Абсолютное и избыточное давление. Пьезометрическая и вакуумметрическая высота

Вопрос 21. Классификация приборов измерения давления. Устройство электроконтактного манометра, способы его поверки.

Во многих технологических процессах давление является одним из основных параметров, определяющих их протекание. К ним относятся: давление в автоклавах и пропарочных камерах, давление воздуха в технологических трубопроводах и т. п.

Определение величины давления

Давление – это величина, характеризующая действие силы на единицу поверхности.

При определении величины давления принято различать давление абсолютное, атмосферное, избыточное и вакуумметрическое.

Абсолютное давление (р а ) – это давление внутри какой-либо системы, под которым находится газ, пар или жидкость, отсчитываемое от абсолютного нуля.

Атмосферное давление (р в ) создается массой воздушного столба земной атмосферы. Оно имеет переменную величину, зависящую от высоты местности над уровнем моря, географической широты и метеорологических условий.

Избыточное давление определяется разностью между абсолютным давлением (р а) и атмосферным давлением (р в):

р изб = р а – р в.

Вакуум (разрежение) – это такое состояние газа, при котором его давление меньше атмосферного. Количественно вакуумметрическое давление определяется разностью между атмосферным давлением и абсолютным давлением внутри вакуумной системы:

р вак = р в – р а

При измерении давления в движущихся средах под понятием давления понимают статическое и динамическое давление.

Статическое давление (р ст ) – это давление, зависящее от запаса потенциальной энергии газовой или жидкостной среды; определяется статическим напором. Оно может быть избыточным или вакуумметрическим, в частном случае может быть равно атмосферному.

Динамическое давление (р д ) – это давление, обусловленное скоростью движения потока газа или жидкости.

Полное давление (р п ) движущейся среды слагается из статического (р ст) и динамического (р д) давлений:

р п = р ст + р д.

Единицы измерения давления

В системе единиц СИ за единицу давления принято считать действие силы в 1 H (ньютон) на площадь 1 м², т. е. 1 Па (Паскаль). Так как эта единица очень мала, для практических измерений применяют килопаскаль (кПа = 10 3 Па) или мегапаскаль (МПа=10 6 Па).

Кроме того, на практике применяют такие единицы давления:

    миллиметр водяного столба (мм вод. ст.);

    миллиметр ртутного столба (мм рт. ст.);

    атмосфера;

    килограмм силы на квадратный сантиметр (кг·с/см²);

При этом соотношение между этими величинами следующее:

1 Па = 1 Н/ м²

1 кг·с/см² = 0,0981 МПа = 1 атм

1 мм вод. ст. = 9,81 Па = 10 -4 кг·с/см² = 10 -4 атм

1 мм рт. ст. = 133,332 Па

1 бар = 100 000 Па = 750 мм рт. ст.

Физическое объяснение некоторых единиц измерения:

    1 кг·с/см² – это давление столба воды высотой 10м;

    1 мм рт. ст. – это величина уменьшения давления при подъеме на каждые 10м высоты.

Методы измерения давления

Широкое использование давления, его перепада и разрежения в технологических процессах вызывает необходимость применять разнообразные методы и средства измерения и контроля давления.

Методы измерения давления основаны на сравнении сил измеряемого давления с силами:

    давления столба жидкости (ртути, воды) соответствующей высоты;

    развиваемыми при деформации упругих элементов (пружин, мембран, манометрических коробок, сильфонов и манометрических трубок);

    тяжести грузов;

    упругими силами, возникающими при деформации некоторых материалов и вызывающими электрические эффекты.

Классификация приборов измерения давления

Классификация по принципу действия

В соответствии с указанными методами, приборы измерения давления можно разделить, по принципу действия на:

    жидкостные;

    деформационные;

    грузопоршневые;

    электрические.

Наибольшее распространение в промышленности получили деформационные средства измерения. Остальные, в большинстве своем, нашли применение в лабораторных условиях в качестве образцовых или исследовательских.

Классификация в зависимости от измеряемой величины

В зависимости от измеряемой величины средства измерения давления подразделяются на:

    манометры – для измерения избыточного давления (давления выше атмосферного);

    микроманометры (напоромеры) – для измерения малых избыточных давлений (до 40 кПа);

    барометры – для измерения атмосферного давления;

    микровакуумметры (тягомеры) – для измерения малых разряжений (до -40 кПа);

    вакуумметры – для измерения вакуумметрического давления;

    мановакуумметры – для измерения избыточного и вакуумметрического давления;

    напоротягомеры – для измерения избыточного (до 40 кПа) и вакуумметрического давления (до -40 кПа);

    манометры абсолютного давления – для измерения давления, отсчитываемого от абсолютного нуля;

    дифференциальные манометры – для измерения разности (перепада) давлений.

