Методические указания для курсового проектирования по дисциплине "теплоснабжение". Температурный график тепловой сети

Построить для закрытой системы теплоснабжения график центрального качественного регулирования отпуска теплоты по совмещенной нагрузке отопления и горячего водоснабжения (повышенный или скорректированный температурный график).

Принять расчетные температуры сетевой воды в подающей магистрали t 1 = 130 0 С в обратной магистрали t 2 = 70 0 С, после элеватора t 3 = 95 0 С. Расчетная температура наружного воздуха для проектирования отопления tнро = -31 0 С. Расчетная температура воздуха внутри помещения tв= 18 0 С. Расчетные тепловые потоки принять те же. Температура горячей воды в системах горячего водоснабжения tгв = 60 0 С, температура холодной воды t с = 5 0 С. Балансовый коэффициент для нагрузки горячего водоснабжения a б = 1,2. Схема включения водоподогревателей систем горячего водоснабжения двухступенчатая последовательная.

Решение. Предварительно выполним расчет и построение отопительно-бытового графика температур с температурой сетевой воды в подающем трубопроводе для точки излома =70 0 С. Значения температур сетевой воды для систем отопления t 01 ; t 02 ; t 03 определим используя расчетные зависимости (13), (14), (15) для температур наружного воздуха t н = +8; 0; -10; -23; -31 0 С

Определим, используя формулы (16),(17),(18), значения величин

Для t н = +8 0С значения t 01, t 02 ,t 03 соответственно составят:

Аналогично выполняются расчеты температур сетевой воды и для других значений t н. Используя расчетные данные и приняв минимальную температуру сетевой воды в подающем трубопроводе = 70 0 С, построим отопительно-бытовой график температур (см. рис. 4). Точке излома температурного графика будут соответствовать температуры сетевой воды = 70 0 С, = 44,9 0 С, = 55,3 0 С, температура наружного воздуха = -2,5 0 С. Полученные значения температур сетевой воды для отопительно-бытового графика сведем в таблицу 4. Далее приступаем к расчету повышенного температурного графика. Задавшись величиной недогрева Dt н = 7 0 С определим температуру нагреваемой водопроводной воды после водоподогревателя первой ступени

Определим по формуле (19) балансовую нагрузку горячего водоснабжения

По формуле (20) определим суммарный перепад температур сетевой воды d в обеих ступенях водоподогревателей

Определим по формуле (21) перепад температур сетевой воды в водоподогревателе первой ступени для диапазона температур наружного воздуха от t н = +8 0 С до t" н = -2,5 0 С

Определим для указанного диапазона температур наружного воздуха перепад температур сетевой воды во второй ступени водоподогревателя

Определим используя формулы (22) и (25) значения величин d 2 и d 1 для диапазона температур наружного воздуха t н от t" н = -2,5 0 С до t 0 = -31 0 С. Так, для t н = -10 0 С эти значения составят:



Аналогично выполним расчеты величин d 2 и d 1 для значений t н = -23 0 С и t н = –31 0 С. Температуры сетевой воды и в подающем и обратном трубопроводах для повышенного температурного графика определим по формулам (24) и (26).

Так, для t н = +8 0 С и t н = -2,5 0 С эти значения составят

для t н = -10 0 С

Аналогично выполним расчеты для значений t н = -23 0 С и -31 0 С. Полученные значения величин d 2, d 1, , сведем в таблицу 4.

Для построения графика температуры сетевой воды в обратном трубопроводе после калориферов систем вентиляции в диапазоне температур наружного воздуха t н = +8 ¸ -2,5 0 С используем формулу (32)

Определим значение t 2v для t н = +8 0 С. Предварительно зададимся значением 0 С. Определим температурные напоры в калорифере и соответственно для t н = +8 0 С и t н = -2,5 0 С

Вычислим левые и правые части уравнения

Левая часть

Правая часть

Поскольку численные значения правой и левой частей уравнения близки по значению (в пределах 3%), примем значение как окончательное.

Для систем вентиляции с рециркуляцией воздуха определим, используя формулу (34), температуру сетевой воды после калориферов t 2v для t н = t нро = -31 0 C.

Здесь значения Dt ; t ; t соответствуют t н = t v = -23 0 С. Поскольку данное выражение решается методом подбора, предварительно зададимся значением t 2v = 51 0 С. Определим значения Dt к и Dt

Поскольку левая часть выражения близка по значению правой (0,99»1), принятое предварительно значение t 2v = 51 0 С будем считать окончательным. Используя данные таблицы 4 построим отопительно-бытовой и повышенный температурные графики регулирования (см. рис. 4).

