Определение кпд котла брутто и нетто. КПД котла брутто и нетто

Тепловой баланс котельного агрегата устанавливает равенство между поступающим в агрегат количеством теплоты и его расходом. На основании теплового баланса котельного агрегата определяют расход топлива и вычисляют коэффициент полезного действия, который является важнейшей характеристикой энергетической эффективности работы котла.

В котельном агрегате химически связанная энергия топлива в процессе горения преобразуется в физическую теплоту горючих продуктов сгорания. Эта теплота расходуется на выработку и перегрев пара или нагревание воды. Вследствие неизбежных потерь при передаче теплоты и преобразовании энергии вырабатываемый продукт (пар, вода и т.д.) воспринимает только часть теплоты. Другую часть составляют потери, которые зависят от эффективности организации процессов преобразования энергии (сжигания топлива) и передачи теплоты вырабатываемому продукту.

Тепловой баланс котельного агрегата заключается в установлении равенства между поступившим в агрегат количеством теплоты и суммой использованной теплоты и тепловых потерь. Тепловой баланс котельного агрегата составляется на 1 кг твердого или жидкого топлива или для 1 м 3 газа. Уравнение, при котором тепловой баланс котельного агрегата для установившегося теплового состояния агрегата записывают в следующем виде:

Q р / р = Q 1 + ∑Q n

Q p / p = Q 1 + Q 2 + Q 3 + Q 4 + Q 5 + Q 6 (19.3)

Где Q р / р - теплота, которой располагают; Q 1 - использованная теплота; ∑Q n - общие потери; Q 2 - потери теплоты с уходящими газами; Q 3 - потери теплоты от химического недожога; Q 4 - потери теплоты от механической неполноты сгорания; Q 5 - потери теплоты в окружающую среду; Q 6 - потери теплоты с физической теплотой шлаков.

Если каждое слагаемое правой части уравнения (19.3) разделить Q p/ p и умножить на 100%, получим второй вид уравнения, при котором тепловой баланс котельного агрегата:

q 1 + q 2 + q 3 + q 4 + q 5 + q 6 = 100% (19.4)

В уравнении (19.4) величина q 1 представляет собой коэффициент полезного действия установки "брутто". Он не учитывает затраты энергии на обслуживание котельной установки: привод дымососов, вентиляторов, питательных насосов и прочие расходы. Коэффициент полезного действия "нетто" меньше КПД "брутто", так как он учитывает затраты энергии на собственные нужды установки.

Левая приходная часть уравнения теплового баланса (19.3) является суммой следующих величин:

Q p / p = Q p / н + Q в.вн + Q пар + Q физ.т (19.5)

где Q B.BH - теплота, вносимая в котлоагрегат с воздухом на 1 кг топлива. Эта теплота учитывается тогда, когда воздух нагревается вне котельного агрегата (например, в паровых или электрических калориферах, устанавливаемых до воздухоподогревателя); если воздух нагревается только в воздухоподогревателе, то эта теплота не учитывается, так как она возвращается в топку агрегата; Q пap - теплота, вносимая в топку с дутьевым (форсуночным) паром на 1 кг топлива; Q физ.т - физическая теплота 1 кг или 1 м 3 топлива.

Теплоту, вносимую с воздухом, рассчитывают по равенству

Q В.BH = β V 0 С р (Т г.вз - Т х.вз)

где β - отношение количества воздуха на входе в воздухоподогреватель к теоретически необходимому; с р - средняя объемная изобарная теплоемкость воздуха; при температуре воздуха до 600 К можно считать с р = 1,33 кДж/(м 3 К); Т г.вз - температура нагретого воздуха, К; Т х.вз - температура холодного воздуха, принимаемая обычно равной 300 К.

Теплоту, вносимую с паром для распыления мазута (форсуночный пар), находят по формуле:

Q пар = W ф (i ф - r)

где W ф - расход форсуночного пара, равный 0,3 - 0,4 кг/кг; i ф - энтальпия форсуночного пара, кДж/кг; r - теплота парообразования, кДж/кг.

Физическая теплота 1 кг топлива:

Q физ.т - с т (Т т - 273),

где с т - теплоемкость топлива, кДж/(кгК); Т т - температура топлива, К.

Значение величины Q физ. т обычно незначительно и в расчетах учитывается редко. Исключением являются мазут и низкокалорийный горючий газ, для которых значение Q физ.т существенно и должно обязательно учитываться.

Если предварительный подогрев воздуха и топлива отсутствует и пар для распыления топлива не используется, то Q p / р = Q р / н. Слагаемые потерь тепла в уравнении теплового баланса котельного агрегата подсчитывают на основании равенств, приводимых ниже.

1. Потерю теплоты с уходящими газами Q 2 (q 2) определяют как разность между энтальпией газов на выходе из котельного агрегата и воздуха, поступающего в котельный агрегат (двоздухоподогревателя), т.е.

где V r - объем продуктов сгорания 1 кг топлива, определяемый по формуле (18.46), м 3 /кг; c р.r , с р.в - средние объемные изобарные теплоемкости продуктов сгорания топлива и воздуха, определяемые как теплоемкости газовой смеси (§ 1.3) с помощью таблиц (см. прил. 1); Т ух, Т х.вз - температуры уходящих газов и холодного воздуха; а - коэффициент, учитывающий потери от механического недожога топлива.

Котельные агрегаты и промышленные печи работают, как правило, под некоторым разрежением, которое создается дымососами и дымовой трубой . Вследствие этого через не плотности в ограждениях, а также через смотровые лючки и т.д. подсасывается из атмосферы некоторое количество воздуха, объем которого необходимо учитывать при расчете I ух.

Энтальпию всего поступающего в агрегат воздуха (с учетом присосов) определяют по коэффициенту избытка воздуха на выходе из установки α ух = α т + ∆α.

Общий подсос воздуха в котельных установках не должен превышать ∆α = 0,2 ÷ 0,3.

Из всех потерь теплоты величина Q 2 - самая значительная. Величина Q 2 возрастает с увеличением коэффициента избытка воздуха, температуры уходящих газов, влажности твердого топлива и забалластированности негорючими газами газообразного топлива. Снижение присосов воздуха и улучшение качества горения приводят к некоторому уменьшению потери теплоты Q 2 . Основным определяющим фактором, влияющим на потерю теплоты уходящими газами, является их температура. Для снижения Т ух увеличивают площадь теплоиспользующих поверхностей нагрева - воздухоподогревателей и экономайзеров.

