Вода из воздуха: Как работают генераторы атмосферной воды. Способ извлечения воздуха из воды

Принцип действия

ГВ представляет собой пирамидальный каркас с влагопоглощающим наполнителем. Пирамидальный каркас образован четырьмя стойками поз. 3, приваренными к основанию поз. 4, выполненною из металлического уголка.

В пространство между уголками основания вварена металлическая сетка поз. 15; снизу к основанию при помощи накладок поз. 6 крепится полиэтиленовый поддон поз. 5 с отверстием посередине.

Внутреннее пространство сетчатого каркаса плотно (но без деформации стенок) заполняется влагопоглощающим материалом. Снаружи на пирамидальный каркас надевается прозрачный купол поз. 1, который фиксируется при помощи четырех растяжек поз. 8 и амортизатора поз. 14. ГВ имеет два рабочих цикла: поглощение влаги из воздуха наполнителем; выпаривание влаги из наполнителя с последующей ее конденсацией на стенках купола.

С заходом солнца прозрачный купол поднимают, чтобы обеспечить доступ воздуха к наполнителю; наполнитель поглотает влагу всю ночь.

Утром купол опускается и герметизируется амортизатором; солнце выпаривает влагу из наполнителя, пар собирается в верхней части пирамиды, конденсат стекает по стенкам купола на поддон и через отверстие в нем наполняет водой подставленную емкость.

Изготовление генератора воды

Подготовку к изготовлению ГВ начинают со сбора наполнителя.

В качестве наполнителя используются обрезки газетной бумаги; бумагу от газет нужно брать свободную от типографского шрифта во избежание засорения получаемой воды соединениями свинца.

Работа по сбору бумаги займет немало времени, вот за это время изготавливаются остальные элементы ГВ.

Основание сваривается из металлических уголков с размерами полок 35x35 мм, снизу к нему привариваются четыре опоры поз. 10 из таких же уголков и восемь кронштейнов поз. 13. Кронштейны соединяются между собой стальными прутками поз. 17 длиной 930 мм. диаметр 10 мм.

Сверху на полки уголков приваривается металлическая сетка с размером ячеек 15x15 мм. диаметр проволоки сетки 1,5-2 мм.

Из стальной ленты вырезаются четыре накладки поз. 6. По отверстиям в накладках сверлятся отверстия диаметром 4,5 мм в уголках основания и нарезается резьба под винты ВМ 5; Затем основание устанавливают на место, определенное для ГВ на садовом участке, огороде и т.д.

Место нужно выбирать так, чтобы ГВ не затенялся деревьями и постройками. После выбора места опоры основания фиксируется в земле цементным раствором. Допускается к опорам приварить опорные пятаки диаметром 100 мм из стального листа толщиной 2 мм.

После этого в углы квадрата основания привариваются поочередно четыре стойки таким образом, стойки оказались длинной 30 мм оказались в центре основания на высоте примерно.

Материал поперечин такой же как у стоек.

Затем из полиэтиленовой пленки толщиной 1 мм вырезается поддон поз. 5; края поддона, которые окажутся под накладками, подворачивают для усиления места крепления. В центре поддона вырезают круглое отверстие диаметром 70 мм - для стока воды. Края отверстий также можно усилить путем приваривания дополнительной накладки из полиэтилена.

Далее производят фиксацию на стойках сетчатого каркаса, представляющего собой мелкоячеистую рыболовную сеть с размером ячеек 15x15 мм. Сеть подвязывается к стойкам и краям поддона из металлической сетки при помощи х/б тесьмы так. чтобы сеть была туго натянута между стоек.

Желательно также подвязать сеть и к поперечинам, поделив внутренний объем пирамиды на два отсека.

Перед подвязкой сети к последней стойке, отсеки (начиная с верхнего) получившегося сетчатого каркаса плотно заполняется скомканными обрезками газетной бумаги. Заполнение производить так, чтобы не оставалось свободного места внутри пирамиды и выступание сетчатых стенок было минимальным.

Затем приступают к изготовлению прозрачного купола.

Он выполнен из полиэтиленовой пленки, раскрой которой производится согласно чертежа поз. 1 и сваривается паяльником по плоскостям А, А1. Шов выполнять без перегрева, чтобы полиэтилен не становился ломким в месте сварки.