Таблица 4 - Расчет температурных графиков регулирования для закрытой системы теплоснабжения.

t Н t 10 t 20 t 30 d 1 d 2 t 1П t 2П t 2V
+8 70 44,9 55,3 5,9 8,5 75,9 36,4 17
-2,5 70 44,9 55,3 5,9 8,5 75,9 36,4 44,9
-10 90,2 5205 64,3 4,2 10,2 94,4 42,3 52,5
-23 113,7 63,5 84,4 1,8 12,5 115,6 51 63,5
-31 130 70 95 0,4 14 130,4 56 51


Рис.4. Температурные графики регулирования для закрытой системы теплоснабжения (¾ отопительно-бытовой; --- повышенный)

Построить для открытой системы теплоснабжения скорректированного (повышенного) графика центрального качественного регулирования . Принять балансовый коэффициент a б = 1,1. Принять минимальную температуру сетевой воды в подающем трубопроводе для точки излома температурного графика 0 С. Остальные исходные данные взять из предыдущей части.

Решение . Вначале строим графики температур , , , используя расчеты по формулам (13); (14); (15). Далее построим отопительно-бытовой график, точке излома которого соответствуют значения температур сетевой воды 0 С; 0 C; 0 C, и температура наружного воздуха 0 C. Далее приступаем к расчету скорректированного графика. Определим балансовую нагрузку горячего водоснабжения

Определим коэффициент отношения балансовой нагрузки на горячее водоснабжение к расчетной нагрузке на отопление

Для ряда температур наружного воздуха t н = +8 0 С; -10 0 С; -25 0 С; -31 0 С, определим относительный расход теплоты на отопление по формуле (29)`; Например для t н = -10 составит:

Затем, приняв известные из предыдущей части значения t c ; t h ; q ; Dt определим, используя формулу (30), для каждого значения t н относительные расходы сетевой воды на отопление .

Например, для t н = -10 0 С составит:

Аналогично выполним расчеты и для других значений t н.

Температуры сетевой воды в подающем t 1п и обратном t 2п трубопроводах для скорректированного графика определим по формулам (27) и (28).

Так, для t н = -10 0 С получим

Выполним расчеты t 1п и t 2п и для других значений t н. Определим используя расчетные зависимости (32) и (34) температуры сетевой воды t 2v после калориферов систем вентиляции для t н = +8 0 С и t н = -31 0 С (при наличии рециркуляции). При значении t н = +8 0 С зададимся предварительно величиной t 2v = 23 0 C.

Определим значения Dt к и Dt к

;

Поскольку численные значения левой и правой частей уравнения близки, принятое предварительно значение t 2v = 23 0 C ,будем считать окончательным. Определим также значения t 2v при t н = t 0 = -31 0 C. Зададимся предварительно значением t 2v = 47 0 C

Вычислим значения Dt к и

Полученные значения расчетных величин сведем в таблицу 3.5

Таблица 5 - Расчет повышенного (скорректированного) графика для открытой системы теплоснабжения.

t н t 10 t 20 t 30 `Q 0 `G 0 t 1п t 2п t 2v
+8 60 40,4 48,6 0,2 0,65 64 39,3 23
1,9 60 40,4 48,6 0,33 0,8 64 39,3 40,4
-10 90.2 52.5 64.3 0,59 0,95 87.8 51.8 52.5
-23 113.7 63.5 84.4 0,84 1,02 113 63,6 63.5
-31 130 70 95 1 1,04 130 70 51

Используя данные таблицы 5, построим отопительно-бытовой, а также повышенный графики температур сетевой воды.

Рис.5 Отопительно - бытовой ( ) и повышенный (----) графики температур сетевой воды для открытой системы теплоснабжения

Гидравлический расчет магистральных теплопроводов двухтрубной водяной тепловой сети закрытой системы теплоснабжения .

Расчетная схема теплосети от источника теплоты (ИТ) до кварталов города (КВ) приведена на рис.6. Для компенсации температурных деформаций предусмотреть сальниковые компенсаторы. Удельные потери давления по главной магистрали принять в размере 30-80 Па/м.




Рис.6. Расчетная схема магистральной тепловой сети.

Решение. Расчет выполним для подающего трубопровода. Примем за главную магистраль наиболее протяженную и загруженную ветвь теплосети от ИТ до КВ 4 (участки 1,2,3) и приступим к ее расчету. По таблицам гидравлического расчета, приведенным в литературе , а также в приложении №12 учебного пособия, на основании известных расходов теплоносителя, ориентируясь на удельные потери давления R в пределах от 30 до 80 Па/м, определим для участков 1, 2, 3 диаметры трубопроводов d н xS , мм, фактические удельные потери давления R , Па/м, скорости воды V , м/с.

По известным диаметрам на участках главной магистрали определим сумму коэффициентов местных сопротивлений Sx и их эквивалентные длины L э. Так, на участке 1 имеется головная задвижка (x = 0,5), тройник на проход при разделении потока (x = 1,0), Количество сальниковых компенсаторов (x = 0,3) на участке определим в зависимости от длины участка L и максимального допустимого расстояния между неподвижными опорами l . Согласно приложению №17 учебного пособия для D у = 600 мм это расстояние составляет 160 метров. Следовательно, на участке 1 длиной 400 м следует предусмотреть три сальниковых компенсатора. Сумма коэффициентов местных сопротивлений Sx на данном участке составит

Sx = 0,5+1,0 + 3 × 0,3 = 2,4

По приложению №14 учебного пособия (при К э = 0,0005м) эквивалентная длина l э для x = 1,0 равна 32,9 м. Эквивалентная длина участка L э составит

L э = l э × Sx = 32,9 ×2,4 = 79 м

L п =L + L э = 400 + 79 = 479 м

Затем определим потери давления DP на участке 1

DP = R × L п = 42 × 479 = 20118 Па

Аналогично выполним гидравлический расчет участков 2 и 3 главной магистрали (см. табл. 6 и табл.7).