Величина Т ух влияет не только на КПД агрегата, но и на капитальные затраты, необходимые для установки воздухоподогревателей или экономайзеров. С уменьшением Т ух возрастает КПД и снижаются расход топлива и затраты на него. Однако при этом возрастают площади теплоиспользующих поверхностей (при малом температурном напоре площадь поверхности теплообмена необходимо увеличивать; см. § 16.1), в результате чего повышаются стоимость установки и эксплуатационные расходы. Поэтому для вновь проектируемых котельных агрегатов или других теплопотребляющих установок значение Т ух определяют из технико - экономического расчета, в котором учитывается влияние T ух не только на КПД, но и на величину капитальных затрат и эксплуатационных расходов.

Другой важный фактор, влияющий на выбор Т ух, - содержание серы в топливе. При низкой температуре (меньше, чем температура точки росы дымовых газов) возможна конденсация водяных паров на трубах поверхностей нагрева. При взаимодействии с сернистым и серным ангидридами, которые присутствуют в продуктах сгорания, образуются сернистая и серная кислоты. В результате этого поверхности нагрева подвергаются интенсивной коррозии.

Современные котельные агрегаты и печи для обжига строительных материалов имеют Т ух = 390 - 470 К. При сжигании газа и твердых топлив с небольшой влажностью Т ух - 390 - 400 К, влажных углей

Т ух = 410 - 420 К, мазута Т ух = 440 - 460 К.

Влажность топлива и негорючие газообразные примеси являются газообразующим балластом, который увеличивает количество получающихся при горении топлива продуктов сгорания. При этом повышаются потери Q 2 .

При использовании формулы (19.6) следует иметь в виду, что объемы продуктов сгорания рассчитывают без учета механического недожога топлива. Фактическое количество продуктов сгорания с учетом механической неполноты горения будет меньше. Это обстоятельство учитывают, вводя в формулу (19.6) поправочный коэффициент a = 1 - р 4 /100.

2. Потеря теплоты от химического недожога Q 3 (q 3). Газы на выходе из топки могут содержать продукты неполного горения топлива СО, Н 2 , СН 4 , теплота сгорания которых не использована в топочном объеме и далее по тракту котлоагрегата. Суммарная теплота сгорания этих газов и обусловливает химический недожог. Причинами появления химического недожога могут быть:

  • недостаток окислителя (α <; 1);
  • плохое перемешивание топлива с окислителем (α ≥ 1);
  • большой избыток воздуха;
  • малое или чрезмерно высокое удельное энерговыделение в топочной камере q v , кВт/м 3 .

Недостаток воздуха приводит в тому, что часть горючих элементов газообразных продуктов неполного горения топлива может вообще не сгорать из-за отсутствия окислителя.

Плохое перемешивание топлива с воздухом является причиной или местного недостатка кислорода в зоне горения, или, наоборот, большого его избытка. Большой избыток воздуха вызывает снижение температуры горения, что уменьшает скорости реакций горения и делает процесс сжигания неустойчивым.

Малое удельное тепловыделение в топке (q v = BQ p / н /V т, где В - расход топлива; V T - объем топки) является причиной сильного рас сеяния теплоты в топочном объеме и ведет к снижению температуры. Завышенные значения qv также вызывают появление химического недожога. Объясняется это тем, что для завершения реакции горения требуется определенное время, а при значительно завышенном значении qv время нахождения топливовоздушной смеси в топочном объеме (т.е. в зоне наиболее высоких температур) оказывается недостаточным и ведет к появлению в газообразных продуктах сгорания горючих составляющих. В топках современных котельных агрегатов допустимое значение qv достигает 170 - 350 кВт/м 3 (см. § 19.2).

Для вновь проектируемых котельных агрегатов значения qv выбирают по нормативным данным в зависимости от вида сжигаемого топлива, способа сжигания и конструкции топочного устройства. При балансовых испытаниях эксплуатируемых котельных агрегатов величину Q 3 рассчитывают по данным газового анализа.

При сжигании твердого или жидкого топлива величину Q 3 , кДж/кг, можно определить по формуле(19.7)

3.Потеря теплоты от механической неполноты сгорания топлива Q 4 (g 4). При горении твердого топлива остатки (зола, шлак) могут содержать некоторое количество несгоревших горючих веществ (в основном углерода). В результате химически связанная энергия топлива частично теряется.

Потеря теплоты от механической неполноты сгорания включает ее потери вследствие:

  • провала мелких частиц топлива через зазоры в колосниковой решетке Q пр (q пр);
  • удаление некоторой части недогоревшего топлива со шлаком и золой Q шл (q шл);
  • уноса мелких частиц топлива дымовыми газами Q ун (q ун)

Q 4 - Q пp + Q ун + Q шл

Потеря теплоты q yн принимает большие значения при факельном сжигании пылевидного топлива, а также при сжигании неспекающихся углей в слое на неподвижных или подвижных колосниковых решетках. Значение q ун для слоевых топок зависит от видимого удельного энерговыделения (теплонапряжения) зеркала горения q R , кВт/м 2 , т.е. от количества выделяющейся тепловой энергии, отнесенного к 1 м 2 горящего слоя топлива.

Допустимое значение q R BQ р / н /R (В - расход топлива; R - площадь зеркала горения) зависит от вида сжигаемого твердого топлива, конструкции топки, коэффициента избытка воздуха и т.д. В слоевых топках современных котельных агрегатов величина q R имеет значения в пределах 800 - 1100 кВт/м 2 . При расчете котельных агрегатов величины q R, q 4 = q np + q шл + q ун принимают по нормативным материалам. При балансовых испытаниях потерю теплоты от механического недожога рассчитывают по результатам лабораторного технического анализа сухих твердых остатков на содержание в них углерода. Обычно для топок с ручной загрузкой топлива q 4 = 5 ÷ 10%, а для механических и полумеханических топок q 4 = 1 ÷ 10%. При сжигании пылевидного топлива в факеле в котельных агрегатах средней и большой мощности q 4 = 0,5 ÷ 5%.