Для предотвращения нарушения целостности купола в вершине пирамиды ее накрывают своеобразной полиэтиленовой "шапочкой" - фрагмент В по чертежу поз. 1. Затем, предварительно надев фрагмент В на пирамиду, аккуратно надевают на каркас купол. Расправив купол, сваривают между собой края плоскостей С: получается своеобразная крыша.

Эксплуатация

С заходом солнца прозрачный купол подворачивают до уровня поперечин и фиксируют в таком положении растяжками, надев крюки на прутки поз. 17.

За ночь бумага вберет в себя влагу и, утром купол опускают, фиксируя его нижний край на основании амортизатором.

За день солнце раскалит пирамиду, влага из бумаги испарится, пар по мере остывания конденсируется на стенках в воду, которая стекает вниз. Воду набирают, подставив какую-либо емкость под отверстие в полиэтиленовом поддоне.

С заходом солнца цикл повторяют.


Изобретение относится к водолазной технике и может быть использовано при создании аппаратов для автономного подводного плавания. Способ извлечения воздуха из воды путем газообмена между водой и газовой средой полой камеры, ограниченной пленкой-мембраной, отличается тем, что в качестве пленки-мембраны применяют пористый материал со сквозными порами диаметром до 100 мкм. Газообмен осуществляют при давлении воздуха в полой камере, превышающем суммарное давление атмосферы и гидростатического столба погружения камеры. Достигается увеличение скорости газообмена между воздухом камеры и водой и снижение количества используемой пленки-мембраны. 4 з.п. ф-лы.