Жидкостные средства измерения давления

Действие жидкостных средств измерений основано на гидростатическом принципе, при котором измеряемое давление уравновешивается давлением столба затворной (рабочей) жидкости. Разница уровней в зависимости от плотности жидкости является мерой давления.

U -образный манометр – это простейший прибор для измерения давления или разности давлений. Представляет собой согнутую стеклянную трубку, заполненную рабочей жидкостью (ртутью или водой) и прикрепленную к панели со шкалой. Один конец трубки соединяется с атмосферой, а другой подключается к объекту, где измеряется давление.

Верхний предел измерения двухтрубных манометров составляет 1…10кПа при приведенной погрешности измерения 0,2…2%. Точность измерения давления этим средством будет определяться точностью отсчета величины h(величины разности уровня жидкости), точностью определения плотности рабочей жидкости ρ и не зависеть от сечения трубки.

Жидкостные средства измерения давления характерны отсутствием дистанционной передачи показаний, небольшими пределами измерений и низкой прочностью. В то же время благодаря своей простоте, дешевизне и относительно высокой точности измерений они широко распространены в лабораториях и реже в промышленности.

Деформационные средства измерения давления

Основаны на уравновешивании силы, создаваемой давлением или вакуумом контролируемой среды на чувствительный элемент, силами упругих деформаций различного рода упругих элементов. Эта деформация в виде линейных или угловых перемещений передается регистрирующему устройству (показывающему или самопишущему) или преобразуется в электрический (пневматический) сигнал для дистанционной передачи.

В качестве чувствительных элементов используют одновитковые трубчатые пружины, многовитковые трубчатые пружины, упругие мембраны, сильфонные и пружинно-сильфонные.

Для изготовления мембран, сильфонов и трубчатых пружин применяются бронза, латунь, хромоникелевые сплавы, отличающиеся достаточно высокой упругостью, антикоррозийностью, малой зависимостью параметров от изменения температуры.

Мембранные приборы применяются для измерения небольших давлений (до 40кПа) нейтральных газовых средств.

Сильфонные приборы предназначены для измерения избыточного и вакуумметрического давления неагрессивных газов с пределами измерений до 40кПа, до 400кПа (как манометры), до 100кПа (как вакуумметры), в интервале -100…+300кПа (как мановакуумметрические).

Трубчато-пружинные приборы принадлежат к числу наиболее распространенных манометров, вакуумметров и мановакуумметров.

Трубчатая пружина представляет собой тонкостенную, согнутую по дуге окружности, трубку (одно- или многовитковую) с запаенным одним концом, которая изготавливается из медных сплавов или нержавеющей стали. При увеличении или уменьшении давления внутри трубки пружина раскручивается или скручивается на определенный угол.

Манометры рассмотренного типа выпускаются для верхних пределов измерения 60…160кПа. Вакуумметры выпускаются со шкалой 0…100кПа. Мановакуумметры имеют пределы измерений: от -100кПа до +(60кПа…2,4МПа). Класс точности для рабочих манометров 0,6…4, для образцовых – 0,16; 0,25; 0,4.

Грузопоршневые манометры применяются как устройства для поверки механических контрольных и образцовых манометров среднего и высокого давления. Давление в них определяется по калиброванным грузам, помещаемым на поршне. В качестве рабочей жидкости применяют керосин, трансформаторное или касторовое масло. Класс точности грузопоршневых манометров 0,05 и 0,02%.

Электрические манометры и вакуумметры

Действие приборов этой группы основано на свойстве некоторых материалов изменять свои электрические параметры под действием давления.

Пьезоэлектрические манометры применяют при измерении пульсирующего с высоко частотой давления в механизмах с допустимой нагрузкой на чувствительный элемент до 8·10 3 ГПа. Чувствительным элементом в пьезоэлектрических манометрах, преобразующим механические напряжения в колебания электрического тока, являются пластины цилиндрической или прямоугольной формы толщиной в несколько миллиметров из кварца, титаната бария или керамики типа ЦТС (цирконат-титонат свинца).

Тензометрические манометры имеют малые габаритные размеры, простое устройство, высокую точность и надежность в работе. Верхний предел показаний 0,1…40Мпа, класс точности 0,6; 1 и 1,5. Применяются в сложных производственных условиях.

В качестве чувствительного элемента в тензометрических манометрах применяются тензорезисторы, принцип действия которых основан на изменении сопротивления под действием деформации.

Давление в манометре измеряется схемой неуравновешенного моста.

В результате деформации мембраны с сапфировой пластинкой и тензорезисторами возникает разбаланс моста в виде напряжения, которое с помощью усилителя преобразуется в выходной сигнал, пропорциональный измеряемому давлению.

Дифференциальные манометры

Применяются для измерения разности (перепада) давления жидкостей и газов. Они могут быть использованы для измерения расхода газов и жидкостей, уровня жидкости, а также для измерения малых избыточных и вакуумметрических давлений.