4. Потеря теплоты в окружающую среду Q 5 (q 5) зависит от большого числа факторов и главным образом от размеров и конструкции котла и топки , теплопроводности материала и талщины стенок обмуровки, тепловой производительности котлоагрегата, температуры наружного слоя обмуровки и окружающего воздуха и т. д.

Потери теплоты в окружающую среду при номинальной производительности определяют по нормативным данным в зависимости от мощности котлоагрегата и наличия дополнительных поверхностей нагрева (экономайзера). Для паровых котлов производительностью до 2,78 кг/с пара q 5 - 2 - 4%, до 16,7 кг/с - q 5 - 1 - 2%, более 16,7 кг/с - q 5 = 1 - 0,5%.

Потери теплоты в окружающую среду распределяются по различным газоходам котлоагрегата (топка, пароперегреватель, экономайзер и т.д.) пропорционально теплоте, отдаваемой газами в этих газоходах. Эти потери учитывают, вводя коэффициент сохранения теплоты φ = 1 q 5 /(q 5 + ȵ к.а) где ȵ к.а - КПД котельного агрегата.

5. Потеря теплоты с физической теплотой удаляемых из топок золы и шлаков Q 6 (q 6) незначительна, и ее следует учитывать только при слоевом и камерном сжигание многозольных видов топлива (типа бурых углей, сланцев), для которых она составляет 1 - 1,5%.

Потери теплоты с горячей золой и шлаком q 6 , %, рассчитывают по формуле

где а шл - доля золы топлива в шлаке; С шл - теплоемкость шлака; Т шл - температура шлака.

При факельном сжигании пылевидного топлива а шл = 1 - а ун (а ун - доля золы топлива, уносимой из топки с газами).

Для слоевых топок а сл шл = а шл + а пр (а пр - доля золы топлива в "провале"). При сухом шлакоудалении температура шлака принимается Т ш = 870 К.

При жидком шлакоудалении , которое наблюдается иногда при факельном сжигании пылевидного топлива Т шл = Т зол + 100 К (Т зол - температура золы в жидкоплавком состоянии). При слоевом сжигании горючих сланцев к зольности Aр вводится поправка на содержание углекислоты карбонатов, равная 0,3 (СО 2), т.е. зольность принимается равной А Р + 0,3 (СО 2) р / к. Если удаляемый шлак находится в жидком состоянии, то значение величины q 6 достигает 3%.

В печах и сушилках, применяемых в промышленности строительных материалов, помимо рассмотренных потерь теплоты приходится учитывать также потери на прогрев транспортных устройств (например, вагонеток), на которых материал подвергается тепловой обработке. Эти потери могут доходить до 4% и более.

Таким образом, КПД "брутто" может быть определен как

ȵ к.а = g 1 - 100 - ∑q потерь(19.9)

Теплоту, воспринятую вырабатываемым продуктом (пар, вода), обозначим Qк.a, кВт, тогда имеем:

для паровых котлов

Q 1 = Q к.а = D (i n.n - i п.н) + pD/100 (i - i п.в) (19.10)

для водогрейных котлоагрегатов

Q 1 = Q к.а = М в с р.в (Т вых - Т вх) (19.11)

Где D - производительность котла, кг/с; i п.п - энтальпия перегретого пара (если котел вырабатывает насыщенный пар, то вместо i п.в следует поставить (i пн) кДж/кг; i п.в - энтальпия питательной воды, кДж/кг; р - количество воды, удаляемой из котлоагрегата с целью сохранения допустимого содержания солей в котловой воде (так называемая непрерывная продувка котла), %; i - энтальпия котловой воды, кДж/кг; М в - расход воды через котлоагрегат,кг/с; с р.в - теплоемкость воды, кДж/(кгК); T вых - температура горячей воды на выходе из котла; Т вх - температура воды на входе в котел.

Расход топлива В, кг/с или м 3 /с, определяют по формуле

B = Q к.a /(Q р / н ȵ к.a) (19.12)

Объем продуктов сгорания (см. § 18.5) определяют без учета потери от механического недожога. Поэтому дальнейший расчет котельного агрегата (теплообмен в топке, определение площади поверхностей нагрева в газоходах, воздухоподогревателя и экономайзера) осуществляется по расчетному количеству топлива В р:

(19.13)

При сжигании газа и мазута В р = В.

Коэффициент полезного действия котла брутто характеризует эффективность использования поступившей в котел теплоты и не учитывает затрат электрической энергии на привод дутьевых вентиляторов, дымососов, питательных насосов и другого оборудования. При работе на газе

h бр к = 100 × Q 1 / Q c н. (11.1)

Затраты энергии на собственные нужды котельной установки учитываются КПД котла нетто

h н к = h бр к – q т – q э, (11.2)

где q т, q э – относительные расходы на собственные нужды теплоты и электроэнергии, соответственно. К расходам теплоты на собственные нужды относят потери теплоты с продувкой, на обдувку экранов, распыливание мазута и т.д.

Основными среди них являются потери теплоты с продувкой

q т = G пр × (h к.в – h п.в) / (В × Q c н) .

Относительный расход электроэнергии на собственные нужды

q эл = 100 × (N п.н /h п.н + N д.в /h д.в + N д.с /h д.с)/(B × Q c н) ,

где N п.н, N д.в, N д.с – расходы электрической энергии на привод питательных насосов, дутьевых вентиляторов и дымососов, соответственно; h п.н, h д.в, h д.с - КПД питательных насосов, дутьевых вентиляторов и дымососов соответственно.

11.3. Методика выполнения лабораторной работы
и обработки результатов

Балансовые испытания в лабораторной работе проводятся для стационарного режима работы котла при выполнении следующих обязательных условий:

Продолжительность работы котельной установки от растопки до начала испытаний – не менее 36 ч,

Продолжительность выдерживания испытательной нагрузки непосредственно перед испытанием – 3 ч,

Допустимые колебания нагрузки в перерыве между двумя соседними опытами не должны превышать ±10%.

Измерение величин параметров производятся с помощью штатных приборов, установленных на щите котла. Все измерения должны производиться одновременно не менее 3-х раз с интервалом 15-20 мин. Если результаты двух одноименных опытов различаются не более, чем на ±5%, то в качестве результата измерения берется их среднее арифметическое. При большем относительном расхождении используется результат измерения в третьем, контрольном опыте.