Изобретение относится к области проведения подводных работ и может быть использовано при создании аппаратов для автономного подводного плавания с практически неограниченным временем пребывания под водой, а также для жизнеобеспечения людей под водой и их деятельности. В настоящее время для этих целей используют акваланги или замкнутые, герметичные устройства типа подводных лодок. В первом случае для дыхания под водой используют баллоны со сжатым или сжиженным газом, в состав которого входит кислород, а во втором случае, как правило, используют регенерационные химические элементы для сорбции углекислого газа и восстановления кислорода (патент РФ 2138421, B 63 С, 11/00, 11/36, опубл. 1999 г.). Недостатками известных решений являются сложность и дороговизна, а время пребывания под водой ограничивается запасом газа в баллоне или объемом регенерационных элементов. Наиболее близким к предлагаемому способу по своей сущности является способ, основанный на извлечении кислорода из воды и выводе углекислого газа через полую камеру, выполненную из селективных пленочных пластмассовых мембран, который нами принят за прототип ("Наука и жизнь", 1965 г., 3, с.139; "Наука и жизнь", 1967 г., 2, с. 86). Однако существенным недостатком способа является то, что скорость газообмена между воздухом и водой, зависящая от величины скорости диффузии кислорода и углекислого газа через мембрану, при небольшой движущей силе (определяемой разницей парциальных давлений кислорода внутри камеры и снаружи над водой) является весьма низкой, вследствие чего для обеспечения человека кислородом требуется мембрана площадью 6 м 2 , что весьма дорого, требует сложной конструкции камеры и применения дефицитных пластмассовых материалов. Задачей предлагаемого изобретения является существенное увеличение скорости газообмена между воздухом камеры и водой и снижение количества используемой пленки-мембраны. Поставленная задача решается за счет того, что в способе извлечения воздуха из воды путем газообмена между водой и газовой средой полой камеры, пленкой-мембраной, при этом в качестве пленки-мембраны применяют пористый материал со сквозными порами диаметром до 100 мкм, причем газообмен осуществляется при давлении воздуха в полой камере, превышающем суммарное давление атмосферы и гидростатического столба погружения камеры. Кроме того, давление воздуха в камере ниже давления, необходимого для преодоления сил поверхностного натяжения воды на границе раздела газовой и жидкой фаз в порах пленки мембраны. Кроме того, давление воздуха в камере поддерживают путем принудительной подачи газа. В качестве газа используют воздух или кислород, или азот, или гелий, или их смеси. В качестве пленки-мембраны применяют тканые или нетканые полимерные, хлопчатобумажные, шерстяные, синтетические материалы. В настоящем изобретении используются силы поверхностного натяжения на границе раздела фаз (в данном случае воздух-вода); силы поверхностного натяжение воды позволяют поддерживать избыточное давление воздуха. Граница раздела фаз при этом находится в порах используемой мембраны. Таким образом, в порах мембраны устанавливается непосредственный контакт между газовой средой и водой и газообмен осуществляется непосредственно, минуя диффузию через вещество мембраны, что значительно увеличивает его скорость, а это, в свою очередь, позволяет снизить площадь мембраны. Достаточно всего 10-50 мм водяного столба избыточного давления, чтобы исключить попадание воды внутрь камеры, хотя газообмен в целом и газообмен по отдельным газовым компонентам проходит и при значительно больших значениях избыточного давления. Интенсивность газообмена зависит от разницы парциальных давлений газовых компонентов внутри камеры и над соприкасающейся с мембраной водой. Выбор материала и размера пор мембран для создания полой камеры проводился на специальном стенде-камере. Сверху камеры устанавливался образец пористой мембраны диаметром 50 мм и укреплялся сверху нижней полой герметичной части стенда. Нижняя часть стенда снабжена манометром для замера давления воздуха. Кроме того, к нижней части стенда подведена подача воздуха. При установлении сухой пористой мембраны воздух практически беспрепятственно проходит через поры мембраны. При погружении стенда в воду ее сопротивление многократно увеличивается, так как на границе раздела фаз воздух-вода в порах мембраны силы поверхностного натяжения воды препятствует свободному прохождению воздуха. Сопротивление полой мембраны обратно пропорционально диаметру отверстий пор и изменяется от 5 мм водяного столба при диаметре пор 100 мкм до нескольких атмосфер избыточного давления при диаметре пор менее 0,01 мкм. При дальнейшем погружении стенда под воду сопротивление мембраны дополнительно возрастает на величину гидростатического давления столба воды и зависит от глубины погружения. Проверка газообмена между водой и полой камерой осуществлялась на специально созданных аппаратах. Результаты испытаний приведены в нижеследующих примерах, которые иллюстрируют, но не ограничивают возможность использования предлагаемого изобретения. Пример 1. Испытатель через загубник с патрубком, соединенным с полой камерой объемом около 100 л, образованной путем обтяжки смоченной водой хлопчатобумажной тканью двух колец диаметром по 800 мм с размером сквозных пор до 100 мкм при расстоянии между кольцами 200 мм, опускался под воду на глубину от 0,3 до 1,5 м. Давление внутри камеры было на 30-50 мм водяного столба больше суммарного давления атмосферы и гидростатического столба, которое изменялось от 1,03 до 1,15 ата. При опускании камеры в воду к ней подвешивался груз для преодоления выталкивающей силы воды. При этом дыхание осуществлялось только воздухом, находящимся внутри камеры. Выдох осуществлялся также внутрь камеры. Время, проведенное испытателем под водой, составляло 50 мин. Вдох и выдох через камеру осуществлялся без заметных усилий. В отсутствие газообмена между воздухом камеры и водой испытатель мог бы дышать данным объемом воздуха не более 10 мин, после чего из-за исчерпывания кислорода и накопления СО 2 дыхание оказалось бы невозможным. Следовательно, газообмен между воздухом камеры и водой осуществлялся нормально. Пример 2. Способ осуществляют аналогично примеру 1, но в качестве пористых мембран применяют "ядерные" фильтры на основе полиэтилентерефталата с диаметром пор 0,01 мкм. Испытатель провел под водой 40 мин. Пример 3. Способ осуществляют аналогично примеру 1, но в качестве пористых мембран применяют комбинированную ткань на основе шерстяных и синтетических волокон. Диаметр пор материала находится в пределах от 15 до 80 мкм. Испытатель провел под водой 2,0 ч, опускаясь на глубину до 2,6 м. Давление внутри камеры было на 90 мм водяного столба больше суммарного давления атмосферы и гидростатического столба, составлявшего 1,26 ата. Пример 4. Способ осуществляют аналогично примеру 1, но погружение проводят на глубину 7,0 м при давлении внутри камеры на 70 мм водяного столба выше значения 1,7 ата. При этом за счет гидростатического давления камера сжималась и объем ее уменьшался приблизительно до 58 л. Для восстановления объема камеры из баллона со сжатым воздухом через специальное устройство была проведена подпитка воздуха до восстановления объема камеры 100 л. Дыхание не вызывало затруднений у испытателя. Опыт продолжался 30 мин. Пример 5. Способ осуществляют аналогично примеру 4, но подпитку для восстановления объема проводят смесью гелий - кислород с 20 об.% кислорода. В течение 45 мин испытатель дышал этой смесью без заметных затруднений при вдохе и выдохе. При этом часть подаваемого газа выходила из камеры через наиболее крупные поры мембраны. Давление внутри камеры было на 220 мм водяного столба выше значения 1,7 ата. Пример 6. Из материала на основе вискозы и стеклоткани с диаметром пор менее 70 мкм был изготовлен купол объемом 50 л. Купол помещают под воду и заполняют его объем азотом. После 5 ч нахождения купола под водой отбирают пробу газа на содержания кислорода. Анализ показал присутствие кислорода под куполом в количестве 18,7 об.%, что свидетельствует о диффузии кислорода из воды. Как видно из представленных примеров, предложенный способ позволяет работать под водой в течение длительного времени (до двух и более часов) на различных глубинах, при этом за счет извлечения воздуха (кислорода) из воды концентрация кислорода поддерживается постоянной даже при значительно меньшей (около 1,5 м 2) поверхности мембраны.

