Деаэратор атмосферный смешивающего типа схема подключения. Деаэратор атмосферный да

Отопительные котлы чаще всего изготавливаются из стали. Проходящая через них вода в своем составе имеет кислород и углекислый газ. Оба эти элемента оказывают на металлические конструкции котла крайне негативное влияние. Постоянный контакт стали с этими газами неизбежно приводит к ее ржавлению. Для того чтобы исправить ситуацию и продлить срок службы оборудования, в котельных включаются специальная установка — деаэратор. Что это такое? Об этом и поговорим далее в статье.

Определение

Деаэратором называется специальное оборудование, предназначенное для удаления кислорода из теплоносителя отопительных систем путем подогревания последнего паром. Таким образом, помимо очищающей функции, устройства этого типа выполняют также термическую. Одна и та же установка деаэрации может применяться для подогрева и очистки как питательной, так и подпиточной воды.

Особенности конструкции

Относительная простота конструкции — это то, что отличает деаэратор. Что это такое, мы с вами выяснили. Теперь давайте посмотрим, как устроено это оборудование. Представляет собой деаэратор котельной цистерну (БДА) со смонтированной на ней вертикальной колонной (КДА), установленную на опорах. Дополнительным элементом оборудования этого типа является гидравлическая система, защищающая его от превышения давления. Колонка приваривается к баку без фланца — напрямую.

На горизонтальном баке деаэратора смонтированы входной и выходной патрубки для подключения магистралей подачи и отвода среды. Снизу установлены сливы. Еще одним элементом конструкции является предназначенный для сбора дегазованной воды сборный бак. Расположен он под днищем БДА.

Такого оборудования, как деаэратор, схема которого представлена ниже, обычно состоит из двух гидрозатворов. Один из них защищает устройство от любого превышения допустимого давления, а второй — от опасного. Также в конструкцию гидравлической системы деаэратора входит расширительный бачок. Выпары из деаэратора поступают в специальный охладитель, имеющий вид горизонтального цилиндра.

Конструкция колонны

Колонна представляет собой цилиндрическую обечайку с дном эллиптической формы. Как и на баке, на ней имеются патрубки для подвода и отвода среды. Внутри колонны установлены специальные тарелки с отверстиями, через которые проходит вода. Такая конструкция позволяет значительно увеличить площадь соприкосновения среды и пара, а следовательно, производить нагрев с максимальной скоростью.

Виды оборудования

В современных котельных может устанавливаться деаэратор воды:

    вакуумный;

    атмосферный.

В первом типе деаэраторов удаление газов из воды производится в вакууме. В конструкцию таких установок дополнительно включается паро- или водоструйный эжектор. Последняя разновидность узлов чаще всего используется в системах с котлами средней или малой мощности. Вместо эжекторов для создания вакуума могут применяться специальные насосы. Некоторым недостатком такого оборудования, как вакуумный деаэратор, является то, что пар из него нужно удалять принудительно, в то время как из атмосферных он выходит естественным путем — под давлением.

Помимо двух рассмотренных видов деаэраторов, в котельных могут устанавливаться устройства повышенного давления. Работают они при 0.6-0.8 МПа. Иногда в тепловую схему котельных также включается оборудование пониженного давления.

Сфера использования

Где же может применяться деаэратор? Что это такое, вы теперь знаете. Поскольку такое устройство предназначено для дегазации рабочей среды, применяется оно в основном там, где есть нагревательное оборудование, изготовленное из стали.

Чаще всего деаэраторы используются в системах отопления и ГВС. Котельные с водогрейными котлами обычно оснащаются установками вакуумного типа. Также в таких схемах могут использоваться деаэраторы атмосферные. Установки пониженного и повышенного давления применяются по большей мере в системах, функционирующих благодаря работе парового котла. Первая разновидность (на 0.025-0.2 МПа) монтируется в не слишком мощных системах, рассчитанных на малое количество потребителей. используются в тепловых схемах с котлами, подающими большое количество пара.

Тарельчатый деаэратор: принцип работы

Схема очистки газов в деаэраторах реализуется двухступенчатая: струйная (в колонне) и барботажная (в баке). Помимо этого, в систему включается затопленное барботажное устройство. Вода подается в колонну, где обрабатывается паром. Далее она стекает в бак, выдерживается в нем и отводится обратно в систему. Пар первоначально подается в БДА. После вентиляции внутреннего объема он поступает в колонну. Проходя через отверстия барботажной тарелки, пар подогревает воду до температуры насыщения.

Струйным методом из воды удаляются все газы. Одновременно с этим происходит конденсация пара. Его остатки смешиваются с выделившимся из среды газом и отводятся в охладитель. Конденсат от выпара сливается в дренажную емкость. Во время отстаивания воды в баке из нее выходят остаточные мелкие пузырьки газа. Отводится вода в сборный бак. Иногда горизонтальная емкость используется только для отстаивания. В таких установках обе ступени дегазации размещаются в колонне.