Результаты измерений и расчетов записывают в протокол, форма которого приведена в табл. 26.

Таблица 26

Определение потерь теплоты котлом

Наименование параметра Обозн. Ед. измер. Результаты в опытах
№1 №2 №3 Среднее
Объем дымовых газов V г м 3 /м 3
Средняя объемная теплоемкость дымовых газов C г ¢ кДж/ (м 3 ·К)
Температура дымовых газов J °С
Потеря теплоты с уходящими газами Q 2 МДж/м 3
Объем 3-атомных газов V RO 2 м 3 /м 3
Теоретический объем азота V° N 2 м 3 /м 3
Избыток кислорода в уходящих газах a уг ---
Объем воздуха теоретический V° в м 3 /м 3
Объем сухих газов V сг м 3 /м 3
Объем окиси углерода в уходящих газах CO %
Теплота сгорания СО Q СО МДж/м 3
Объем водорода в уходящих газах Н 2 %
Теплота сгорания Н 2 Q Н 2 МДж/м 3
Объем метана в уходящих газах CH 4 %
Теплота сгорания СН 4 Q CH 4 МДж/м 3
Потеря теплоты от химической неполноты сгорания Q 3 МДж/м 3
q 5 %
Потеря теплоты от наружного охлаждения Q 5 МДж/м 3

Окончание табл. 26

Таблица 27

КПД котла брутто и нетто

Наименование параметра Обозн. Ед. измер. Результаты в опытах
№1 №2 №3 Среднее
Расход эл. энергии на привод питательных насосов N п.н
Расход эл. энергии на привод дутьевых вентиляторов N д.в
Расход эл. энергии на привод дымососов N д.с
КПД питательных насосов h пн
КПД дутьевых вентиляторов h дв
КПД дымососов h дм
Относительный расход эл. энергии на собственные нужды q эл
КПД котла нетто h нетто к %

Анализ результатов лабораторной работы

Полученное в результате выполнения работы значение h бр к по методу прямого и обратного балансов необходимо сравнить с паспортной величиной, равной 92,1%.

Анализируя влияние на КПД котла величины потерь теплоты с уходящими газами Q 2 , необходимо отметить, что повышение КПД может быть обеспечено снижением температуры уходящих газов и уменьшением избытка воздуха в котле. Вместе с тем, снижение температуры газов до температуры точки росы приведет к конденсации водяных паров и низкотемпературной коррозии поверхностей нагрева. Снижение величины коэффициента избытка воздуха в топке может привести к недожогу топлива и увеличению потерь Q 3 . Поэтому температура и избыток воздуха должны быть не ниже некоторых значений.

Затем необходимо проанализировать влияние на экономичность работы котла его нагрузки, с ростом которой увеличиваются потери с уходящими газами и снижаются потери Q 3 и Q 5 .

В отчете по лабораторной работе должно быть сделано заключение об уровне экономичности котла.

Контрольные вопросы

  1. По каким показателям работы котла может быть сделано заключение об экономичности его работы?
  2. Что такое тепловой баланс котла? Какими методами он может составляться?
  3. Что понимается под КПД котла брутто и нетто?
  4. Какие потери теплоты увеличиваются при работе котла?
  5. Каким образом можно увеличить q 2 ?
  6. Какие параметры оказывают существенное влияние на величину КПД котла?

Ключевые слова: тепловой баланс котла, КПД котла брутто и нетто, коррозия поверхностей нагрева, коэффициент избытка воздуха, нагрузка котла, потери теплоты, уходящие газы, химическая неполнота сгорания топлива, экономичность работы котла.

ЗАКЛЮЧЕНИЕ

В процессе выполнения лабораторного практикума по курсу котельных установок и парогенераторов студенты знакомятся с методами определения теплоты сгорания жидкого топлива, влажности, выхода летучих и зольности твердого топлива, конструкцией парового котла ДЕ-10-14ГМ и экспериментальным путём исследуют происходящие в нём тепловые процессы.

Будущие специалисты изучают методики испытаний котельного оборудования и получают необходимые практические навыки, необходимые при определении тепловых характеристик топки, составлении теплового баланса котла, измерении его КПД, а также составлении солевого баланса котла и определении величины оптимальной продувки.

Библиографический список

1. Хлебников В.А. Испытания оборудования котельной установки:
Лабораторный практикум. - Йошкар-Ола: МарГТУ, 2005.

2. Сидельковский Л.Н., Юренев В.Н. Котельные установки промышленных предприятий: Учебник для вузов. – М.: Энергоатомиздат, 1988.

3. Трембовля В.И., Фингер Е.Д., Авдеева А.А. Теплотехнические испытания котельных установок. - М.: Энергоатомиздат, 1991.

4. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара: Справочник. Рек. Гос. службой стандартных справочных данных. ГСССД Р-776-98. – М.: Изд-во МЭИ, 1999.

5. Липов Ю.М., Третьяков Ю.М. Котельные установки и парогенераторы. – Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2005.

6. Липов Ю.М., Самойлов Ю.Ф., Третьяков Ю.М., Смирнов О.К. Испытания оборудования котельного отделения ТЭЦ МЭИ. Лабораторный практикум: Учебное пособие по курсу «Котельные установки и парогенераторы». – М.: Изд-во МЭИ, 2000.

7. Роддатис К.Ф., Полтарецкий А.Н. Справочник по котельным установкам малой производительности/Под ред. К.Ф.Роддатиса. – М.: Энергоатомиздат, 1989.

8. Янкелевич В.И. Наладка газомазутных промышленных котельных. – М.: Энергоатомиздат, 1988.

9. Лабораторные работы по курсам «Теплогенерирующие процессы и установки», «Котельные установки промышленных предприятий»/ Сост. Л.М.Любимова, Л.Н.Сидельковский, Д.Л.Славин, Б.А.Соколов и др./ Под ред. Л.Н.Сидельковского. – М.: Изд-во МЭИ, 1998.

10. Тепловой расчет котельных агрегатов (Нормативный метод)/Под ред. Н.В.Кузнецова. – М.:Энергия, 1973.

11. СНиП 2.04.14-88. Котельные установки/Госстрой России. – М.: ЦИТП Госстроя России, 1988.