Формула изобретения

1. Способ извлечения воздуха из воды путем газообмена между водой и газовой средой полой камеры, ограниченной пленкой-мембраной, отличающийся тем, что в качестве пленки-мембраны применяют пористый материал со сквозными порами диаметром до 100 мкм, причем газообмен осуществляют при давлении воздуха в полой камере, превышающем суммарное давление атмосферы и гидростатического столба погружения камеры.2. Способ по п.1, отличающийся тем, что давление воздуха в камере ниже давления, необходимого для преодоления сил поверхностного натяжения воды на границе раздела газовой и жидкой фаз в порах пленки-мембраны.3. Способ по п.1 или 2, отличающийся тем, что давление воздуха в камере поддерживают путем принудительной подачи газа.4. Способ по п.3, отличающийся тем, что в качестве газа используют воздух, или кислород, или азот, или гелий, или их смеси.5. Способ по любому из пп.1-4, отличающийся тем, что в качестве пленки-мембраны применяют тканые или нетканые полимерные, хлопчатобумажные, шерстяные, шелковые, синтетические материалы.

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Воду надо ценить и не лить почём зря. В современном мире об этом знают даже дети. Городскому жителю проще всего оценить всю значимость этого суждения, если представить себя в пустыне, где воду можно достать только лишь из-под земли и из воздуха. И то при определённой сноровке. Но мы расскажем не о способах сбора чистой воды в экстремальных обстоятельствах, а об устройствах, которые облегчают жизнь людей, добывая её из воздуха.

Сколько раз уже говорилось, что чистая, пригодная к употреблению вода – основа всей жизни на Земле и с каждым годом становится всё более и более редкой. Что в скором времени войны будут разворачиваться не из-за нефти и прочих полезных ископаемых, а именно из-за неё родимой?..

Уже сейчас примерно один человек из пяти испытывает трудности с нехваткой питьевой воды. И даже горожанам, привыкшим к комфорту, предоставляемому современными системами водоснабжения, не стоит об этом забывать.

Как там говорили на уроках географии? «Большая часть поверхности Земли покрыта водой…» А это примерно 326 миллионов кубических миль воды. 97% из них – солёная из морей и океанов, и лишь 3% — пресная. Но и из этой части 99,3% находятся в виде льда, а половина того, что осталось, – под землёй.

Круговорот воды в природе и участие в нём генераторов воды из воздуха (иллюстрация AirWater Corporation).

К 2025 году девять миллиардов человек на планете будут делить всё то же количество доступной воды. Большинство из них будут жить в больших перенаселённых городах, оказывая гигантское давление на местные водные ресурсы.