Деаэрация подпиточной воды

Теплоноситель в системе отопления циркулирует непрерывно. Но объем его со временем, в результате утечек, все же понемногу уменьшается. Поэтому в систему отопления подается подпиточная вода. Как и основная, она должна проходить процесс деаэрации. Первоначально вода поступает в подогреватель, а затем проходит через фильтры химической очистки. Далее, как и питательная, она попадает в колонну деаэратора. Освобожденная от перетекает к Последний направляет ее во всасывающий коллектор или в бак хранения.

Химическая деаэрация

Таким образом, ответ на вопрос о том, что такое деаэратор котельной, прост. Это оборудование, предназначенное для кипячения воды горячим паром с целью удаления кислорода. Однако иногда газы из теплоносителя в таких установках удаляются не полностью. В этом случае для дополнительной очистки в воду котельных могут добавляться разного рода реагенты, предназначенные для связывания кислорода. Это может быть, к примеру, В данном случае для качественной деаэрации воды требуется ее подогрев. Иначе химические реакции будут происходить слишком медленно. Также для ускорения процесса связывания кислорода могут использоваться разного рода катализаторы. Иногда воду деаэрируют и путем пропускания через слой обычных металлических стружек. Последние в этом случае быстро окисляются.

Особенности монтажа

Устройство деаэратора не слишком сложное. Однако его монтаж должен производиться с точным соблюдением всех положенных технологий. При установке такого оборудования руководствуются прежде всего приложенными к нему производителем чертежами и проектом котельной. Перед началом монтажа производится осмотр установки и ее расконсервация. Обнаруженные дефекты устраняются. Собственно сама процедура установки включает в себя следующие этапы:

    бак монтируется на фундаменте;

    к нему приваривается водосливная горловина;

    нижняя часть колонки обрезается по наружному диаметру;

    колонна устанавливается на бак (при этом закрепленные внутри нее тарелки должны располагаться строго горизонтально);

    колонна приваривается к баку;

    монтируются охладитель выпара и гидрозатвор;

    в соответствии с чертежами производится подключение магистралей;

    устанавливается запорная и регулирующая арматура;

    проводятся гидравлические испытания оборудования.

Распылительные установки

Рассмотренные выше конструкции называются тарельчатыми. Существуют также распылительные деаэраторы. Устройства этого типа используются реже и также представляют собой горизонтальный накопительный бак большой емкости. Отсутствие колонны — это то, что отличает такой деаэратор. Принцип работы его также немного другой. Пар в таких установках поступает снизу - из расположенной в баке горизонтально гребенки. Сама емкость разделена на зону подогрева и деаэрации. Питающая вода котла поступает в первый отсек из расположенного сверху распылителя. Здесь она разогревается до точки кипения и поступает в зону деаэрации, где паром из нее удаляется кислород.

Итак, вот и все, что можно сказать о таком устройстве, как деаэратор. Что это такое, надеемся, вы поняли, так как мы дали достаточно подробный ответ на этот вопрос. Так называют установку, обеспечивающую длительную работу водогрейных и паровых котлов. Выбор разновидности и способов монтажа этого оборудования осуществляется в соответствии с техническими характеристиками нагревательного оборудования и проектом котельной.

Деаэраторы этого типа имею производительность от 5 до 300 т/ч деаэрированной воды.

Основными устройствами деаэратора являются деаэрационная колонка 7 и бак - аккумулятор 12, в которых производится двух ступенчатая дегазация воды (рис.73).

Вода подается на верхнюю дырчатую тарелку 8 и в виде потока струй стекает с нее на барботажную тарелку 9 с отверстиями. На тарелке с помощью порога переливной перегородки постоянно поддерживается слой воды, через который проходит пар. Нагретая и частично дегазированная вода сливается на сливную дырчатую тарелку 10, которая преобразует поток воды в поток струй. Подогретые паром, который движется навстречу, струи воды поступают в деаэраторный бак 12.

Рис.73. Схема двухступенчатого деаэратора с колонкой типа ДА

производительностью 5 – 100 т/ч:

1 – ввод воды; 2 – охладитель выпара; 3, 6 – выхлоп в атмосферу; 4, 15 – подвод основного и горячих конденсатов; 5 – регулятор уровня; 7 – деаэрационная колонка; 8 – верхняя тарелка; 9 – барботажная тарелка; 10 – сливная тарелка; 11 – подвод пара в барботажное устройство; 13 – предохранительное устройство; 14 – барботажное устройство; 16 - манметр; 17 – регулятор давления; 18 – подвод греющего пара; 19 – отвод деаэрированной воды; 20- охладитель проб воды; 21 – указатель уровня; 22 – дренаж.