Мембранные дифференциальные манометры являются бесшакальными первичными измерительными приборами, предназначенными для измерения давления неагрессивных сред, преобразующими измеряемую величину в унифицированный аналоговый сигнал постоянного тока 0…5мА.

Дифференциальные манометры типа ДМ выпускаются на предельные перепады давления 1,6…630кПа.

Сильфонные дифференциальные манометры выпускаются на предельные перепады давления 1…4кПа, они рассчитаны на предельно допустимое рабочее избыточное давление 25кПа.

Устройство электроконтактного манометра, способы его поверки

Устройство электроконтактного манометра

Рисунок - Принципиальные электрические схемы электроконтактных манометров: а – одноконтактная на замыкание; б – одноконтактная на размыкание; в – двухконтактная на размыкание–размыкание; г – двухконтактная на замыкание–замыкание; д – двухконтактная на размыкание–замыкание; е – двухконтактная на замыкание–размыкание; 1 – указательная стрелка; 2 и 3 – электрические базовые контакты; 4 и 5 – зоны замкнутых и разомкнутых контактов соответственно; 6 и 7 – объекты воздействия

Типовая схема функционирования электроконтактного манометра может быть проиллюстрирована рисунке (а) . При росте давления и достижении им определенного значения указательная стрелка 1 с электрическим контактом входит в зону 4 и замыкает с помощью базового контакта 2 электрическую цепь прибора. Замыкание цепи в свою очередь приводит к вводу в работу объекта воздействия 6.

В схеме размыкания (рис. б ) при отсутствии давления электрические контакты указательной стрелки 1 и базового контакта 2 замкнуты. Под напряжением U в находится электрическая цепь прибора и объект воздействия. При повышении давления и прохождении стрелкой зоны замкнутых контактов происходит разрыв электрической цепи прибора и соответственно прерывается электрический сигнал, направляемый на объект воздействия.

Наиболее часто в производственных условиях применяются манометры с двухконтактными электрическими схемами: одна используется для звуковой или световой индикации, а вторая – для организации функционирования систем различных типов управления. Так, схема размыкание–замыкание (рис. д ) позволяет по одному каналу при достижении определенного давления разомкнуть одну электрическую цепь и получить сигнал воздействия на объект 7 , а по второму – с помощью базового контакта 3 замкнуть находящуюся в разомкнутом состоянии вторую электрическую цепь.

Схема замыкание–размыкание (рис. е ) позволяет при увеличении давления одну цепь замкнуть, а вторую – разомкнуть.

Двухконтактные схемы на замыкание–замыкание (рис. г ) и размыкание–размыкание (рис. в ) обеспечивают при повышении давления и достижении одних и тех же или различных его значений замыкание обеих электрических цепей или соответственно их размыкание.

Электроконтактная часть манометра может быть как неотъемлемой, совмещенной непосредственно с механизмом измерителя, так и присоединяемой в виде электроконтактной группы, устанавливаемой на передней части прибора. Производители традиционно используют конструкции, в которых тяги электроконтактной группы монтировались на оси трубки. В некоторых устройствах, как правило, устанавливается электроконтактная группа, соединенная с чувствительным элементом через указательную стрелку манометра. Некоторые производители освоили электроконтактный манометр с микровыключателями, которые устанавливаются на передаточном механизме измерителя.

Электроконтактные манометры производятся с механическими контактами, контактами с магнитным поджатием, индуктивной парой, микровыключателями.

Электроконтактная группа с механическими контактами конструктивно наиболее проста. На диэлектрическом основании фиксируется базовый контакт, представляющий собой дополнительную стрелку с закрепленным на нем электрическим контактом и соединенным с электрической цепью. Другой разъем электрической цепи связан с контактом, который передвигается указательной стрелкой. Таким образом, при росте давления указательная стрелка смещает подвижный контакт до момента его соединения со вторым контактом, закрепленным на дополнительной стрелке. Механические контакты, изготовленные в виде лепестков или стоек, производятся из сплавов серебро–никель (Ar80Ni20), серебро–палладий (Ag70Pd30), золото–серебро (Au80Ag20), платина–иридий (Pt75Ir25) и др.

Приборы с механическими контактами рассчитаны на напряжение до 250 В и выдерживают максимальную разрывную мощность до 10 Вт постоянного или до 20 В×А переменного тока. Малые разрывные мощности контактов обеспечивают достаточно высокую точность срабатывания (до 0,5 % полного значения шкалы).

Более прочное электрическое соединение обеспечивают контакты с магнитным поджатием. Их отличие от механических состоит в закреплении на обратной стороне контактов (клеем или винтами) малых магнитов, что усиливает прочность механического соединения. Максимальная разрывная мощность контактов с магнитным поджатием составляет до 30 Вт постоянного или до 50 В×А переменного тока и напряжением до 380 В. Из-за наличия магнитов в системе контактов класс точности не превышает 2,5.