Учебное издание

ХЛЕБНИКОВ Валерий Алексеевич

КОТЕЛЬНЫЕ УСТАНОВКИ
И ПАРОГЕНЕРАТОРЫ

Лабораторный практикум

Редактор А.С. Емельянова

Компьютерный набор В.В.Хлебников

Компьютерная верстка В.В.Хлебников

Подписано в печать 16.02.08. Формат 60х84/16.

Бумага офсетная. Печать офсетная.

Усл.п.л. 4,4. Уч.изд.л. 3,5. Тираж 80 экз.

Заказ № 3793. С – 32

Марийский государственный технический университет

424000 Йошкар-Ола, пл. Ленина, 3

Редакционно-издательский центр

Марийского государственного технического университета

424006 Йошкар-Ола, ул. Панфилова, 17


В 2020 г. планируется выработать 1720-1820 млн. Гкал.

Миллиграмм-эквивалентом называется количество вещества в миллиграммах, численно равное отношению его молекулярной массы к валентности в данном соединении.

Тепловой баланс котельного агрегата устанавливает равенство между поступающим в агрегат количеством теплоты и его расходом. На основании теплового баланса определяется расход топлива и вычисляется коэффициент полезного действия, эффективность работы котельного агрегата.

В котельном агрегате химически связанная энергия топлива в процессе горения преобразуется в физическую теплоту горючих продуктов сгорания. Эта теплота расходуется на нагревания воды. Вследствие неизбежных потерь при передаче теплоты и преобразования энергии вырабатываемый продукт (вода) воспринимает только часть теплоты. Другую часть составляют потери, которые зависят от эффективности организации процессов преобразования энергии (сжигания топлива) и передачи теплоты вырабатываемому продукту.

Уравнение теплового баланса для установившегося теплового состояния агрегата:

(37)
(38)

где – располагаемая теплота, ;

– полезно использованная теплота, ;

Суммарные потери, ;

– потери теплоты с уходящими газами, ;

– потери теплоты от химического недожога, ;

– потери теплоты от механической неполноты сгорания, ;

– потери теплоты в окружающую среду, ;

– потери теплоты с физической теплотой шлаков .

Левая приходная часть уравнения теплового баланса (38) является суммой следующих величин:

(39)

где – теплота, вносимая в котлоагрегат с воздухом на 1 топлива; эта теплота учитывается тогда, когда воздух нагревается вне котельного агрегата (например, в паровых или электрических калориферах, устанавливаемых до воздухоподогревателя); если воздух нагревается только в воздухонагревателе, то, теплота не учитывается, так как она возвращается в топку агрегата;

– теплота, вносимая с паром для распыления мазута (форсуночный пар);

– физическая теплота 1 топлива.

Т.к. предварительный подогрев воздуха и топлива отсутствует и пар для распыления топлива не используется, то формула (39) принимает вид:

Коэффициентом полезного действия водогрейного котла называют отношение полезной теплоты, израсходованной на выработку горячей воды, к располагаемой теплоте котла. Не вся полезная теплота, выработанная котельным агрегатом, направляется потребителям, часть теплоты расходуется на собственные нужды. С учетом этого различают КПД котла по выработанной теплоте (КПД-брутто) и по отпущенной теплоте (КПД-нетто).По разности выработанной и отпущенной теплоты определяется расход на собственные нужды.

В итоге КПД-брутто котла характеризует степень его технического совершенства, а КПД-нетто – коммерческую экономичность. КПД-брутто котельного агрегата определяется по уравнению прямого баланса:

где – относительные потери теплоты с уходящими газами, от химической неполноты сгорания топлива, от наружного охлаждения.

Относительные потери теплоты с уходящими газами определяются по формуле:

– потери теплоты от механической неполноты сгорания (учитывается только при сжигании твердого и жидкого топлива), %

6.1.4 Расчет количества топлива, сжигаемого в котельном агрегате

Общий расчет топлива, подаваемого в топку котельного агрегата:

где – расход воды через котельный агрегат, кг/с;

– энтальпия горячей и холодной воды (на выходе и входе водогрейного котла) , кДж/кг

Таким образом,

Список использованных источников

1. Строительная климатология. СНиП 23-01-99.

2. Котельные установки. СНиП II-35-76.

3. Энергетическая эффективность жилых и общественных зданий. Нормативы по энергопотреблению и теплозащите. ТСН 23-341-2002 Рязанской области Администрация Рязанской области г. Рязань – 2002.

4. Тепловые сети. СНиП 2.04.07-86.

5. Тепловой расчет котельных установок. Методические указания для выполнения расчетной работы №1. Мордовский государственный университет им.Н.П.Орагева. Саранск, 2005.

6. Эстеркин Р.И. Котельные установки. Курсовое и дипломное проектирование: Учеб. пособ. Для техникумов. – Л.: Энергоатомиздат. Ленингр. Отд-ние, 1989.

7. Выбор и расчет теплообменников. Учебное пособие. Пензенский государственный университет. Пенза, 2001.

8. Роддатис К.Ф. Котельные установки. Учебное пособие для студентов неэнергетических специальностей вузов. – М.: «Энергия», 1977.

9. Роддатис К.Ф., Полтарецкий А.Н. Справочник по котельным установкам малой производительности. – М.: Энергоатомиздат, 1989.

10. Бузников Е.Ф., Роддатис К.Ф., Берзиньш Э.Я.. Производственные и отопительные котельные 2-е изд. – М.: Энергоатомиздат, 1984.

11. Справочник эксплуатационника газифицированных котельных. Л.Я.Порецкий, Р.Р.Рыбаков, Е.Б.Столпнер и др. – 2-е изд., перераб. и доб. - Л.: Недра,1988.

12. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара: Справочник. Рек. Гос. службой стандартных справочных данных. ГСССД Р-776-98 – М.: Издательство МЭИ. 1999.