А если вспомнить о том, что городские водопроводы постоянно приходится чинить, латать и обновлять, то будущее кажется совсем уж чёрным и незавидным.

Так где же взять чистую воду? В воздухе содержится, по разным оценкам, от 12 до 16 тысяч кубических километров влаги (или 0,000012% всей воды на Земле). Этот объём можно сравнить с количеством воды в Великих озёрах Северной Америки (самом крупном природном хранилище пресной воды в мире).

Между тем во многих даже самых бедных и густонаселённых странах мира воздух настолько влажный и тёплый, что воду можно было бы конденсировать прямо из него.

Кубический метр воздуха содержит (в зависимости от влажности) от 4 до 25 граммов водяных паров. Существующие ныне установки могут собрать в среднем около 20-30% от этого количества. Самые лучшие условия для них (высокие влажность и температура) – в странах, расположенных в пределах 30 градусов широты от экватора.

Так как природа постоянно пополняет запасы воды в воздухе, устройства, производящие ценную жидкость из воздуха, не могут ничем навредить окружающей среде (даже если их будет установлено очень много в каком-то определённом месте). Получается, процесс может идти бесконечно и работа аппаратов ограничена лишь сроком их службы.

Поговорим о том, как работают генераторы атмосферной воды (AWG – Atmospheric water generator). Первые системы, поставляющие воду из воздуха, были разработаны ещё в 1990-х.

По сути они были похожи на систему, что используется для дегидратации воздуха в холодильниках (ещё можно вспомнить про дождь из-под кондиционеров в современном мегаполисе). Компрессор заставляет хладагент проходить через хитросплетение трубок, в то же время вентилятор прогоняет над трубками воздух. Если температура охлаждающих спиралей чуть ниже точки росы, около 40% жидкости из воздуха будет конденсироваться на них, стекая в специальный контейнер. Если же трубки будут слишком холодными, то на их поверхности будет образовываться лёд (что, конечно же, отразится на функциональности аппарата).


Карта доступности воды Gleick 1998 (иллюстрация Water Master).

Но то в холодильнике, а в генераторах воды из атмосферы также присутствуют специальные воздушные фильтры, ультрафиолетовые стерилизаторы и угольные фильтры для собранной воды, приборы, обогащающие её кислородом, датчики уровня воды в контейнере.

Оптимальные параметры работы установок: температура выше 15,5 °С и относительная влажность (RH) выше 40%, а также не слишком большая высота над уровнем моря (не выше 1200 метров). Хотя в большинстве инструкций говорится о 20-40 °С и RH 60-100%.

Понятно, что установка таких генераторов предполагает наличие входа воздуха извне помещения. Тут целый букет факторов: как это ни удивительно, атмосферный воздух намного чище «домашнего», а «офисный» уже высушен кондиционерами. Да и собирать влагу из помещения вредно: люди и так страдают от его низкой влажности. Хотя самые маленькие установки при наличии хорошей вентиляции можно поставить на кухне или в ванной.

Где может пригодиться такой дегидратор? Начинали мы с пустыни – там он пригодится жителям далёких поселений, для которых подвоз бутилированной воды дорог или невозможен, военным, ведущим боевые действия вдали от источников воды, и представителям гуманитарных и спасательных миссий (в том числе врачам).

AWG могут быть использованы для домашних и сельскохозяйственных нужд, в офисных помещениях, школах, отелях, на кораблях, совершающих круизные путешествия, в спортивных центрах и прочих общественных местах.

В коммерческих целях некоторые производители предлагают даже вариант розлива воды из воздуха в бутылки!

А теперь попробуем рассказать об основных предлагаемых продуктах на рынке добычи воды из воздуха.

Element four

Air2Water

Устройства , разработанные компанией Air2Water, дают от 3 до 38 литров воды в сутки, то есть являются не столь уж большими.