Далее приступаем к расчету ответвлений. По принципу увязки потери давления DP от точки деления потоков до концевых точек (КВ) для различных ветвей системы должны быть равны между собой. Поэтому при гидравлическом расчете ответвлений необходимо стремиться к выполнению следующих условий:

DP 4+5 = DP 2+3 ; DP 6 = DP 5 ; DP 7 = DP 3

Исходя из этих условий, найдем ориентировочные удельные потери давления для ответвлений. Так, для ответвления с участками 4 и 5 получим

Коэффициент a , учитывающий долю потерь давления на местные сопротивления, определим по формуле

тогда Па/м

Ориентируясь на R = 69 Па/м определим по таблицам гидравлического расчета диаметры трубопроводов, удельные потери давления R , скорости V , потери давления DР на участках 4 и 5. Аналогично выполним расчет ответвлений 6 и 7, определив предварительно для них ориентировочные значения R .

Па/м

Па/м

Таблица 6 - Расчет эквивалентных длин местных сопротивлений

№ участка dн х S, мм L, м Вид местного сопротивления x Кол-во åx l э,м Lэ,м
1 630x10 400 1. задвижка 2. сальниковый компенсатор 0.5 0.3 1.0 1 3 1 2,4 32,9 79
2 480x10 750 1. внезапное сужение 2. сальниковый компенсатор 3. тройник на проход при разделении потока 0.5 0.3 1.0 1 6 1 3,3 23,4 77
3 426x10 600 1. внезапное сужение 2. сальниковый компенсатор 3. задвижка 0.5 0.3 0.5 1 4 1 2,2 20,2 44,4
4 426x10 500 1.тройник на ответвление 2. задвижка 3. сальниковый компенсатор 4. тройник на проход 1.5 0.5 0.3 1.0 1 1 4 1 4.2 20.2 85
5 325x8 400 1. сальниковый компенсатор 2. задвижка 0.3 0.5 4 1 1.7 14 24
6 325x8 300 1. тройник на ответвление 2. сальниковый компенсатор 3. задвижка 1.5 0.5 0.5 1 2 2 3.5 14 49
7 325x8 200 1.тройник на ответвление при разделении потока 2.задвижка 3.сальниковый компенсатор 1.5 0.5 0.3 1 2 2 3.1 14 44

Таблица 7 - Гидравлический расчет магистральных трубопроводов

№ участка G, т/ч Длина, м dнхs, мм V, м/с R, Па/м DP, Па åDP, Па
L Lп
1 2 3 1700 950 500 400 750 600 79 77 44 479 827 644 630x10 480x10 426x10 1.65 1.6 1.35 42 55 45 20118 45485 28980 94583 74465 28980
4 5 750 350 500 400 85 24 585 424 426x10 325x8 1.68 1.35 70 64 40950 27136 68086 27136
6 400 300 49 349 325x8 1.55 83 28967 28967
7 450 200 44 244 325x8 1.75 105 25620 25620

Определим невязку потерь давления на ответвлениях. Невязка на ответвлении с участками 4 и 5 составит:

Невязка на ответвлении 6 составит:

Невязка на ответвлении 7 составит.

Экономичный расход энергоресурсов в отопительной системе, может быть достигнут, если выполнять некоторые требования. Одним из вариантов, является наличие температурной диаграммы, где отражается отношение температуры, исходящей от источника отопления к внешней среде. Значение величин дают возможность оптимально распределять тепло и горячую воду потребителю.

Высотные дома подключены в основном к центральному отоплению. Источники, которые передают тепловую энергию, являются котельные или ТЭЦ. В качестве теплоносителя используется вода. Её нагревают до заданной температуры.

Пройдя полный цикл по системе, теплоноситель, уже охлаждённый, возвращается к источнику и наступает повторный нагрев. Соединяются источники с потребителем тепловыми сетями. Так как окружающая среда меняет температурный режим, следует регулировать тепловую энергию, чтобы потребитель получал необходимый объём.

Регулирование тепла от центральной системы можно производить двумя вариантами:

  1. Количественный. В этом виде изменяется расход воды, но температуру она имеет постоянную.
  2. Качественный. Меняется температура жидкости, а расход её не изменяется.

В наших системах применяется второй вариант регулирования, то есть качественный. Здесь есть прямая зависимость двух температур: теплоносителя и окружающей среды. И расчёт ведётся таким образом, чтобы обеспечить тепло в помещении 18 градусов и выше.

Отсюда, можно сказать, что температурный график источника представляет собой ломанную кривую. Изменение её направлений зависит от разниц температур (теплоносителя и наружного воздуха).