Внутри бака в противоположной стороне от колонки расположено барботажное устройство 14. По трубе 11 пар поступает в барботажное устройство, смешивается с водой и нагревает ее до кипения. Так как плотность пароводяной смеси в барботажном устройстве меньше плотности воды, внутри бака устанавливается циркуляция воды, обеспечивающая длительный контакт воды с паром, равномерный нагрев всего ее объема до кипения, высокую степень распада бикарбоната натрия и как следствие всего – качественную дегазацию воды.

Пар в барботажном устройстве не весь превращается в конденсат. Остаток его выходит из воды, смешивается с потоком греющего пара и поступает в колонку. Подача греющего пара в деаэратор производится через регулятор давления 17, который поддерживает давление пара на уровне 0,12 ±0,005 МПа.

В колонке пар, в основном, конденсируется, отдавая свою теплоту воде. Оставшийся пар в смеси с газами выходит из деаэратора и охлаждается в охладителе выпара 2, подогревая поступающую в деаэратор умягченную воду.

Расход умягченной воды регулирует регулятор уровня 5. Визуальный контроль за уровнем производится с помощью указателя уровня, состоящего из двух стекол.

Если в деаэратор поступает конденсат, температура которого выше температуры насыщения в деаэраторе (104 0 С при давлении 0,12 МПа), то он вводится в бак через патрубок 15. Такой конденсат вскипает в баке с образованием некоторого количества пара, что позволяет уменьшить расход греющего пара. Менее горячий конденсат (например, конденсат с сетевых подогревателей с температурой 80 – 85 0 С) вводится на верхнюю тарелку колонки. Низко потенциальный пар, например, из сепаратора непрерывной продувки, вводится только в бак деаэратора.


Предохранительными устройствами атмосферных деаэраторов служат гидравлические затворы (выкидные устройства) высотой около 6 м, подключаемые к паровому пространству бака–аккумулятора. Гидрозатворы являются комбинированными устройствами, что позволяет им защищать деаэратор от чрезмерного избыточного давления, от вакуума и от перелива воды (рис.74).

Рис. 74. Схема комбинированного предохранительного устройства деаэратора:

1 –переливной гидрозатвор; 2 – подвод воды из деаэратора; 3 – расширительный бачок; 4 – слив воды; 5 – выхлоп в атмосферу; 6 – труба для контроля залива; 7 – подвод химочищенной воды для залива; 8 – подвод пара из деаэратора; 9 – гидрозатвор от повышения давления; 10 – дренаж.

Максимальное давление, при котором срабатывает предохранительное устройство, составляет 0,17 МПа. В переливной гидрозатвор вода поступает через переливную воронку, установленную внутри бака на максимально допустимом уровне воды. Для аварийного сброса воды применяются также сигнализаторы уровня с электромагнитным клапаном на дренажной линии.

Иностранная терминология

В значительной части зарубежных систем технических терминов нет единого термина «деаэратор» для описания элемента тепловой схемы станции в виде бака с колонкой; например, в немецком колонка называется Entragaserdom, и понятие «деаэратор» (Entgaser) относится только к ней, а бак запаса питательной воды - Speisewasserbehälter. В последнее время и в некоторых русскоязычных публикациях (о нетрадиционных для наших предприятий конструкциях либо переводных) бак отделяют от деаэратора.

Назначение

  • Защита трубопроводов и оборудования от коррозии .
  • Недопущение воздушных пузырей, нарушающих проходимость гидравлических систем, нормальную работу форсунок и т. д.
  • Защита насосов от кавитации .

Принцип действия

В жидкости газ может присутствовать в виде:

  • собственно растворённых молекул ;
  • микропузырьков (порядка 10 −7 ), образующихся вокруг частиц гидрофобных примесей;
  • в составе соединений, разрушающихся на последующих стадиях технологического цикла с выделением газа (например, NaHCO 3).

В деаэраторе происходит процесс массообмена между двумя фазами : жидкостью и парогазовой смесью. Кинетическое уравнение для концентрации растворённого в жидкости газа при его равновесной (с учётом содержания во второй фазе) концентрации , исходя из закона Генри , выглядит как

,

где - время; f - удельная поверхность раздела фаз; k - скоростной коэффициент, зависящий, в частности, от характерного диффузионного пути , который газ должен преодолеть для выхода из жидкости. Очевидно, для полного удаления газов из жидкости требуется (парциальное давление газа над жидкостью должно стремиться к нулю, то есть выделившиеся газы должны эффективно удаляться и замещаться паром) и бесконечное время протекания процесса. На практике задаются технологически допустимой и экономически целесообразной глубиной дегазации.