Принцип работы этих машин соответствует всем остальным, хотя есть и некоторые отличия: поначалу воздух проходит электростатические фильтры, которые задерживают около 93% взвешенных частиц. Конденсированная вода проходит освещение ультрафиолетовой лампой в течение 30 минут (на этом этапе умирает 99,9% микробов и бактерий), затем отделяется осадок, на угольных фильтрах задерживается около 99,9% вредных летучих органических веществ, а микропористая мембрана отделяет вирусы. Но и это ещё не всё – каждый час воду в контейнере снова обрабатывают ультрафиолетом.

Основное производство аппаратов сосредоточено в Китае и Сингапуре, хотя доставка осуществляется по всему миру.

Aquair – американское дочернее предприятие RG Global Lifestyles , появившееся на свет в 2004 году. Её конёк, пожалуй, в том, что кроме просто высасывания влаги из воздуха она специализируется ещё и на системах очистки питьевой воды (результат – пятиступенчатый фильтр).

Экология потребления.Наука и техника:Сколько раз уже говорилось, что чистая, пригодная к употреблению вода – основа всей жизни на Земле и с каждым годом становится всё более и более редкой. Что в скором времени войны будут разворачиваться не из-за нефти и прочих полезных ископаемых, а именно из-за неё родимой?..

Сколько раз уже говорилось, что чистая, пригодная к употреблению вода – основа всей жизни на Земле и с каждым годом становится всё более и более редкой. Что в скором времени войны будут разворачиваться не из-за нефти и прочих полезных ископаемых, а именно из-за неё родимой?.. Уже сейчас примерно один человек из пяти испытывает трудности с нехваткой питьевой воды. И даже горожанам, привыкшим к комфорту, предоставляемому современными системами водоснабжения, не стоит об этом забывать.

Как там говорили на уроках географии? «Большая часть поверхности Земли покрыта водой...» А это примерно 326 млн кубических миль воды. 97% из них – солёная из морей и океанов, и лишь 3% – пресная. Но и из этой части 99,3% находятся в виде льда, а половина того, что осталось, – под землёй.

К 2025 году девять миллиардов человек на планете будут делить всё-то же количество доступной воды. Большинство из них будут жить в больших перенаселённых городах, оказывая гигантское давление на местные водные ресурсы. А если вспомнить о том, что городские водопроводы постоянно приходится чинить, латать и обновлять, то будущее кажется совсем уж чёрным и незавидным.

Так где же взять чистую воду? В воздухе содержится, по разным оценкам, от 12 до 16 тыс. км3 влаги (или 0,000012% всей воды на Земле). Этот объём можно сравнить с количеством воды в Великих озёрах Северной Америки (самом крупном природном хранилище пресной воды в мире).

Между тем во многих даже самых бедных и густонаселённых странах мира воздух настолько влажный и тёпый, что воду можно было бы конденсировать прямо из него.

Кубический метр воздуха содержит (в зависимости от влажности) от 4 до 25 граммов водяных паров. Существующие ныне установки могут собрать в среднем около 20-30% от этого количества. Самые лучшие условия для них (высокие влажность и температура) – в странах, расположенных в пределах 30 градусов широты от экватора.

Так как природа постоянно пополняет запасы воды в воздухе, устройства, производящие ценную жидкость из воздуха, не могут ничем навредить окружающей среде (даже если их будет установлено очень много в каком-то определённом месте). Получается, процесс может идти бесконечно и работа аппаратов ограничена лишь сроком их службы.

Поговорим о том, как работают генераторы атмосферной воды (AWG – Atmospheric water generator). Первые системы, поставляющие воду из воздуха, были разработаны ещё в 1990-х.

По сути, они были похожи на систему, что используется для дегидратации воздуха в холодильниках (ещё можно вспомнить про дождь из-под кондиционеров в современном мегаполисе). Компрессор заставляет хладагент проходить через хитросплетение трубок, в то же время вентилятор прогоняет над трубками воздух. Если температура охлаждающих спиралей чуть ниже точки росы, около 40% жидкости из воздуха будет конденсироваться на них, стекая в специальный контейнер. Если же трубки будут слишком холодными, то на их поверхности будет образовываться лёд (что, конечно же, отразится на функциональности аппарата).

Но то в холодильнике, а в генераторах воды из атмосферы также присутствуют специальные воздушные фильтры, ультрафиолетовые стерилизаторы и угольные фильтры для собранной во¬ы, приборы, обогащающие её кислородом, датчики уровня воды в контейнере.