Способы поверки ЭКГ

Электроконтактные манометры, а также датчики давления должны периодически подвергаться поверке.

Электроконтактные манометры в полевых и лабораторных условиях могут проверяться тремя способами:

    поверка нулевой точки: при снятии давления, стрелка должна возвращаться к «0» отметке, недоход стрелки не должен превышать половины допуска погрешности прибора;

    поверка рабочей точки: к проверяемому прибору подсоединяется контрольный манометр и производится сравнение показаний обоих приборов;

    поверка (калибровка): поверка прибора согласно методики на поверку (калибровку) для данного типа приборов.

Электроконтактные манометры и реле давления проверяются на точность срабатывания сигнальных контактов, погрешность срабатывания должна быть не выше паспортной.

Порядок выполнения поверки

    Выполнить ТО прибора давления:

Проверить маркировку и сохранность пломб;

Наличие и прочность крепления крышки;

Отсутствие обрыва заземляющего провода;

Отсутствие вмятин и видимых повреждений, пыли и грязи на корпусе;

Прочность крепления датчика (работы на месте эксплуатации);

Целостность изоляции кабеля (работы на месте эксплуатации);

Надежность крепления кабеля в водном устройстве (работы на месте эксплуатации);

Проверить затяжку крепежных элементов (работы на месте эксплуатации);

    Для контактных приборов проверить сопротивление изоляции относительно корпуса.

    Собрать схему для контактных приборов давления.

    Плавно повышая давление на входе, снять показания образцового прибора при прямом и обратном (снижении давления) ходе. Отчеты выполнить в 5 равнорасположенных точках диапазона измерений.

Проверить точность срабатывания контактов согласно уставок.

Давление - физическая величина, характеризующая интенсивность сил, действующих по нормали к поверхности тела и отнесенных к единице площади этой поверхности.

Различают следующие виды давлений:

  • барометрическое (атмосферное)
  • нормальное
  • абсолютное
  • манометрическое (избыточное)
  • акууметрическое (разряжения)

Для измерения давления применяются различные единицы: Паскаль (Па), бар, техническая атмосфера или просто атмосфера, миллиметр ртутного или водяного столба, которые находятся в следующих соотношениях:

1 Па = 10^-5 бар = 1,02 * 10^-5 кгс/см2 = 7,5024 * 10^-2 мм рт. ст.

Барометрическое давление зависит от массы слоя воздуха. Самое большое барометрическое давление было зарегистрировано на уровне моря и составило 809 мм рт. ст., а самое низкое - 684 мм рт. ст. Барометрическое давление выражается высотой столба ртути в мм, приведенного к 0 °С.

Нормальное давление - это среднее значение давления воздуха за год на уровне моря, которое определяется ртутным барометром при температуре ртути 273 К. Оно равно примерно 101,3 кПа (750 мм рт. ст.). То есть нормальным давлением называется барометрическое давление, равное одной физической атмосфере и является частным случаем барометрического давления.

Абсолютным давлением называется давление газов и жидкостей в закрытых объемах. Оно не зависит от состояния окружающей среды.

Манометрическое давление — это разность между абсолютным давлением и барометрическим давлением, если первое больше второго.

Манометр - прибор с помощью которого измеряют давление в закрытом сосуде, находясь вне этого сосуда, испытывает давление как со стороны окружающей среды, так и со стороны сосуда. Поэтому полное или абсолютное давление газа в сосуде равно сумме манометрического давления и барометрического.

Вакуумметрическим давлением называется разность между барометрическим давлением и абсолютным давлением, если последнее меньше первого.

Числовое значение давления определяется не только принятой системой единиц, но и выбранным началом отсчета. Исторически сложились три системы отсчета давления: абсолютная, избыточная и вакуумметрическая (рис.2.2).

Рис. 2.2. Шкалы давления. Связь между давлением абсолютным, избыточным и вакуумом

Абсолютное давление отсчитывается от абсолютного нуля (рис. 2.2). В этой системе атмосферное давление . Следовательно, абсолютное давление равно

.

Абсолютное давление всегда является величиной положительной.

Избыточное давление отсчитывается от атмосферного давления, т.е. от условного нуля. Чтобы перейти от абсолютного к избыточному давлению необходимо вычесть из абсолютного давления атмосферное, которое в приближенных расчетах можно принять равным 1ат :

.

Иногда избыточное давление называют манометрическим.

Вакуумметрическим давлением или вакуумом называется недостаток давления до атмосферного

.

Избыточное давление показывает либо избыток над атмосферным, либо недостаток до атмосферного. Ясно, что вакуум может быть представлен как отрицательное избыточное давление

.

Как видно, эти три шкалы давления различаются между собой либо началом, либо направлением отсчета, хотя сам отсчет может вестись при этом в одной и той же системе единиц. Если давление определяется в технических атмосферах, то к обозначению единицы давления (ат ) приписывается ещё одна буква, в зависимости от того, какое давление принято за «нулевое» и в каком направлении ведется положительный отсчет.