В термических деаэраторах, основанных на принципе диффузионной десорбции , жидкость нагревается до кипения ; при этом растворимость газов близка к нулю, образующийся пар (выпар) уносит газы ( снижается), а коэффициент диффузии высок (растёт k ).

В вихревых деаэраторах собственно обогрева жидкости не происходит (это делается в теплообменниках перед ними), а используются гидродинамические эффекты, вызывающие принудительную десорбцию : жидкость разрывается в самых слабых местах - по микропузырькам газа, а затем в вихре фазы разделяются силами инерции под действием разности плотности .

Кроме того, известны небольшие установки, где некоторая степень деаэрации достигается облучением жидкости ультразвуком . При облучении воды ультразвуком интенсивностью порядка 1 Вт /см 2 происходит снижение на 30-50 %, k возрастает примерно в 1000 раз, что приводит к коагуляции пузырьков с последующим выходом из воды под действием Архимедовой силы .

Выпар

Выпар - это смесь выделившихся из воды газов и небольшого количества пара, подлежащая эвакуации из деаэратора. Для нормальной работы деаэраторов распространённых конструкций его расход (по пару по отношению к производительности) должен составлять не менее 1-2 кг/т, а при наличии в исходной воде значительного количества свободной или связанной углекиcлоты - 2-3 кг/т. Чтобы избежать потерь рабочего тела из цикла, выпар на крупных установках конденсируют . Если охладитель выпара, применяемый для этой цели, устанавливается на исходной воде деаэратора (как на рис.), она должна быть достаточно сильно недогрета до температуры насыщения в деаэраторе. При использовании выпара на эжекторах он конденсируется на их холодильниках, и специальный теплообменник не нужен.

Термические деаэраторы

Термические деаэраторы классифицируютя по давлению.

Атмосферные деаэраторы (см. рис.) требуют наименьшей толщины стенок; выпар удаляется из них самотёком под действием небольшого избытка давления над атмосферным. Вакуумные деаэраторы могут работать в условиях, когда на котельной нет пара; однако им требуется специальное устройство для отсоса выпара (вакуумный эжектор) и б́ольшая толщина стенок, к тому же бикарбонаты при низких температурах разлагаются не полностью и есть опасность повторного подсоса воздуха по тракту до насосов . Деаэраторы ДП имеют больш́ую толщину стенок, зато их применение в схеме ТЭС позволяет сократить количество металлоёмких ПВД и использовать выпар как дешёвую рабочую среду для пароструйных эжекторов конденсатора ; деаэрационная приставка конденсатора, в свою очередь, является вакуумным деаэратором.

Как теплообменные аппараты термические деаэраторы могут быть смесительными (обычно, греющие пар и/или вода подаются в объём деаэратора) или поверхностными (греющая среда отделена от нагреваемой поверхностью теплообмена); последнее часто встречается у вакуумных подпиточных деаэраторов теплосетей.

По способу создания поверхности контакта фаз смесительные деаэраторы подразделяются на струйные , плёночные и барботажные (встречаются смешанные конструкции).

В струйных и плёночных деаэраторах основным элементом является колонка деаэратора - устройство, в котором вода стекает сверху вниз в бак, а греющий пар поднимается снизу вверх на выпар, попутно конденсируясь на воде. В небольших деаэраторах колонка может быть интегрирована в один корпус с баком; обычно же она выглядит как вертикальный цилиндр, пристыкованный сверху к горизонтальному баку (цилиндрической ёмкости с эллиптическими либо коническими днищами). Сверху находится водораспределитель, снизу - парораспределитель (например, кольцевая перфорированная труба), между ними - активная зона. Толщина колонки данной производительности определяется допустимой плотностью орошения активной зоны (расходом воды через единицу площади).

В деаэраторах струйного типа вода проходит активную зону в виде струй, на которые она может быть разбита 5-10 дырчатыми тарелками (кольцевые с центральным проходом пара чередуются с круговыми меньшего диаметра , обтекаемыми по краю). Струйные деаэрационные устройства имеют простую конструкцию и малое паровое сопротивление, но интенсивность деаэрации воды сравнительно низка. Колонки струйного типа имеют большую высоту (3,5-4 м и более), что требует высокого расхода металла и неудобно при ремонтных работах. Такие колонки применяются как первая ступень обработки воды в двухступенчатых деаэраторах струйно-барботажного типа.

Также существуют форсуночные (капельные) деаэраторы , где вода разбрызгивается из форсунок в капельном виде; эффективность за счёт измельчения фазы велика, однако работа форсунок ухудшается при засорении и при сниженных расходах, а на преодоление сопротивления сопел уходит очень много электроэнергии .