Оптимальные параметры работы установок: температура выше 15,5°С и относительная влажность (RH) выше 40%, а также не слишком большая высота над уровнем моря (не выше 1200 метров). Хотя в большинстве инструкций говорится о 20-40 °С и RH 60-100%.

Понятно, что установка таких генераторов предполагает наличие входа воздуха извне помещения. Тут целый букет факторов: как это ни удивительно, атмосферный воздух намного чище «домашнего», а «офисный» уже высушен кондиционерами. Да и собирать влагу из помещения вредно: люди и так страдают от его низкой влажности. Хотя самые маленькие установки при наличии хорошей вентиляции можно поставить на кухне или в ванной.

Где может пригодиться такой дегидратор? Начинали мы с пустыни – там он пригодится жителям далёких поселений, для которых подвоз бутилированной воды дорог или невозможен, военным, ведущим боевые действия вдали от источников воды, и представителям гуманитарных и спасательных миссий (в том числе врачам).

AWG могут быть использованы для домашних и сельскохозяйственных нужд, в офисных помещениях, школах, отелях, на кораблях, совершающих круизные путешествия, в спортивных центрах и прочих общественных местах. В коммерческих целях некоторые производители предлагают даже вариант розлива воды из воздуха в бутылки!

А теперь попробуем рассказать об основных предлагаемых продуктах на рынке добычи воды из воздуха.

Element four

Основной продукт компании Element four называется «Водяная мельница» (WaterMill).

Она собирает до 12 л воды в сутки для различных домашних нужд и при этом обладает приятным дизайном. Владельцы могут не беспокоиться о наличии в собранной жидкости токсинов и бактерий. Специальные системы заботятся о затрате устройством как можно меньшего количества энергии (а в скором времени установку можно будет подсоединить к альтернативным источникам энергии). На специальном экране отображается информация о температуре, относительной влажности и количестве полученной влаги.

Цены на WaterMill объявят в начале 2009 г. А началось все в 2004 г., когда Джонатан Ритчи и Рик Ховард решили создать свой генератор воды из воздуха. Поначалу они работали в канадской исследовательской компании Freedom Water, но в 2008-м был произведён ребрендинг, и вот Element Four выпустила свой первый продукт.

AirWater Corporation

Эта компания была образована в феврале 2003 г. после корпоративного решения Universal Communication Systems (UCSY) начать работу в области высоких технологий по извлечению воды из воздуха. Впрочем, различные научные исследования она проводила более 13 лет, в течение которых запатентовала многие свои технологические решения.

AirWater Corporation специализируется на установках, поставляющих воду в количестве от 100 до 5000 литров в день. Правда, и габариты у этих аппаратов соответствующие. Есть даже специальные мобильные установки, снабжающие питьевой водой армейские подразделения в полевых условиях.

В арсенале этой фирмы присутствуют мобильные устройства и те, что одновременно делают лёд. У Air Water Corporation уже существуют решения для ирригации и отдалённых районов, в которых их продукт может работать от солнечных батарей (кстати, эта компания производит и их тоже).

Более крупные (и сопоставимые) генераторы воды из атмосферного воздуха производят также компании White Buffalo Nation и Aqua Sciences.

Устройства, разработанные компанией Air2Water, дают от 3 до 38 литров воды в сутки, то есть являются не столь уж большими.

Принцип работы этих машин соответствует всем остальным, хотя есть и некоторые отличия: поначалу воздух проходит электростатические фильтры, которые задерживают около 93% взвешенных частиц. Конденсированная вода проходит освещение ультрафиолетовой лампой в течение 30 минут (на этом этапе умирает 99,9% микробов и бактерий), затем отделяется осадок, на угольных фильтрах задерживается около 99,9% вредных летучих органических веществ, а микропористая мембрана отделяет вирусы. Но и это ещё не всё – каждый час воду в контейнере снова обрабатывают ультрафиолетом. Основное производство аппаратов сосредоточено в Китае и Сингапуре, хотя доставка осуществляется по всему миру.