График зависимости может быть различный.

Конкретная диаграмма имеет зависимость от:

  1. Технико-экономических показателей.
  2. Оборудования ТЭЦ или котельной.
  3. Климата.

Высокие показатели теплоносителя обеспечивают потребителя большой тепловой энергией.

Ниже показан пример схемы, где Т1 – температура теплоносителя, Тнв – наружного воздуха:

Применяется также, диаграмма возвращённого теплоносителя. Котельная или ТЭЦ по такой схеме может оценить КПД источника. Он считается высоким, когда возвращённая жидкость поступает охлаждённая.

Стабильность схемы зависит от проектных значений расхода жидкости высотными домами. Если увеличивается расход через отопительный контур, вода будет возвращаться не охлаждённой, так как возрастёт скорость поступления. И наоборот, при минимальном расходе, обратная вода будет достаточно охлаждена.

Заинтересованность поставщика, конечно, в поступлении обратной воды в охлаждённом состоянии. Но для уменьшения расхода существуют определённые пределы, так как уменьшение ведёт к потерям количества тепла. У потребителя начнётся опускаться внутренний градус в квартире, который приведёт к нарушению строительных норм и дискомфорту обывателей.

От чего зависит?

Температурная кривая зависит от двух величин: наружного воздуха и теплоносителя. Морозная погода ведёт за собой увеличение градуса теплоносителя. При проектировании центрального источника учитывается размер оборудования, здания и сечение труб.

Величина температуры, выходящей из котельной, составляет 90 градусов, для того, чтобы при минусе 23°C, в квартирах было тепло и имело величину в 22°C. Тогда обратная вода возвращается на 70 градусов. Такие нормы соответствуют нормальному и комфортному проживанию в доме.

Анализ и наладка режимов работы производится при помощи температурной схемы. Например, возвращение жидкости с завышенной температурой, будет говорить о высоких расходах теплоносителя. Дефицитом расхода будут считаться заниженные данные.

Раньше, на 10 ти этажные постройки, вводилась схема с расчётными данными 95-70°C. Здания выше имели свою диаграмму 105-70°C. Современные новостройки могут иметь другую схему, на усмотрение проектировщика. Чаще, встречаются диаграммы 90-70°C, а могут быть и 80-60°C.

График температуры 95-70:

Температурный график 95-70

Как рассчитывается?

Выбирается метод регулирования, затем делается расчёт. Во внимание берётся расчётно-зимний и обратный порядок поступления воды, величина наружного воздуха, порядок в точке излома диаграммы. Существуют две диаграммы, когда в одной из них рассматривается только отопление, во второй отопление с потреблением горячей воды.

Для примера расчёта, воспользуемся методической разработкой «Роскоммунэнерго».

Исходными данными на теплогенерирующую станцию будут:

  1. Тнв – величина наружного воздуха.
  2. Твн – воздух в помещении.
  3. Т1 – теплоноситель от источника.
  4. Т2 – обратное поступление воды.
  5. Т3 – вход в здание.

Мы рассмотрим несколько вариантов подачи тепла с величиной 150, 130 и 115 градусов.

При этом, на выходе они будут иметь 70°C.

Полученные результаты сносятся в единую таблицу, для последующего построения кривой:

Итак, мы получили три различные схемы, которые можно взять за основу. Диаграмму правильней будет рассчитывать индивидуально на каждую систему. Здесь мы рассмотрели рекомендованные значения, без учёта климатических особенностей региона и характеристик здания.

Чтобы уменьшить расход электроэнергии, достаточно выбрать низкотемпературный порядок в 70 градусов и будет обеспечиваться равномерное распределение тепла по отопительному контуру. Котёл следует брать с запасом мощности, чтобы нагрузка системы не влияла на качественную работу агрегата.

Регулировка


Регулятор отопления

Автоматический контроль обеспечивается регулятором отопления.

В него входят следующие детали:

  1. Вычислительная и согласующая панель.
  2. Исполнительное устройство на отрезке подачи воды.
  3. Исполнительное устройство , выполняющее функцию подмеса жидкости из возвращённой жидкости (обратки).
  4. Повышающий насос и датчик на линии подачи воды.
  5. Три датчика (на обратке, на улице, внутри здания). В помещении их может быть несколько.

Регулятором прикрывается подача жидкости, тем самым, увеличивается значение между обраткой и подачей до величины, предусмотренной датчиками.

Для увеличения подачи присутствует повышающий насос, и соответствующая команда от регулятора. Входящий поток регулируется «холодным перепуском». То есть происходит понижение температуры. На подачу отправляется некоторая часть жидкости, поциркулировавшая по контуру.

Датчиками снимается информация и передаётся на управляющие блоки, в результате чего, происходит перераспределение потоков, которые обеспечивают жёсткую температурную схему системы отопления.

Иногда, применяют вычислительное устройство, где совмещены регуляторы ГВС и отопления.

Регулятор на горячую воду имеет более простую схему управления. Датчик на горячем водоснабжении производит регулировку прохождения воды со стабильной величиной 50°C.