Например:

- абсолютное давление равно 1,5 кг/см 2 ;

- избыточное давление равно 0,5 кг/см 2 ;

- вакуум составляет 0,1 кг/см 2 .

Чаще всего инженера интересует не абсолютное давление, а его отличие от атмосферного, поскольку стенки конструкций (бака, трубопровода и т.п.) обычно испытывают действие разности этих давлений. Поэтому в большинстве случаев приборы для измерения давления (манометры, вакуумметры) показывают непосредственно избыточное (манометрическое) давление или вакуум.

Единицы давления. Как следует из самого определения давления, его размерность совпадает с размерностью напряжения, т.е. представляет собой размерность силы, отнесенную к размерности площади.

За единицу давления в Международной системе единиц (СИ) принят паскаль — давление, вызываемое силой , равномерно распределенной по нормальной к ней поверхности площадью , т.е. . Наряду с этой единицей давления применяют укрупненные единицы: килопаскаль (кПа) и мегапаскаль (МПа).

Давление, отсчитываемое от абсолютного нуля, называется абсолютным давлением и обозначается p абс. Абсолютный нуль давления означает полное отсутствие сжимающих напряжений.

В открытых сосудах или водоемах давление на поверхности равно атмосферному p атм. Разность между абсолютным давлением p абс и атмосферным p атм называется избыточным давлением

p изб = p абс – p атм.

Когда давление в какой-либо точке, расположенной в объеме жидкости, больше атмосферного, т. е. , то избыточное давление положительно и его называют манометрическим .

Если давление в какой-либо точке оказывается ниже атмосферного, т. е. , то избыточное давление отрицательно. В этом случае его называют разрежением или вакуумметрическим давлением. За величину разрежения или вакуума принимается недостаток до атмосферного давления:

p вак = p атм – p абс;

p изб = – p вак.

Максимальный вакуум возможен, если абсолютное давление станет равным давлению насыщенного пара, т. е. p абс = p н.п. Тогда

p вак max = p атм – p н.п.

В случае если давлением насыщенного пара можно пренебречь, имеем

p вак max = p атм.

Единицей измерения давления в СИ является паскаль (1 Па = 1 Н/м 2), в технической системе – техническая атмосфера (1 ат = 1 кГ/см 2 = 98,1 кПа). При решении технических задач атмосферное давление принимается равным 1 ат = 98,1 кПа.

Манометрическое (избыточное) и вакуумметрическое (разрежение) давление часто измеряются с помощью стеклянных, открытых сверху трубок – пьезометров, присоединяемых к месту измерения давления (рис. 2.5).

Пьезометры измеряют давление в единицах высоты подъема жидкости в трубке. Пусть трубка пьезометра присоединена к резервуару на глубине h 1 . Высота подъема жидкости в трубке пьезометра определяется давлением жидкости в точке присоединения. Давление в резервуаре на глубине h 1 определится из основного закона гидростатики в форме (2.5)

,

где – абсолютное давление в точке присоединения пьезометра;

– абсолютное давление на свободной поверхности жидкости.

Давление в трубке пьезометра (открытой сверху) на глубине h равно



.

Из условия равенства давлений в точке присоединения со стороны резервуара и в пьезометрической трубке получаем

. (2.6)

Если абсолютное давление на свободной поверхности жидкости больше атмосферного (p 0 > p атм) (рис. 2.5.а ), то избыточное давление будет манометрическим, и высота подъема жидкости в трубке пьезометра h > h 1 . В этом случае высоту подъема жидкости в трубке пьезометра называют манометрической или пьезометрической высотой .

Манометрическое давление в этом случае определится как

Если абсолютное давление на свободной поверхности в резервуаре будет меньше атмосферного (рис. 2.5.б ), то в соответствии с формулой (2.6) высота подъема жидкости в трубке пьезометра h будет меньше глубины h 1 . Величину, на которую опустится уровень жидкости в пьезометре относительно свободной поверхности жидкости в резервуаре, называют вакуумметрической высотой h вак (рис. 2.5.б ).

Рассмотрим еще один интересный опыт. К жидкости, находящейся в закрытом резервуаре, на одинаковой глубине присоединены две вертикальные стеклянные трубки: открытая сверху (пьезометр) и запаянная сверху (рис. 2.6). Будем считать, что в запаянной трубке создано полное разряжение, т. е. давление на поверхности жидкости в запаянной трубке равно нулю. (Строго говоря, давление над свободной поверхностью жидкости в запаянной трубке равно давлению насыщенных паров, но ввиду его малости при обычных температурах, этим давлением можно пренебречь).

В соответствии с формулой (2.6) жидкость в запаянной трубке поднимется на высоту, соответствующую абсолютному давлению на глубине h 1:

.