В деаэраторах с колонками плёночного типа поток воды расчленяется на пленки, обволакивающие насадку-заполнитель, по поверхности которой вода стекает вниз. Применяется насадка двух типов: упорядоченная и неупорядоченная. Упорядоченную насадку выполняют из вертикальных, наклонных или зигзагообразных листов, а также из укладываемых правильными рядами колец, концентрических цилиндров или других элементов. Преимущества упорядоченной насадки - возможность работы с высокими плотностями орошения при значительном подогреве воды (20-30 °C) и возможность деаэрации неумягчённой воды. Недостаток - неравномерность распределения потока воды по насадке. Неупорядоченная насадка выполняется из небольших элементов определенной формы, засыпаемых произвольно в выделенную часть колонки (кольца, шары , сёдла , омегаобразные элементы). Она обеспечивает более высокий коэффициент массоотдачи, чем упорядоченная насадка. Пленочные деаэраторы малочувствительны к загрязнению накипью, шламом и окислами железа, но более чувствительны к перегрузке.

В деаэраторах барботажного типа поток пара, который вводится в слой воды, дробится на пузыри . Преимуществом этих деаэраторов является их компактность при высоком качестве деаэрации. В них происходит некоторый перегрев воды относительно температуры насыщения, соответствующей давлению в паровом пространстве над поверхностью. Величина перегрева определяется высотой столба жидкости над барботажным устройством. При движении увлекаемой пузырьками пара воды вверх происходит её вскипание , способствующее лучшему выделению из раствора не только кислорода , но и углекислоты , которая в деаэраторах других типов удаляется из воды не полностью; в том числе разлагаются и бикарбонаты NaHCO 3 , турбулизация жидкости. Эффективность барботажных устройств снижается при значительном уменьшении удельного расхода пара. Для обеспечения глубокой деаэрации вода в деаэраторе должна подогреваться не менее чем на 10 °C, если нет возможности для увеличения расхода выпара. Барботажные устройства могут быть затопленными в баке в виде перфорированных листов (при этом трудно обеспечить беспровальный режим) или устанавливаться в колонке в виде тарелок.

Показатели и обозначения

Производительность деаэратора - расход деаэрированной воды на выходе из деаэратора. В деаэраторах типа ДВ при использовании в качестве греющей среды (теплоносителя) перегретой деаэрированной воды расход последней в производительность не входит.

Полезная вместимость деаэраторного бака - расчетный полезный объём бака, определяемый в размере 85 % его полного объёма.

ГОСТ устанавливает ряды для подбора ёмкости баков (для ДА 1-75 м³, ДП 65-185 м³) и производительности (1-2800 /). Деаэратор обозначается по принципу ДА(ДП,ДВ)-(производительность, т/ч)/(полезная вместимость бака, м³) ; колонки отдельно КДА(КДП)-(производительность) , баки БДА(БДП)-(вместимость) .

Вихревые деаэраторы

Литература

  • Рихтер Л. А., Елизаров Д. П., Лавыгин В. М. Глава третья. Деаэраторы // Вспомогательное оборудование тепловых электростанций. - М .: Энергоатомиздат, 1987. - 216 с.
  • Кувшинов О. М. Ржа? Долой кислород! . kwark.ru . «Наука и жизнь » № 12 (2006). Архивировано из первоисточника 8 апреля 2012. Проверено 3 сентября 2011.
  • Кувшинов О. М. Щелевые деаэраторы КВАРК - эффективное устройство для деаэрации жидкости . kwark.ru . «Промышленная энергетика» № 7 (2007).
Рубрика:

Здравствуйте уважаемые заказчики предприятия МеталлЭкспортПром и кто интересуется нашей продукцией. Сегодня я хочу подробно рассказать какие бывают деаэраторы дп - повышенного давления , которые редко, но все же применяются и представляют собой технически сложные и ответственные емкости. Всем кто работает с таким оборудованием знаком деаэратор атмосферный или вакуумный, а вот устройства о которых я сейчас говорю знают не многие. И так по-порядку.


Само название говорит о том, что устройство в отличие от обычных аппаратов, работает при повышенном давлении. В серии ДА используется давление 0,12 МПа, а в серии ДП, про которую мы сейчас говорим от 0,23 до 1,08 МПа у ДП1000/120 , это в девять раз больше, чем у атмосферников. Соответственно и стенки сосудов гораздо толще. Если интересно сразу посмотреть технические характеристики, то переходим и для АЭС , или читаем далее.

Сам аппарат относится к емкостному оборудованию, подробней о емкостях можно посмотреть , но так как внутри его протекают и процессы теплообмена, то его можно отнести и к теплообменникам, о которых все написано в этом разделе . Давайте рассмотрим из чего он состоит.