Плюсы регулятора:

  1. Жёстко выдерживается температурная схема.
  2. Исключение перегрева жидкости.
  3. Экономичность топлива и энергии.
  4. Потребитель, независимо от расстояния, равноценно получает тепло.

Таблица с температурным графиком

Режим работы котлов зависит от погоды окружающей среды.

Если брать различные объекты, например, заводское помещение, многоэтажный и частный дом, все будут иметь индивидуальную тепловую диаграмму.

В таблице мы покажем температурную схему зависимости жилых домов от наружного воздуха:

Температура наружного воздуха Температура сетевой воды в подающем трубопроводе Температура сетевой воды в обратном трубопроводе
+10 70 55
+9 70 54
+8 70 53
+7 70 52
+6 70 51
+5 70 50
+4 70 49
+3 70 48
+2 70 47
+1 70 46
0 70 45
-1 72 46
-2 74 47
-3 76 48
-4 79 49
-5 81 50
-6 84 51
-7 86 52
-8 89 53
-9 91 54
-10 93 55
-11 96 56
-12 98 57
-13 100 58
-14 103 59
-15 105 60
-16 107 61
-17 110 62
-18 112 63
-19 114 64
-20 116 65
-21 119 66
-22 121 66
-23 123 67
-24 126 68
-25 128 69
-26 130 70

СНиП

Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.

Нормативные требования следует выполнять на соблюдение утверждённой документации с обязательным согласованием с Минстроем страны.


Отпуск теплоты по отопительно-бытовому графику производится для потребителей, имеющих нагрузку на отопление, вентиляцию и ГВС. Необходимость в отпуске теплоты по отопительно-бытовому графику вызвана тем, что в закрытых водяных тепловых сетях температура воды в подающей линии должна быть не менее 70 - 75 0 С, а в открытых – не менее 60-65 0 С при любой температуре наружного воздуха.

Построением определяется температура наружного воздуха, при которой температура воды в подающей линии теплосети будет не ниже требуемой. Эта температура, t н.и. , называется температурой точки излома графика.

После построения графика определяются температуры воды после элеватора, t 3 , и в обратной линии тепловой сети – t 2 , необходимые для расчета и выбора подогревателей ГВС, отопления и выбора элеватора.

Для построения отопительно-бытового графика необходимо сначала построить отопительный график и затем произвести необходимые построения для получения отопительно-бытового графика.

Расчет отопительного графика производится в следующем порядке:

1. Определяется расчетный перепад температур сетевой воды, 0 C:

2. Определяется расчетный перепад температур сетевой воды для систем отопления, 0 С:

t 3 принимается равной 95 0 С. Для жилых зданий более 12-ти этажей – 105 0 С.

3. Определяется расчётная разность температур для отопительных приборов, 0 С:

; (4.3)

4. Определяется относительный расход теплоты на отопление:

где t н – текущая температура наружного воздуха, принимаемая для построения графика. За начальную температуру принимается температура наружного воздуха, t н = +8 0 С, принятая за начало отопительного периода, за конечную – температура наружного воздуха для проектирования систем отопления, t ор, для заданного региона. Для построения графика принимаются 3-4 промежуточных значений температур наружного воздуха.

5. Определяется температура сетевой воды в подающей линии тепловой сети при всех, принятых для построения графика, температурах наружного воздуха, t н:

6. Определяется температура сетевой воды в обратной линии теплосети для тех же температур:

7. Определяется температура сетевой воды на входе в систему отопления для тех же температур:

Расчет отопительного графика можно производить в электронных таблицах "Exel". Пример расчета приведен в Приложении 5.

После проведения расчета можно приступать к построению графика. Построение можно проводить с помощью мастера построения диаграмм.
Рисунок 4.1. Отопительно-бытовой график

^

5. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ТЕПЛОНОСИТЕЛЯ ДЛЯ ВЫБОРА И РАСЧЕТА ПОДОГРЕВАТЕЛЕЙ


Для выбора необходимого типоразмера и числа секций водоподогревателей следует определить необходимую поверхность нагрева по расчетной теплопроизводительности подогревателя, равной расчетной нагрузке на отопление или ГВС, расходам и температурам греющего и нагреваемого теплоносителей.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Воронежский государственный архитектурно-строительный университет (Воронежский ГАСУ)

Кафедра теплогазоснабжения и нефтегазового дела

Расчет температуры наружного воздуха в точке излома температурного графика

К.т.н. Д.Н. Китаев, доцент

Температура наружного воздуха, соответствующая точке излома t. и., является характерной температурой, т.к. определяет время изменения центрального качественного регулирования на местное количественное. Это значение важно знать на стадии проектирования, реконструкции тепловой сети, что позволит проследить изменения в сети, принять решение о переходе на другой температурный график или вид регулирования, а также оценить возможный перерасход тепловой энергии.