13. Сайт компании «Виссманн» www.viessmann.ru

14. Сайт компании «Grundfos» www.grundfos.ru

15. Сайт компании «Ридан» www.ridan.ru

ПРИЛОЖЕНИЕ А

Таблица А.1 – Единицы измерения энергии

Таблица А.2 –Характеристика некоторых видов топлива


Таблица 1- Климатические параметры холодного периода года

Город Температура воздуха наиболее холодных суток, °С, обеспеченностью Температура воздуха наиболее холодной пятидневки, °С, обеспеченностью Температура воздуха, °С, обеспеченностью 0,94 Абсолютная минимальная температура воздуха, °С Средняя суточная амплитуда температуры воздуха наиболее холодного месяца, °С Продолжительность, сут, и средняя температура воздуха, °С, периода со средней суточной температурой воздуха Средняя месячная относительная влажность воздуха наиболее холодного месяца, % Средняя месячная относительная влажность воздуха в 15 ч. наиболее холодного месяца, %. Количество осадков за ноябрь-март, мм Преобладающее направление ветра за декабрь-февраль Максимальная из средних скоростей ветра по румбам за январь, м/с Средняя скорость ветра, м/с, за период со средней суточной температ урой воздуха £ 8 °С
£ 0°С £ 8°С £ 10°С
0,98 0,92 0,98 0,92 продолжительность средняя температура продолжительность средняя температура продолжительность средняя температура
Москва -36 -32 -30 -28 -15 -42 6,5 -6,5 -3,1 -2,2 ЮЗ 4,9 3,8
Нижний Новгород -38 -34 -34 -31 -17 -41 6,1 -7,5 -4,1 -3,2 ЮЗ 5,1 3,7
Оренбург -37 -36 -34 -31 -20 -43 8,1 -9,6 -6,3 -5,4 В 5,5 4,5
Орел -35 -31 -30 -26 -15 -39 6,5 -6 -2,7 -1,8 ЮЗ 6,5 4,8
Пермь -42 -39 -38 -35 -20 -47 7,1 -9,5 -5,9 -4,9 Ю 5,2 3,3
Екатеринбург -42 -40 -38 -35 -20 -47 7,1 -9,7 -6 -5,3 З 3,7
Саратов -34 -33 -30 -27 -16 -37 6,9 -7,5 -4,3 -3,4 СЗ 5,6 4,4
Казань -41 -36 -36 -32 -18 -47 6,8 -8,7 -5,2 -4,3 Ю 5,7 4,3
Тула -35 -31 -30 -27 -15 -42 6,8 -6,4 -3 -2,1 ЮВ 4,9
Ижевск -41 -38 -38 -34 -20 -48 6,9 -9,2 -5,6 -4,7 ЮЗ 4,8

Примечание - Абсолютная минимальная температура воздуха выбрана из ряда наблюдений за период 1881-1985 гг.; в СНиП 2.01.01-82 "Строительная климатология и геофизика" абсолютная минимальная температура воздуха для отдельных пунктов определялась методом приведения.

КПД котельного агрегата называется отношение полезной теплоты, пошедшей на выработку пара (горячей воды), к располагаемой теплоте (теплоте, поступившей в котельный агрегат). Не вся полезная теплота, выработанная котлом, направляется потребителям, часть ее расходуется на собственные нужды (привод насосов, тягодутьевых устройств, расходы теплоты на подогрев воды вне котла, ее деаэрации и др.). в связи с этим различают КПД агрегата по выработанной теплоте (КПД брутто) и КПД агрегата по теплоте, отпущенной потребителю (КПД нетто).

КПД брутто может быть определен по формуле:

КПД нетто определяется по обратному балансу как:

Современные методы повышения КПД котельной установки.

Увеличить мощность парового котла можно, принимая следующие меры:

§ ограничивая объём воздуха, находящегося в камере горения, установка перегородок;

§ используя системы утилизации тепла отходящих газов;

§ используя конденсационные или традиционные экономайзеры (нагреватели питающей воды);

§ выполнив теплоизоляцию стенок котла;

§ проведя предварительный нагрев нагнетаемого в камеру горения воздуха;

§ регулярно продувая котёл;

§ наладив рекуперацию («улавливание») конденсата.

Методы повышения КПД теплового цикла ТЭС.

Для повышения КПД используется технологическая схема комбинированного производства электроэнергии и тепла, отпускаемого потребителям для производственных нужд или для теплофикации и горячего водоснабжения. С этой целью в турбинах производится отбор пара необходимых параметров после соответствующих ступеней. При этом через конденсатор проходит гораздо меньше пара, что позволяет повысить КПД до 60…65 %.

Повышение КПД может быть достигнуто и за счет подъема параметров острого пара. По оценкам специалистов повышение температуры пара до 600 о С позволит увеличить КПД примерно на 5 %, а подъем давления до 30 МПа – на 3…4%. Правда, для этого потребуется металл с более высокими показателями прочности.

Чем определяется оптимальность режима работы парового котла.

Температура газов в поворотной камере, давление воздуха за воздухоподогревателем, сопротивление воздухоподогревателя, расход воздуха на мельницы.

Влияние режимов работы вспомогательного оборудования на экономичность работы котельной установки.

Для нормальной и бесперебойной работы котельных установок требуется, чтобы топливо к ним подавалось непрерывно. Процесс подачи топлива складывается из двух основных этапов: 1) подача топлива от места его добычи на склады, расположенные вблизи котельной; 2) подача топлива со складов непосредственно в котельные помещения.

Любые нарушения режимов работы вспомогательного оборудования парового котла, такие как системы пылеприготовления, подготовки воды, тягодутьевые машины и т.д. оказывают существенное влияние выработку паровым котлом пара требуемых параметров.

Влияние шлакования поверхностей нагрева на режимы работы котельного агрегата.

Интенсивное загрязнение или шлакование поверхностей нагрева влекут за собой подъем температуры газов на выходе из топки и, как следствие этого, дополнительное загрязнение (шлакование) последующих поверхностей нагрева котла, появление повышенных неравномерностей по температуре и скорости газов в отдельных пакетах и змеевиках, повышение температуры перегретого пара и металла труб пароперегревателя, повышение сопротивления газового тракта котла и снижение его экономических показателей.

Современные технологии сжигания топлива.

Вихревое сжигание топлива, слоевое сжигание.

Кислородное топливо. Основной принцип состоит в том, что из воздуха выделяется кислород, который смешивается с угольной пылью и сжигается. При сжигании угля в чистом кислороде, не происходит образование оксидов азота. После нескольких ступеней очистки в д.г. остается только СО2.

Среди основных технологий сжигания топлива следует выделить низкотемпературную технологию сжигания, технологию с кольцевой топкой, использование водоугольного топлива и ПГУ с внутрицикловой газификацией угля.