А жидкость в пьезометре, как показано ранее, поднимется на высоту, соответствующую избыточному давлению на глубине h 1 .

Вернемся к основному уравнению гидростатики (2.4). Величина H , равная

называется пьезометрическим напором .

Как следует из формул (2.7), (2.8), напор измеряется в метрах.

Согласно основному уравнению гидростатики (2.4) как гидростатический, так и пьезометрический напоры в покоящейся жидкости относительно произвольно выбранной плоскости сравнения являются постоянными величинами. Для всех точек объема покоящейся жидкости гидростатический напор одинаков. То же самое можно сказать и про пьезометрический напор.

Это значит, что если к резервуару с покоящейся жидкостью подключить на разной высоте пьезометры, то уровни жидкости во всех пьезометрах установятся на одинаковой высоте в одной горизонтальной плоскости, называемой пьезометрической.

Поверхности уровня

Во многих практических задачах бывает важно определить вид и уравнение поверхности уровня.

Поверхностью уровня или поверхностью равного давления называется такая поверхность в жидкости, давление во всех точках которой одно и то же, т. е. на такой поверхности dp = 0.

Так как давление является некоторой функцией координат, т. е. p = f(x,y,z) , то уравнение поверхности равного давления будет:

p = f (x, y, z ) = C = const. (2.9)

Придавая константе C разные значения, будем получать различные поверхности уровня. Уравнение (2.9) есть уравнение семейства поверхностей уровня.

Свободная поверхность – это поверхность раздела капельной жидкости с газом, в частности, с воздухом. Обычно про свободную поверхность говорят только для несжимаемых (капельных) жидкостей. Понятно, что свободная поверхность является и поверхностью равного давления, величина которого равна давлению в газе (на поверхности раздела).

По аналогии с поверхностью уровня вводят понятие поверхности равного потенциала илиэквипотенциальной поверхности – это поверхность, во всех точках которой силовая функция имеет одно и то же значение. Т. е. на такой поверхности

U = const

Тогда уравнение семейства эквипотенциальных поверхностей будет иметь вид

U (x,y,z ) = C ,

где постоянная C принимает различные значения для разных поверхностей.

Из интегральной формы уравнений Эйлера (уравнения (2.3)) следует, что

Из этого соотношения можно сделать вывод, что поверхности равного давления и поверхности равного потенциала совпадают, потому что при dp = dU = 0.

Важнейшее свойство поверхностей равного давления и равного потенциала состоит в следующем: объемная сила, действующая на частицу жидкости, находящуюся в любой точке, направлена по нормали к поверхности уровня, проходящей через эту точку.

Докажем это свойство.

Пусть частица жидкости из точки с координатами переместилась по эквипотенциальной поверхности в точку с координатами . Работа объемных сил на этом перемещении будет равна

Но, поскольку частица жидкости перемещалась по эквипотенциаль-ной поверхности, dU = 0. Значит работа объемных сил, действующих на частицу, равна нулю. Силы не равны нулю, перемещение не равно нулю, тогда работа может быть равна нулю только при условии, что силы перпендикулярны перемещению. То есть объемные силы нормальны к поверхности уровня.

Обратим внимание на то, что в основном уравнении гидростатики, записанном для случая, когда на жидкость действует только один вид объемных сил – силы тяжести (см. уравнение (2.5))

,

величина p 0 – не обязательно давление на поверхности жидкости. Это может быть давление в любой точке, в которой оно нам известно. Тогда h – это разность глубин (по направлению вертикально вниз) между точкой, в которой давление известно, и точкой, в которой мы хотим его определить. Таким образом, с помощью этого уравнения можно определить значение давления p в любой точке через известное давление в известной точке – p 0 .

Заметим, что величина не зависит от p 0 . Тогда из уравнения (2.5) следует вывод: насколько изменится давление p 0 , настолько же изменится и давление в любой точке объема жидкости p . Поскольку точки, в которых фиксируем p и p 0 , выбраны произвольно, это означает, что давление, создаваемое в любой точке покоящейся жидкости, передается ко всем точкам занимаемого объема жидкости без изменения величины.

Как известно, в этом и состоит закон Паскаля.

По уравнению (2.5) можно определить форму поверхностей уровня покоящейся жидкости. Для этого надо положить p = const. Из уравнения следует, что это выполнимо лишь при h = const. Значит, что при действии на жидкость из объемных сил только сил тяжести, поверхности уровня представляют собой горизонтальные плоскости.

Такой же горизонтальной плоскостью будет и свободная поверхность покоящейся жидкости.

В технических приложениях давление обычно называют абсолютным давлением . Кроме того, вводят так называемое избыточное давление и вакуум, определение которых осуществляется по отношению к атмосферному давлению.

Если давление больше атмосферного (), то превышение давления над атмосферным называют избыточным давлением:

;

если давление меньше атмосферного, то недостаток давления до атмосферного называют вакуумом (или вакууметрическим давлением):

.