При качественном режиме регулирования тепловой сети и отопительном графике температуру теплоносителя в подающем трубопроводе тепловой сети ф 1 , О С при произвольной температуре наружного воздуха определяют по формуле

где t в - расчетная температура воздуха в помещениях, О С; t н - произвольная температура наружного воздуха, О С; t н. о - расчетная температура для проектирования отопления, О С; т 1 о - температура воды в подающей магистрали сети при t н. о, О С; ф р о - средняя температура воды в отопительном приборе, О С, определяемая по формуле:

ф р о =1/2 (ф см. о + ф 2о):

ф см. о, ф 2о - температура воды в абонентской установке и в обратной магистрали системы теплоснабжения при расчетных параметрах системы отопления, О С; n - эмпирический показатель, зависящий от типа отопительного прибора и схемы его подключения.

Для получения значения t н. и. поступают следующим образом. Задаваясь температурами наружного воздуха t н в интервале предполагаемой работы сети (от 8 (10) О С до t н. о) получают по формуле (1) искомые значения и строят график температур в подающей магистрали.

В случае двухтрубной сети (преобладающий тип для России) необходимо построить точку излома температурного графика, находящуюся на пересечении кривой T 1 =f(t н), и температуры, необходимой для обеспечения нагрузки горячего водоснабжения t и с учетом требования нормативов . Обычно такая температура составляет 70 О С . Определять значение t н.и. . рекомендуется графически , что предполагает проведение однотипных расчетов по формуле (1), наложение результатов на координатную сетку и определение t н.и. ... Такой подход требует времени и полученное значение может иметь значительную погрешность.

Подставим в уравнение (1) следующие данные (г. Воронеж): t в.=18 0 С, t н. о =-26 0 С , ф см. о =90 О С , ф 1о =95 О С, ф 2о =10 О С, задавшись значением температуры воды в точке излома t и. =70 О С, показатель n примем 0,3. После преобразования получим выражение:

Выражение (2) представляет собой алгебраическое иррациональное уравнение. Искомое значение лежит на интервале -26?. t н.и.?8. Корень уравнения находился численно с точностью до 0,001 методом хорд с предварительным аналитическим отделением корня. Искомое значение составляет t н. и.=-9,136 О С.

Согласно данным климатологии для территории России расчетная температура для проектирования отопления лежит в интервале от -3 до -60 О С.

Для указанного интервала проектных температур были найдены решения уравнения (1), определяющие значения t н. и. при различных t н.о. . Вычисления были проведены для температурных графиков 95/70, в диапазонах температур -3?. t н.о. ?.30 и -31?. t н.о. ?.60, т.к. проектная температура t в в первом интервале составляет 18 О С, а во втором 20 О С. На рис. 1 представлены полученные графики зависимости t н.и от t н.о. .

Из рис. 1 видно, что характер зависимости t н.и =f(t н.о.) линейный. Аппроксимация приводит к следующим уравнениям:

Полученные уравнения позволяют для любого города России при использовании температурного графика 95/70 найти наружную температуру воздуха, соответствующую температуре точки излома при известной t н.о.

Следуя вышеописанному алгоритму, были найдены линейные уравнения зависимости для всех используемых в системах теплоснабжения температурных графиков. Следует отметить, что абсолютная погрешность полученных уравнений не превышает 0,1%. Результаты расчетов представлены в таблице 1 в виде коэффициентов уравнения прямой линии вида

t н.и = a* t н.о. +b.

Представленные в табл. 1 зависимости позволяют найти температуры наружного воздуха в точке излома в зависимости от расчетной для проектирования отопления.

За последние несколько лет во многих городах России наблюдается тенденция перехода на пониженные температурные графики. Например в Городском округе Воронеж с 2012 г практически все источники теплоснабжения (включая ТЭЦ) перешли на утвержденный температурный график 95/70 или 95/65. Интерес представляет влияние изменения температурного графика тепловой сети на продолжительность возможного перетопа потребителя. Известно, что общей тенденцией является увеличение температуры излома при увеличении температурного графика.

Ввиду наличия температурного излома графика качественного регулирования, при наружных температурах больших, чем t н. и, и отсутствии местного регулирования (часто встречается в регионах России) будет наблюдаться перетоп зданий . Чем ниже значение t н. и, тем больше продолжительность возможного перетопа. Из графика, представленного на рис. 2, построенного для г. Воронежа, видно, что значения уменьшаются с уменьшением температурного графика, следовательно, продолжительность перетопа увеличивается.

Например для Воронежа, используя уравнения табл., получим следующие данные: при графике 150/70 t ни =2,7 О С, при графике 130/70 t ни =-0,2 О С, при 110/70 t ни.=-4,3 0 С, при 95/70 t н. и =-9,1 О С. Для рассматриваемой территории средние температуры наружного воздуха для декабря, января и февраля составляют -6,2, -9,8, -9,6 О С соответственно, что означает при использовании графика 95/70 и существующих неавтоматизированных ИТП перетопы в течение большей части отопительного периода. Рассмотренный пример позволяет еще раз убедиться в необходимости реконструкции ИТП многоквартирных домов, особенно в условиях перехода источниками теплоснабжения на пониженные температурные графики.