За счёт чего в конденсаторе турбин увеличивается КПД ТЭС

Коэффициент полезного действия турбины можно увеличить, повысив температуру и давление пара, поступающего в турбину, или снизив температуру и давление насыщенного пара на выходе из турбины. Последнее достигается путем конденсации выходящего из турбины пара, которая происходит в установленном для этой цели конденсаторе при подаче в него охлаждающей воды.

Тепловой баланс парового котла. КПД котла

Общее уравнение теплового баланса котельного агрегата

Соотношение, связывающее приход и расход теплоты в теплогенераторе, составляет его тепловой баланс. Целями составления теплового баланса котельного агрегата является определение всех приходных и расходных статей баланса; расчёт КПД котельного агрегата, анализ расходных статей баланса с целью установления причин ухудшения работы котельного агрегата.

В котельном агрегате при сжигании топлива происходит преобразование химической энергии топлива в тепловую энергию продуктов сгорания. Выделившаяся теплота топлива расходуется на выработку полезной теплоты, содержащейся в паре или горячей воде, и на покрытие тепловых потерь.

В соответствии с законом сохранения энергии между приходом и расходом теплоты в котельном агрегате должно существовать равенство, т. е.

Для котельных установок тепловой баланс составляют на 1кг твёрдого или жидкого топлива или 1м 3 газа, находящегося при нормальных условиях (). Статьи прихода и расхода в уравнении теплового баланса имеют размерность МДж/м 3 для газообразного и МДж/кг для твёрдого и жидкого топлива.

Поступившая в котельный агрегат теплота от сжигания топлива называется также располагаемой теплотой, её обозначают .В общем случае приходная часть теплового баланса записывается в виде:

где низшая теплота сгорания твёрдого или жидкого топлива на рабочую массу, МДж/кг;

Низшая теплота сгорания газообразного топлива на сухую массу, МДж/м 3 ;

Физическая теплота топлива;

Физическая теплота воздуха;

Теплота, вносимая в топку котла с паром.

Рассмотрим составляющие приходной части теплового баланса. В расчётах принимается низшая рабочая теплота сгорания в том случае, если температура продуктов сгорания, покидающих котёл, выше температуры конденсации водяного пара (обычно t г = 110…120 0 С). При охлаждении же продуктов сгорания до температуры, при которой на поверхности нагрева возможна конденсация водяных паров, расчёты следует выполнять с учётом высшей теплоты сгорания топлива

Физическая теплота топлива равна:

где с т – удельная теплоёмкость топлива, для мазута и для газа;

t т – температура топлива, 0 С.

При поступлении в котёл твёрдое топливо имеет обычно малую температуру, приближающуюся к нулю, поэтому Q ф.т. невелика по значению, и ей можно пренебречь.

Мазут (жидкое топливо) для снижения вязкости и улучшения распыления поступает в топку подогретым до температуры 80…120 0 С, поэтому его физическая теплота учитывается при выполнении расчётов. При этом теплоёмкость мазута может быть определена по формуле:

Учёт Q ф.т. проводится только при сжигании газообразного топлива с низкой теплотой сгорания (например, доменного газа) при условии его подогрева (до 200…300 0 С). При сжигании газообразного топлива с высокой теплотой сгорания (например, природного газа) имеет место, повышенное соотношение массы воздуха и газа (примерно 10 1). В этом случае топливо – газ обычно не подогревают.

Физическая теплота воздуха Q ф.в. учитывается лишь при подогреве его вне котла за счёт постороннего источника (например, в паровом калорифере или в автономном подогревателе при сжигании в нём дополнительного топлива). В этом случае теплота, внесённая воздухом равна:

где отношение количества воздуха на входе в котёл (воздухоподогреватель) к теоретически необходимому;

Энтальпия теоретически необходимого подогретого перед воздушным подогревателем воздуха, :

,

здесь температура подогретого воздуха перед воздухоподогревателем котельного агрегата, 0 С;

Энтальпия теоретически необходимого холодного воздуха, :

Теплота, вносимая в топку котла с паром при паровом распылении мазута учитывается в виде формулы:

где G п – расход пара, кг на 1 кг топлива (при паровом распыливании мазута G п = 0,3…0,35 кг/кг);

h п – энтальпия пара, МДж/кг;

2,51 –примерное значение энтальпии водяного пара в продуктах сгорания, покидающих котельный агрегат, МДж/кг.

При отсутствии подогрева топлива и воздуха от посторонних источников располагаемая теплота будет равна:

Расходная часть теплового баланса включает в себя полезно используемую теплоту Q пол в котельном агрегате, т.е. теплоту, затраченную на выработку пара (или горячей воды), и разные тепловые потери , т.е.

где Q у.г. – потери теплоты с уходящими газами;

Q х.н. , Q м.н. – потери теплоты от химической и механической неполноты сгорания топлива;

Q н.о. – потери теплоты от наружного охлаждения внешних ограждений котла;

Q ф.ш. – потеря с физической теплотой шлаков;

Q акк. – расход (знак «+») и приход (знак «-») теплоты, связанный с неустановившимся тепловым режимом работы котла. При установившемся тепловом состоянии Q акк. = 0.

Итак общее уравнение теплового баланса котельного агрегата при установившемся тепловом режиме можно записать в виде:

Если обе части представленного уравнения разделить на и умножить на 100%, то получим:

где слагаемые расходной части теплового баланса, %.

3.1 Потери теплоты с уходящими газами

Потеря теплоты с уходящими газами возникает из-за того, что физическая теплота (энтальпия) газов покидающих котёл при температуре t у.г. , превышает физическую теплоту поступающих в котёл воздуха α у.г. и топлива с т t т. Разница между энтальпией уходящих газов и теплотой, поступившей в котёл с воздухом из окружающей среды α у.г. , представляет собой потерю теплоты с уходящими газами, МДж/кг или (МДж/м 3):

.

Потеря теплоты с уходящими газами занимает обычно основное место среди тепловых потерь котла, составляя 5…12% располагаемой теплоты топлива. Эти потери теплоты зависят от температуры, объёма и состава продуктов сгорания, которые, в свою очередь, зависит от балластных составляющих топлива:

Отношение , характеризующее качество топлива, показывает относительный выход газообразных продуктов сгорания (при α = 1) на единицу теплоты сгорания топлива и зависит от содержания в нём балластных составляющих (влаги W р и золы А р для твердого и жидкого топлива, азота N 2 , диоксида углерода СО 2 и кислорода О 2 для газообразного топлива). С увеличением содержания в топливе балластных составляющих, и, следовательно, , потеря теплоты с уходящими газами соответственно возрастает.