А состоит он из деаэрационной колонки, условное обозначение кдп, начиная с кдп-80 до кдп-6000, расшифровывается соответственно КДП - колонка деаэратора повышенного давления, а числа рядом это номинальная производительность измеряемая в тоннах в час или т/ч, т.е. бывают от 80 до 6000 тонн в час. Производительность деаэратора это количество подготовленной воды на выходе из него, т.е. сколько он может обработать и выдать воды в тоннах в час. И так таких колонок может быть от одной до четырех и более, в отличии от простого атмосферного деаэратора с одной колонкой, и они могут быть, как вертикальные, так и горизонтальные, в зависимости от устройства аппарата.Теперь рассмотрим какую функцию выполняет колонка. Для этого начнем с самого начала, а зачем нужен вообще сам деаэратор дп и куда и где он устанавливается.

А устанавливают их на ТЭС и АЭС, в которых имеются энергетические котлы с начальным давлением пара от 10 МПа, в отличии от атмосферных работающих соответственно при малом атмосферном давлении и с малыми водогрейными котлами при давлении 0,07 МПа. Разница налицо, давление пара энергетических котлов в сто с лишним раз больше, впрочем как и они сами. Давайте далее рассмотрим, чтобы было понятней сам процесс водоподготовки, так как весь емкостный и теплообменный аппарат для этого и предназначен.

Водоподготовка

Так как мы рассматриваем тепловые и атомные электрические станции, то и рассмотрим процессы в них протекающие. Любая электрическая станция нужна для получения электроэнергии, которая дальше идет в дома или на предприятия. А откуда она берется? Ее вырабатывает генератор, который приводит в движение турбина, для работы которой нужен пар, а пар вырабатывает парогенератор или сам паровой котел,в зависимости от устройства станции. Но пар должен откуда-то образовываться, а получается он путем испарения питательной воды.

Вода поступающая в реактор или котел должна быть очищена, как от механических примесей, так и от газов, которые могут в ней присутствовать. Вот эти примеси могут откладываться на стенках трубопроводов и самих котлов, тем самым уменьшая процессы протекания жидкостей и теплообмен, а присутствующие в воде газы вызывают коррозию труб стенок котлов. Все это не только приводит к ухудшению эффективности работы, но может вызвать и аварийную ситуацию. Чтобы это не допустить и нужна водоподготовка и водоочистка, в которой непосредственное участие и принимает в нашем случае, который удаляет коррозионно активные газы их питательной воды реакторов и паровых котлов.

Только в аэс имеются два контура. В первый вода подготавливается и заливается. И этот контур работает многие месяцы, а вот второй контур работает несколько иначе, читаем далее. Есть и одноконтурные, тогда теплоноситель вода проходит полный цикл от котла через парогенератор до турбины, потом в конденсатор и снова в реактор.Такие станции дешевле, но оборудование работает в условиях радиации. Поэтому двухконтурные более безопасные, так как радиоактивная вода движется только в замкнутом первом контуре, который находится за кожухом и бетоном, это сам реактор, взаимодействие идет в парогенераторе, но это уже не так сильно.

Процессы протекающие в аэс

Рассмотрим все процессы от начала до конца на примере атомной электрической станции, но только те касаемо нашей темы. И так. Есть сердце станции это реакторный блок, внутри которого находятся стержни, в которых и протекает ядерная реакция. При этом выделяется огромное количество тепла. Эта емкость находится внутри другой емкости, между которыми и находится вода. Т.е. два бака представляют собой ядерный котел, внутри которого протекает ядерная реакция и нагревает воду в промежутке между ними.


Нагретая вода попадает в теплообменник, называемый парогенератор, проходит через него отдавая теплоту, и выходит из него и далее нагнетается циркуляционным насосом снова в котел. Это первый контур. И он замкнутый, т.е. вода заливается туда и циркулирует большое время, конечно иногда пополняясь.

Но есть и второй контур. В теплообменный аппарат- парогенератор, нагнетается насосом вода почти кипящей и в нем уже закипает превращаясь в пар, для этого служит являющийся частью генератора. Пар выходит и бьет по лопаткам турбины приводя ее в движение, вращается ротор, который связан с ротором генератора. А генератор и вырабатывает электрическую энергию. Так вот пар проходя через турбину не рассеивается, зачем его терять, а выходит из турбины и попадает в конденсатор, служащий для конденсации пара и превращения его в жидкость.

Можно более подробно ознакомиться с конденсаторами .

Водоочистка

Конденсат на выходе из конденсатора попадает в деаэрационную колонку сверху. Другая часть пара на выходе из турбины из второго отбора, так же подается в колонку только снизу. Конденсат движет вниз, а пар ему навстречу. В результате этого процесса коррозионные газы их смесь, называемая выпаром, кислород, азот и другие поднимаются на верх и выходят попадая в охладитель выпара , который представляет собой кожухотрубный теплообменник с набором латунных или нержавеющих теплообменных труб. Пар конденсируется и попадает в бак, а газы отводятся в атмосферу. Так выглядит процесс водоочистки, который тесно связан с деаэрацией.