Выводы

температура воздух отопительный нагрузка

Получены уравнения зависимости температуры наружного воздуха в точке излома отопительного температурного графика от расчетной температуры проектирования отопления для существующих температурных графиков регулирования тепловой нагрузки тепловых сетей. Уравнения носят удобный для использования линейный характер с точностью, не превышающей 0,1%, позволяющие определить температуру начала местного регулирования систем отопления. Они полезны при вариантном проектировании систем теплоснабжения, а также при реконструкции, т.к. помогают отследить изменения в параметрах регулирования местных систем. Полученные уравнения помогут оценить потенциал избыточного тепла, отпускаемого в сеть, и возможный перетоп потребителя.

Литература

1. Строй А.Ф., В.Л. Скальский. Расчет и проектирование тепловых сетей. - Киев: "Будивельник", 1981. - 144 с. СНиП 41-02-2003. Тепловые сети.

2. Правила технической эксплуатации тепловых энергоустановок. 2003.

3. В.И. Манюк, Я.И. Каплинский, Э.Б. Хиж. Наладка и эксплуатация водяных тепловых сетей. М.: Стройиздат, 1988 г. - 432 с.

4. СНиП 23-01-99*. Строительная климатология.

5. СаНПиН 2.1.2.1002 - 00. Санитарно-эпидемиологические требования к жилым зданиям и помещениям. Санитарно-эпидемиологические правила и нормативы.

Н.К. Громов, Е.П. Шубин. Водяные тепловые сети: Справочное пособие по проектированию. М.: Энергоатомиз- дат. 1988. - 376 с.

Размещено на Allbest.ru

...

Подобные документы

    Расчет отопительной нагрузки, тепловой нагрузки на горячее водоснабжение поселка. Определение расхода и температуры теплоносителя по видам теплопотребления в зависимости от температуры наружного воздуха. Гидравлический расчет двухтрубных тепловых сетей.

    курсовая работа , добавлен 26.08.2013

    Построение графика изменения сезонной нагрузки ТЭЦ от температуры наружного воздуха и по продолжительности. Тепловые и материальные балансы элементов схемы. Проверка предварительного расхода пара на турбину. Электрическая мощность турбогенератора.

    курсовая работа , добавлен 27.11.2012

    Расчет тепловой схемы котельной для максимально-зимнего режима. Определение числа и единичной мощности устанавливаемых котлоагрегатов. Поиск точки излома отопительного графика, характеризующего работу котельной при минимальной отопительной нагрузке.

    курсовая работа , добавлен 06.06.2014

    Проведение расчета теплопотерь через стенки шкафов. Рассмотрение схемы автоматического регулирования тепловыделения нагревательного устройства в зависимости от температуры наружного воздуха. Изучение условий обеспечения влажностного режима подогревателя.

    курсовая работа , добавлен 01.05.2010

    Выбор температуры уходящих газов и коэффициента избытка воздуха. Расчет объемов воздуха и продуктов сгорания, а также энтальпии воздуха. Тепловой баланс теплового котла. Расчет теплообменов в топке, в газоходе парового котла. Тепловой расчет экономайзера.

    курсовая работа , добавлен 21.10.2014

    Характеристика тепловой нагрузки. Определение расчётной температуры воздуха, расходов теплоты. Гидравлический расчёт тепловой сети. Расчет тепловой изоляции. Расчет и выбор оборудования теплового пункта для одного из зданий. Экономия тепловой энергии.

    курсовая работа , добавлен 01.02.2016

    Понятие абсолютной, относительной влажности воздуха и влагоемкости. Давление водяного пара атмосферы при различных температурах. Краткая характеристика основных методов оценки влажности и температуры воздуха. Аспирационный и простой психрометры.

    лабораторная работа , добавлен 19.11.2011

    Определение линейного теплового потока методом последовательных приближений. Определение температуры стенки со стороны воды и температуры между слоями. График изменения температуры при теплопередаче. Число Рейнольдса и Нусельта для газов и воды.

    контрольная работа , добавлен 18.03.2013

    Расчет тепловых нагрузок отопления, вентиляции и горячего водоснабжения. Расчет температурного графика. Расчет расходов сетевой воды. Гидравлический и тепловой расчет паропровода. Расчет тепловой схемы котельной. Выбор теплообменного оборудования.

    дипломная работа , добавлен 04.10.2008

    Законы распределения плотности тепловыделения. Расчет температурного поля и количества импульсов, излучаемых дуговым плазматроном, необходимого для достижения температуры плавления на поверхности неограниченного тела с учетом охлаждения материала.

Температура наружного воздуха, соответствующая точке излома t. и., является характерной температурой, т.к. определяет время изменения центрального качественного регулирования на местное количественное. Это значение важно знать на стадии проектирования, реконструкции тепловой сети, что позволит проследить изменения в сети, принять решение о переходе на другой температурный график или вид регулирования, а также оценить возможный перерасход тепловой энергии.