Одним из возможных направлений снижения потери теплоты с уходящими газами является уменьшение коэффициента избытка воздуха в уходящих газах α у.г, который зависит от коэффициента расхода воздуха в топке и балластного воздуха, присосанного в газоходы котла, находящиеся обычно под разряжением:



Возможность уменьшения α , зависит от вида топлива, способа его сжигания, типа горелок и толочного устройства. При благоприятных условиях смешения топлива и воздуха избыток воздуха , необходимый для горения, может быть уменьшен. При сжигании газообразного топлива коэффициент избытка воздуха принимают 1,1, при сжигании мазута =1,1…1,15.

Присосы воздуха по газовому тракту котла в пределе могут быть сведены нулю. Однако полное уплотнение мест прохода труб через обмуровку, уплотнение лючков и гляделок затруднено и практически =0,15..0,3.

Балластный воздух в продуктах сгорания помимо увеличения потери теплоты Q у.г. приводит также к дополнительным затратам электроэнергии на дымосос.

Другим важнейшим фактором, влияющим на величину Q у.г., является температура уходящих газов t у.г. . Её снижение достигается установкой в хвостовой части котла теплоиспользующих элементов (экономайзера, воздушного подогревателя). Чем ниже температура уходящих газов и, соответственно, меньше разность температур между газами и нагреваемым рабочим телом (например, воздухом), тем большая площадь поверхности нагрева требуется для охлаждения продуктов сгорания.

Повышение же температуры уходящих газов приводит к увеличению потери с Q у.г. и, следовательно, к дополнительным затратам топлива на выработку одного и того же количества пара или горячей воды. В связи с этим оптимальная температура t у.г. определяется на основе технико-экономических расчётов при сопоставлении готовых капитальных затрат на сооружение поверхности нагрева и затрат на топливо (рис.3.).

Кроме того, при работе котла поверхности нагрева могут загрязняться сажей и золой топлива. Это приводит к ухудшению теплообмена продуктов сгорания с поверхностью нагрева. При этом для сохранения заданной паропроизводительности приходится идти на увеличение расхода топлива. Занос поверхностей нагрева приводит также к увеличению сопротивления газового тракта котла. В связи с этим для обеспечения нормальной эксплуатации агрегата требуется систематическая очистка его поверхностей нагрева.

3.2Потери теплоты от химической неполноты сгорания

Потеря теплоты от химической неполноты сгорания (химический недожог) возникает при неполном сгорании топлива в пределах топочной камеры и появления в продуктах сгорания горючих газообразных составляющих – СО, H 2 , СH 4 , C m H n и др. догорание же этих горючих газов за пределами топки практически невозможно из-за относительно низкой их температуры.

Причинами появления химической неполноты сгорания могут быть:

· общий недостаток количества воздуха;

· плохое смесеобразование, особенно на начальных стадиях горения топлива;

· низкая температура в топочной камере, особенно в зоне догорания топлива;

· недостаточное время пребывания топлива в пределах топочной камеры, в течении которого химическая реакция горения не может завершиться полностью.

При достаточном для полного сгорания топлива количестве воздуха и хорошем смесеобразовании потери зависят от объёмной плотности тепловыделения в топке, МВт/м 3:

Где В – расход топлива, кг/с;

V т – объём топки, м 3 .

Рис. 14.9 Зависимость потери теплоты от химической неполноты сгорания q х.н , %, от объемной плотности тепловыделения в топке q v , МВт/м 3 . Характер зависимости представлен на рис.4. . В области низких значений (левая часть кривой), т.е. при малых расходах топлива В, потери увеличиваются в связи со снижением температурного уровня в топочной камере. Увеличение объёмной плотности тепловыделения (с увеличением расхода топлива) приводит к повышению температурного уровня в топке и снижению

Однако по достижении определённого уровня при дальнейшем увеличении расхода топлива (правая часть кривой) потери вновь начинают возрастать, что связано с уменьшением времени пребывания газов в объёме топки и невозможностью в связи с этим завершения реакции горения.

Оптимальное значение , при котором потери минимальны, зависит от вида топлива, способа его сжигания и конструкции топки. Для современных топочных устройств потеря теплоты от химической неполноты сгорания составляет 0…2% при .

При обработке материалов испытания котельной установки потерю теплоты от химической неполноты сгорания определяют по формуле:

Коэффициент полезного действия котельного агрегата

Коэффициентом полезного действия котельного агрегата называют отношение полезной теплоты, израсходованной на выработку пара (или горячей воды), к располагаемой теплоте котельного агрегата. Однако не вся полезная теплота, выработанная котельным агрегатом, направляется потребителям, часть теплоты расходуется на собственные нужды. С учётом этого различают КПД котельного агрегата по выработанной теплоте (КПД – брутто) и по отпущенной теплоте (КПД – нетто).

По разности выработанной и отпущенной теплот определяется расход на собственные нужды. На собственные нужды расходуется не только теплота, но и электрическая энергия (например, на привод дымососа, вентилятора, питательных насосов, механизмов топливоподачи), т.е. расход на собственные нужды включает в себя расход всех видов энергии, затраченных на производство пара или горячей воды.

Итак, КПД – брутто котельного агрегата характеризует степень его технического совершенства, а КПД – нетто – коммерческую экономичность.

КПД – брутто котельного агрегата можно определить или по уравнению прямого баланса или по уравнению обратного баланса.

По уравнению прямого баланса:

Например, при производстве водяного пара полезно используемая теплота равна (см. 2 вопрос ) :

Тогда

Из представленного выражения можно получить формулу для определения необходимого расхода топлива, кг/с (м 3 /с):

По уравнению обратного баланса:

Определение КПД – брутто по уравнению прямого баланса проводят преимущественно при отчётности за отдельный период (декада, месяц), а по уравнению обратного баланса – при испытании котельных агрегатов. Вычисление КПД по обратному балансу значительно точнее, так как погрешности при измерении потерь теплоты меньше, чем при определении расхода топлива.