С колонками для атмосферных деаэраторов можно ознакомиться . Там же рассмотрен подробно и принцип ее работы и назначение.

Деаэрация

Деаэрация это процесс подготовки питательной воды для котлов, связанный с удалением газов. И так в колонке вода очищается от газов и сливается в деаэраторный бак, накапливаясь в нем. Далее насос и накачивает ее в теплообменник парогенератор. Вода внутри поднимается и нагревается водой первого контура и попадает в испаритель.

кдп-700 вертикальная
1
2400
118
100
3400 13500
6800
26265
156265
дп-1000/100
1000
0.69(7.0)
кдп-1000 вертикальная
1
2400
118
100
3400 13500
8130
30600
165600
дп-1000/100
1000
1.03(10.5)
кдп-1000 вертикальная малогабаритная
1
2400
118
100
3400 13500
5700
47100
172100
дп-1000/120
1000
1.08(11,0)
кдп-1000 горизонтальная
1
3000
186
120
3400 21000
7500
95000
202300
дп-1000/150
1000
0.69(0.7)
кдп-1000 вертикальная
1
2400
176.4
150
3400 20120
8130
41100
234200
дп-2000/150
2000
0.69(0.7)
кдп-2000 вертикальная
1
3400
176.4
150
3400 20120
8370
46854
255254
дп-2000/185
2000
0.69(0.7)
кдп-2000 вертикальная
1
3400
217.6
185
3400 24270
8370
52654
302254
дп-2800/185
2000
0.74(7.5)
кдп-2800 вертикальная
1
3400
217 6
185
3400 24270
10470
59200
325800

Технические характеристики деаэраторов для АЭС

Наименование
Производительность номинальная, т/ч
Давление рабочее абсолютное, МПа (кгс/см 2)
Колонка
Количество колонок
Диаметр колонки, мм
Емкость бака, м 3
Емкость бака полезная мм 3
Диаметр бака, мм
Длина деаэратора, мм
Высота деаэратора, мм
Масса, кг
Масса деаэратора с водой, мм
дп-2000-2х1000/120-А
2000

0.7(7.0)
0.76(7.6)

кдп-10А вертикальная
2
2400
150
120
3400
17000
8300
43200
227200
дп-3200-2х1600/185-А 3200
0.69(0.7)
кдп-1600-А вертикальная
2
3400
210
185
3400
23415
11160
93000
361000
дп-3200/220-А
3200
1.35(13.8)
скользящее
кдп-3200-А горизонтальная
1
3000
350
220
3800
32180
7900
230000
710000
дп-6000/250-А
6000

0.82(8.4)
скользящее

кдп-6000-А горизонтальная
1
3000
400
250
3800 32180
7900
190000
74000
дп-6000/250-А-1
таблиц выше.

Вакуумный деаэратор применяется для деаэрации воды, если ее температура ниже 100 °С (температура кипения воды при атмосферном давлении).

Областью для проектирования, монтажа и эксплуатирования вакуумного деаэратора являются водогрейные котельные (особенно в блочном варианте) и тепловые пункты. Так же вакуумные деаэраторы активно используются в пищевой промышленности для деаэрации воды необходимой в технологии приготовления широкого спектра напитков.

Вакуумной деаэрации подвергаются потоки воды идущей на подпитку тепловой сети, котлового контура, сети горячего водоснабжения.

Особенности работы вакуумного деаэратора.

Так как процесс вакуумной деаэрации происходит при относительной невысоких температурах воды (в среднем от 40 до 80 °С в зависимости от типа деаэратора) для работы вакуумного деаэратора не требуется использование теплоносителя с температурой выше 90 °С. Теплоноситель необходим для нагрева воды перед вакуумным деаэратором. Температура теплоносителя до 90 °С обеспечивается на большинстве объектов, где потенциально возможно применить вакуумный деаэратор.

Основное отличие вакуумного деаэратора от атмосферного деаэратора в системе отвода выпара из деаэратора.

В вакуумном деаэраторе выпар (парогазовая смесь образующаяся при выделении из воды насыщенных паров и растворенных газов) удаляется при помощи вакуумного насоса.

В качестве вакуумного насоса можно использовать: вакуумный водокольцевой насос, водоструйный эжектор, пароструйный эжектор. Они различны по конструкции, но основаны на одном принципе - уменьшение статического давления (создание разряжения - вакуума) в потоке жидкости при увеличении скорости потока.