Очевидно, что обе эти величины – положительные. Например, если говорят: избыточное давление равно 2 атм ., то это означает, что абсолютное давление равно . Если говорят, что в сосуде вакуум составляет 0,3 атм ., то это означает, что абсолютное давление в сосуде равно и т.д.

ЖИДКОСТИ. ГИДРОСТАТИКА

Физические свойства жидкостей

Капельные жидкости – это сложные системы, обладающие многими физико-химическими свойствами. Нефтяная и нефтехимическая промышленность, помимо воды, имеет дело с такими жидкостями, как сырая нефть, светлые нефтепродукты (бензины, керосины, дизельные и печные топлива и т.п.), различные масла, а также с другими жидкостями, являющимися продуктами переработки нефти. Остановимся, прежде всего, на тех свойствах жидкости, которые важны для изучения гидравлических проблем транспорта и хранения нефти и нефтепродуктов.

Плотность жидкостей. Свойства сжимаемости

И теплового расширения

Каждая жидкость при некоторых стандартных условиях (например, атмосферном давлении и температуре 20 0 С) имеет номинальную плотность . Например, номинальная плотность пресной воды составляет 1000 кг/м 3 , плотность ртути равна 13590 кг/м 3 , сырых нефтей 840-890 кг/м 3 , бензинов 730-750 кг/м 3 , дизельных топлив 840-860 кг/м 3 . В то же время плотность воздуха составляет кг/м 3 , а природного газа кг/м 3 .

Однако при изменении давления и температуры плотность жидкости изменяется: как правило, при увеличении давления или уменьшении температуры она увеличивается, а при уменьшении давления или увеличении температуры она уменьшается.

Упругие жидкости

Изменения плотности капельных жидкостей обычно невелики по сравнению с номинальным значением (), поэтому для описания свойств их сжимаемости в ряде случаев используют модель упругой жидкости. В этой модели плотность жидкости зависит от давления согласно формуле

в которой коэффициент называют коэффициентом сжимаемости ; плотность жидкости при номинальном давлении . Эта формула показывает, что превышение давления над ведет к увеличению плотности жидкости, в обратном случае – к уменьшению.

Используется также модуль упругости К (Па ), который равен . В этом случае формула (2.1) записывается, как

. (2.2)

Средние значения модуля упругости для воды Па , нефти и нефтепродуктов Па . Отсюда следует, что отклонения плотности жидкости от номинальной плотности крайне незначительны. Например, если МПа ( атм.), то для жидкости с кг /м 3 отклонение составит 2,8 кг /м 3 .

Жидкости с тепловым расширением

То, что различные среды при нагревании расширяются, а при охлаждении сжимаются, учитываются в модели жидкости с объемным расширением. В этой модели плотность есть функция от температуры , так что :

в которой () - коэффициент объемного расширения, а и номинальные плотность и температура жидкости. Для воды, нефти и нефтепродуктов значения коэффициента приведены в таблице 2.1.

Из формулы (2.3) следует, в частности, что при нагревании, т.е. в тех случаях, когда , жидкость расширяется; а в тех случаях, когда , жидкость сжимается.

Таблица 2.1

Коэффициент объемного расширения

Плотность , кг/м 3 Коэффициент , 1/ 0 C
700-719 0,001225
720-739 0,001183
740-759 0,001118
760-779 0,001054
780-799 0,000995
800-819 0,000937
820-839 0,000882
840-859 0,000831
860-880 0,000782

Пример 1 . Плотность бензина при 20 0 С равна 745 кг/м 3 . Какова плотность этого же бензина при температуре 10 0 С?

Решение. Используя формулу (2.3) и таблицу 1, имеем:

кг/м 3 , т.е. эта плотность увеличилась на 8,3 кг/м 3 .

Используется также модель жидкости, учитывающей как барическое, так и тепловое расширение. В этой модели , причем справедливо следующее уравнение состояния:

. (2.4)

Пример 2 . Плотность бензина при 20 0 С и атмосферном давлении (МПа ) равна 745 кг/м 3 . Какова плотность этого же бензина при температуре 10 0 С и давлении 6,5 МПа?

Решение. Используя формулу (2.4) и таблицу 2.1, имеем:

кг /м 3 , т.е. эта плотность увеличилась на 12 кг /м 3 .

Несжимаемая жидкость

В тех случаях, когда изменениями плотности у частиц жидкости можно пренебречь, используют модель так называемой несжимаемой жидкости. Плотность каждой частицы такой гипотетической жидкости остается постоянной в течение всего времени движения (иными словами, полная производная ), хотя она может быть и разной у разных частиц (как, например, у водонефтяных эмульсий). Если же несжимаемая жидкость однородна, то

Подчеркнем, что несжимаемая жидкость представляет собой лишь модель , которую можно использовать в тех случаях, когда изменения плотности жидкости много меньше значения самой плотности , так что .

