мощности, нужной температуры в помещении всё равно никогда не удавалось достичь.

Инженеры компании Danfoss, изучив пожелания владельца, предложили решение автоматического регулирования температуры с помощью беспроводных комнатных термостатов RET2000B и порекомендовали сертифицированную монтажную организацию для выезда на объект и последующего монтажа.

По результатам обследования объекта выяснилось, что при монтаже системы отопления дома не было предусмотрено никакого зонального управление радиаторами и конвекторами в полу. При этом при разводке трубопроводов была применена коллекторная система. Всего в доме 5 шкафов с распределительными коллекторами системы радиаторного отопления.

Установка термостатических элементов на радиаторы не представлялась возможным по причине того, что они были скрыты экранами, и их установка привела бы к некорректному режиму работы. А учитывая то, что в доме проведен высококачественный ремонт с использованием дорогих материалов, единственным возможным решением стал монтаж беспроводных комнатных термостатов во всех помещения, где требовалось регулировать температуру. Единственной дополнительной работой, которую необходимо было провести, стало подведение электропитания к каждому шкафу для подключения коммутационного устройства и приёмников сигнала от комнатных термостатов.

Монтаж оборудования для автоматизации системы отопления занял не больше 5 часов и проходил в следующей последовательности:

  1. Определить контур отопления и подключенный к нему отопительный прибор;
  2. На клапаны распределительного коллектора соответствующих контуров установить электроприводы , которые по сигналу открывают или закрывают клапан.
  3. Установить в коллекторный шкаф клеммную панель, и скоммутировать приёмники сигналов и электроприводы.
  4. Связать между собой комнатные термостаты и ресиверы;
  5. Смонтировать термостат на стене комнаты на высоте 1.5 метра от пола и выставить необходимую температуру.


Так как проект внутренних инженерных систем отсутствовал, специалисты вынуждены были опытным путем отслеживать все магистрали от коллекторного шкафа до отопительного прибора. Выяснилось, что в самой большой комнате не все 12 радиаторов были подключены к одному распределительному коллектору. Но и здесь решение было быстро найдено. Один комнатный термостат связали с двумя приёмниками беспроводного сигнала, находящимися в разных шкафах, но при этом регулирующие температуру приборов в одной комнате.

Принцип работы комнатных термостатов очень прост: как только в комнате достигается установленная на термостате температура, например 21°С, термостат соответственно подаёт сигнал на ресивер, установленный в шкафу. А ресивер в свою очередь даёт команду подключенным к нему электроприводам закрыть клапан. Таким образом, прекращается подача теплоносителя в соответствующие контуры отопления, и теплоотдача радиаторов не увеличивается до тех пор, пока комнатный термостат не зафиксирует понижение температуры в помещении.

Инженерам и партнёрам компании Danfoss часто приходится сталкиваться с случаями, когда при монтаже системы отопления не была продумана автоматизация системы отопления. Причиной могут быть, как желание сэкономить на системе отопления, так и отсутствие нужной квалификации у инженеров монтажной организации.

Безусловным преимуществом беспроводных решений от Danfoss является возможность модернизировать практически любую систему радиаторного отопления и систему водяных теплых полов.