Скорость потока жидкости увеличивается либо при движении через сужающееся сопло (водоструйный эжектор), либо при закручивании жидкости при вращении рабочего колеса.

При удалении выпара из вакуумного деаэратора давление в деаэраторе падает до давления насыщения соответствующего температуре воды поступающей в деаэратор. Вода в деаэраторе находится в точке кипения. На границе раздела фаз вода - газ возникает разница концентраций по растворенным в воде газам (кислород, углекислота) и соответственно появляется движущая сила процесса деаэрации.

От эффективности работы вакуумного насоса зависит качество деаэрированной воды после вакуумного деаэратор.

Особенности установки вакуумного деаэратора.

Т.к. температура воды в вакуумном деаэраторе ниже 100 °С и соответственно давление в вакуумном деаэраторе ниже атмосферного - вакуум, возникает главный вопрос при проектировании и эксплуатации вакуумного деаэратора - как подать деаэрированную воду после вакуумного деаэратора далее в систему теплоснабжения. В этом заключается основная проблема использования вакуумного деаэратора для деаэрации воды на котельных и тепловых пунктах.

В основном это решалось установкой вакуумного деаэратора на высоте не менее 16 м, что обеспечивало необходимую разницу давлений между разряжением в деаэраторе и атмосферным давлением. Вода самотеком стекала в аккумуляторный бак расположенным на нулевой отметке. Высота установки вакуумного деаэратора выбиралась из расчета максимально возможного вакуума (-10 м.вод.ст.), высоты столба воды в аккумуляторном баке, сопротивления сливного трубопровода и перепада давлений необходимого для обеспечения движения деаэрированной воды. Но это влекло за собой ряд существенных недостатков: увеличение первоначальных затрат на строительство (этажерка высотой 16 м с площадкой обслуживания), возможность замерзания воды в сливном трубопроводе при прекращении подачи воды в деаэратор, гидроудары в сливном трубопроводе, трудности в осмотре и обслуживании деаэратора в зимний период.

Для блочных котельных, которые активно проектируются и монтируются данное решение на применимо.

Вторым вариантом решения вопроса подачи деаэрированной воды после вакуумного деаэратора является использование промежуточного бака запаса деаэрированной воды - деаэраторного бака и насосов подачи деаэрированной воды. Деаэраторный бак находится под таким же разряжением, что и сам вакуумный деаэратор. По сути дела вакуумный деаэратор и деаэраторный бак представляют собой один сосуд. Основная нагрузка ложится на насосы подачи деаэрированной воды которые забирают деаэрированную воду из под вакуума и подают ее далее в систему. Для предотвращения возникновения явления кавитации в насосе подачи деаэрированной воды необходимо обеспечить высоту водяного столба (расстояние между зеркалом воды в деаэраторном баке и осью всаса насоса) на всасе насоса не менее величины указанной в паспорте насоса как кавитационный запас или NPFS. Кавитационный запас в зависимости от марки и производительности насоса колеблется в диапазоне от 1 до 5 м.

Преимуществом второго варианта компоновки вакуумного деаэратора является возможность устанавливать вакуумный деаэратор на небольшой высоте, в помещении. Насосы подачи деаэрированной воды обеспечат перекачивание деаэрированной воды далее в аккумуляторные баки или на подпитку. Для обеспечения стабильного процесса перекачивания деаэрированой воды из деаэраторного бака важно правильно подобрать насосы подачи деаэрированной воды.

Повышение эффективности работы вакуумного деаэратора.

Так как вакуумная деаэрация воды проводится при температуре воды ниже 100 °С повышаются требования к технологии процесса деаэрации. Чем ниже температура воды, тем выше коэффициент растворимости газов в воде, тем сложнее процесс деаэрации. Необходимо повышать интенсивность процесса деаэрации, соответственно применяются конструктивные решения на основе новых научных разработок и экспериментов в области гидродинамики и массопереноса.

Использование высокоскоростных течений с турбулентным массопереносом при создании условий в потоке жидкости для дополнительного снижения статического давления относительно давления насыщения и получения перегретого состояния воды позволяет значительно повысить эффективность процесса деаэрации и уменьшить габаритные размеры и вес вакуумного деаэратора.

Для комплексного решения вопроса установки вакуумного деаэратора в помещении котельной на нулевой отметке с минимальной габаритной высотой был разработан, испытан, и успешно введен в серийное производство блочный вакуумный деаэратор БВД. При высоте деаэратора чуть менее 4 м блочный вакуумный деаэратор БВД позволяет производить эффективную деаэрацию воды в диапазоне производительностей от 2 до 40 м3/ч по деаэрированной воде. Блочный вакуумный деаэратор занимает пространство в помещении котельной не более чем 3х3 м (в основании) в своем самом производительном исполнении.