Вязкость жидкости

Если слои жидкости движутся друг относительно друга, то между ними, возникают силы трения. Эти силы называют силами вязкого трения,а свойство сопротивления относительному движению слоев - вязкостью жидкости.

Пусть, например, слои жидкости движутся так, как показано на рис. 2.1.

Рис. 2.1. К определению вязкого трения

Здесь распределение скоростей в потоке, а направление нормали к площадке . Верхние слои движутся быстрее нижних, поэтому со стороны первых действует сила трения, увлекающая вторые вперед по ходу течения, а со стороны нижних слоев действует сила трения, тормозящая движение верхних слоев. Величина - это x -составляющая силы трения между слоями жидкости, разделенными площадкой с нормалью y , рассчитанная на единицу площади.

Если ввести в рассмотрение производную , то она будет характеризовать скорость сдвига, т.е. разность скоростей слоев жидкости, рассчитанную на единицу расстояния между ними. Оказывается, что для многих жидкостей справедлив закон, согласно которому касательное напряжение между слоями пропорционально разности скоростей этих слоев, рассчитанной на единицу расстояния между ними :

Смысл этого закона понятен: чем больше относительная скорость слоев жидкости (скорость сдвига), тем больше сила трения между слоями.

Жидкость, для которой справедлив закон (2.5) называют ньютоновской вязкой жидкостью . Многие капельные жидкости удовлетворяют этому закону, однако, входящий в него коэффициент пропорциональности оказывается различным для различных жидкостей. Говорят, что такие жидкости являются ньютоновскими, но с разной вязкостью.

Коэффициент пропорциональности , входящий в закон (2.5), называют коэффициентом динамической вязкости.

Размерность этого коэффициента такова

.

В системе СИ измеряется в и выражается в Пуазах (Пз ). Эта единица введена в честь Жана Луи Мари Пуазейля , (1799-1869) – выдающегося французского врача и физика, много сделавшего для изучения движения жидкости (в частности, крови) в трубе.

Пуаз определяется так: 1 Пз = 0,1 . Чтобы составить представление о величине 1 Пз , заметим, что коэффициент динамической вязкости воды в сто раз меньше 1 Пз, т.е. 0,01 Пз = 0,001 = 1 санти Пуаз. Вязкость бензинов составляет 0,4-0,5 Пз, дизельных топлив 4 – 8 Пз , нефти – 5-30 Пз и больше.

Для описания вязких свойств жидкости важен также другой коэффициент, являющийся отношением коэффициента динамической вязкости к плотности жидкости, а именно . Этот коэффициент обозначают и называют коэффициентом кинематической вязкости .

Размерность коэффициента кинематической вязкости такова:

= .

В системе СИ измеряется м 2 /с и выражается Стоксами (Джордж Габриель Стокс (1819-1903) – выдающийся английский математик, физик и гидромеханик):

1 Ст = 10 -4 м 2 /с.

При таком определении кинематической вязкости для воды имеем:

Иными словами, единицы измерения для динамической и кинематической вязкости выбраны таким образом, чтобы и та, и другая для воды была бы равна 0,01 единицы: 1 сПз в первом случае и 1 сСт – во втором.

Для справки укажем, что кинематическая вязкость бензина составляет примерно 0,6 сСт; дизельного топлива - сСт; маловязкой нефти - сСт и т.д.

Зависимость вязкости от температуры . Вязкость многих жидкостей - воды, нефти и почти всех нефтепродуктов - зависит от температуры. При повышении температуры вязкость уменьшается, при понижении - увеличивается. Для расчета зависимости вязкости, например, кинематической от температуры используются различные формулы, в том числе и формула О.Рейнольдса - П.А.Филонова

Решение. По формуле (2.7) рассчитываем коэффициент : . По формуле (2.6) находим искомую вязкость: сСт.

Идеальная жидкость

Если силы трения между слоями жидкости много меньше нормальных (сдавливающих) сил, то вводят модель так называемой идеальной жидкости . В этой модели считается, что касательные силы трения между частицами, разделенными площадкой, отсутствуют и при течении жидкости, а не только в состоянии покоя(см. в п. 1.9 определение жидкости). Такая схематизация жидкости оказывается весьма полезной в тех случаях, когда касательные составляющие сил взаимодействия (силы трения) много меньше их нормальных составляющих (сил давления). В других же случаях, когда силы трения сопоставимы с силами давления или даже превосходят их, модель идеальной жидкости оказывается неприменимой.

Поскольку в идеальной жидкости существуют только нормальные напряжения, то вектор напряжения на любой площадке с нормалью перпендикулярен этой площадке . Повторяя построения п.1.9, можно заключить, что в идеальной жидкости все нормальные напряжения равны по величине и отрицательны (). Следовательно, в идеальной жидкости существует параметр , называемый давлением:, , а матрица напряжений имеет вид:

. (2.8)