При качественном режиме регулирования тепловой сети и отопительном графике температуру теплоносителя в подающем трубопроводе тепловой сети ф 1 , О С при произвольной температуре наружного воздуха определяют по формуле

где t в - расчетная температура воздуха в помещениях, О С; t н - произвольная температура наружного воздуха, О С; t н. о - расчетная температура для проектирования отопления, О С; т 1о - температура воды в подающей магистрали сети при t н. о, О С; ф р о - средняя температура воды в отопительном приборе, О С, определяемая по формуле:

ф р о =1/2 (ф см. о + ф 2о):

ф см. о, ф 2о - температура воды в абонентской установке и в обратной магистрали системы теплоснабжения при расчетных параметрах системы отопления, О С; n - эмпирический показатель, зависящий от типа отопительного прибора и схемы его подключения.

Для получения значения t н. и. поступают следующим образом. Задаваясь температурами наружного воздуха t н в интервале предполагаемой работы сети (от 8 (10) О С до t н. о) получают по формуле (1) искомые значения и строят график температур в подающей магистрали.

В случае двухтрубной сети (преобладающий тип для России) необходимо построить точку излома температурного графика, находящуюся на пересечении кривой T 1 =f(t н), и температуры, необходимой для обеспечения нагрузки горячего водоснабжения t и с учетом требования нормативов . Обычно такая температура составляет 70 О С . Определять значение t н.и. . рекомендуется графически , что предполагает проведение однотипных расчетов по формуле (1), наложение результатов на координатную сетку и определение t н.и. ... Такой подход требует времени и полученное значение может иметь значительную погрешность.

Подставим в уравнение (1) следующие данные (г. Воронеж): t в.=18 0 С, t н. о =-26 0 С , ф см. о =90 О С , ф 1о =95 О С, ф 2о =10 О С, задавшись значением температуры воды в точке излома t и. =70 О С, показатель n примем 0,3. После преобразования получим выражение:

Выражение (2) представляет собой алгебраическое иррациональное уравнение. Искомое значение лежит на интервале -26?. t н.и.?8. Корень уравнения находился численно с точностью до 0,001 методом хорд с предварительным аналитическим отделением корня. Искомое значение составляет t н. и.=-9,136 О С.

Согласно данным климатологии для территории России расчетная температура для проектирования отопления лежит в интервале от -3 до -60 О С.

Для указанного интервала проектных температур были найдены решения уравнения (1), определяющие значения t н. и. при различных t н.о. . Вычисления были проведены для температурных графиков 95/70, в диапазонах температур -3?. t н.о. ?.30 и -31?. t н.о. ?.60, т.к. проектная температура t в в первом интервале составляет 18 О С, а во втором 20 О С. На рис. 1 представлены полученные графики зависимости t н.и от t н.о. .

Из рис. 1 видно, что характер зависимости t н.и =f(t н.о.) линейный. Аппроксимация приводит к следующим уравнениям:

Полученные уравнения позволяют для любого города России при использовании температурного графика 95/70 найти наружную температуру воздуха, соответствующую температуре точки излома при известной t н.о.

Следуя вышеописанному алгоритму, были найдены линейные уравнения зависимости для всех используемых в системах теплоснабжения температурных графиков. Следует отметить, что абсолютная погрешность полученных уравнений не превышает 0,1%. Результаты расчетов представлены в таблице 1 в виде коэффициентов уравнения прямой линии вида

t н.и = a* t н.о. +b.

Представленные в табл. 1 зависимости позволяют найти температуры наружного воздуха в точке излома в зависимости от расчетной для проектирования отопления.

За последние несколько лет во многих городах России наблюдается тенденция перехода на пониженные температурные графики. Например в Городском округе Воронеж с 2012 г практически все источники теплоснабжения (включая ТЭЦ) перешли на утвержденный температурный график 95/70 или 95/65. Интерес представляет влияние изменения температурного графика тепловой сети на продолжительность возможного перетопа потребителя. Известно, что общей тенденцией является увеличение температуры излома при увеличении температурного графика.

Ввиду наличия температурного излома графика качественного регулирования, при наружных температурах больших, чем t н. и, и отсутствии местного регулирования (часто встречается в регионах России) будет наблюдаться перетоп зданий . Чем ниже значение t н. и, тем больше продолжительность возможного перетопа. Из графика, представленного на рис. 2, построенного для г. Воронежа, видно, что значения уменьшаются с уменьшением температурного графика, следовательно, продолжительность перетопа увеличивается.


Например для Воронежа, используя уравнения табл., получим следующие данные: при графике 150/70 t ни =2,7 О С, при графике 130/70 t ни =-0,2 О С, при 110/70 t ни.=-4,3 0 С, при 95/70 t н. и =-9,1 О С. Для рассматриваемой территории средние температуры наружного воздуха для декабря, января и февраля составляют -6,2, -9,8, -9,6 О С соответственно, что означает при использовании графика 95/70 и существующих неавтоматизированных ИТП перетопы в течение большей части отопительного периода. Рассмотренный пример позволяет еще раз убедиться в необходимости реконструкции ИТП многоквартирных домов, особенно в условиях перехода источниками теплоснабжения на пониженные температурные графики.