Aquair

Aquair – американское дочернее предприятие RG Global Lifestyles, появившееся на свет в 2004 г. Её конёк, пожалуй, в том, что кроме просто высасывания влаги из воздуха она специализируется ещё и на системах очистки питьевой воды. В результате получается пятиступенчатый фильтр (схема установки показана на предыдущей стр.).

Кстати, на сайте компании можно найти калькулятор, который позволяет приблизительно подсчитать расход воды на разные нужды в течение года.

Другие компании

Австралийская фирма AirtoH2O тоже делает воду из воздуха и гордится тем, что насобирала более 360 тысяч литров живительной влаги (о чём открыто сообщает на своём сайте). Её продукция почти ничем не отличается от других таких же мелких производителей: китайского Water Master и расположившегося в Техасе Aqua Maker.
Добавим, что о цене литра воды, полученной любой из установок, говорить сложно. Однако все производители заявляют о том, что у них низкие затраты энергии, а стоимость литра оценивается от 1 до 15 амер. центов.

Вообще, подсчёт таких значений – сложное дело, ведь стоимость литра драгоценной жидкости зависит от вместимости генератора (ежегодного выхода воды), а также от влажности и температуры воздуха за его бортом.
Отметим также, что существуют альтернативные методы получения воды из воздуха. Так, один из методов основан на интенсивном впитывании атмосферной влаги жидким хлоридом лития. Полученная смесь затем проходит несколько полупронецаемых мембран благодаря эффекту обратного осмоса, в результате чего вода отделяется от литиевой соли.

Основные же выводы таковы: направление это определённо перспективное и почти безвредное для окружающей среды. Однако вряд ли любая из существующих компаний сможет решить мировую проблему нехватки чистой питьевой воды. Отчасти из-за того, что недостаточно крупны пока что производители воды из воздуха. Кроме того, граждан развитых стран не так-то просто научить ценить природные ресурсы, а бедным странам вряд ли по карману обеспечить всех своих жителей удобным и достаточно простым источником воды в виде описанных генераторов. опубликовано

Присоединяйтесь к нам в

» статьёй про то, как получить воду из воздуха . Где попробуем рассмотреть этот вопрос настолько подробно, насколько это возможно.

Как получить воду из воздуха? На самом деле всё очень просто. На эту мысль меня натолкнул видео-ролик от канала Интер, где рассказывалось про некоего изобретателя из США по имени Терри Леблю, который бесплатно раздаёт воду из воздуха для всех желающих. А злобные и неизвестные конкуренты делают набеги на дом этого изобретателя и подавляют его. Собственно, вот сам ролик:

Естественно, первая мысль у здравого человека при просмотре этого ролика: «Что же это такое супер-пупер нашёл этот изобретатель, что его подавляют неизвестные враги?» А вторая мысль: «Надо бы посмотреть про получение воды из воздуха в интернете».

И что оказывается? Оказывается, что этот изобретатель изобрёл велосипед — то есть, прибор, который уже много лет известен, но не очень распространён по ряду причин, о которых мы расскажем далее. Причём не так далеко — в Крыму — есть остатки попросту гигантских генераторов воды именно этим способом, построенных тысячи лет назад. Подробнее про это — в статье «Назначение загадочных пещерных комплексов в «пещерных городах» Крыма «. Но у нас цель — не древность, а свременность, поэтому продолжим работу.

Так, по слухам, получение воды из воздуха путем его конденсации на холодной поверхности известно с глубокой древности. Город Феодосия еще в средние века снабжался водой, которую собирали специально организованными сооружениями, заполненными щебнем, на поверхности которого в засушливые летние месяцы конденсировалось такое количество воды, которое обеспечивало 80 тысяч жителей

Кстати, между прочим, практически каждый из вас знаком с таким прибором, получающим воду. Этот прибор называется «кондиционер». Принцип работы генераторов атмосферной воды — приборов по получению воды из воздуха — аналогичен работе кондиционера.

То есть, последовательность получения воды из воздуха такова:

  1. Влажный воздух проходит через прибор.
  2. Охлаждается.
  3. Влага конденсируется на охлаждающих поверхностях.
  4. И стекает в специальную ёмкость.
  5. Ну а затем очищается от пыли и бактерий — и вуаля, её можно пить!

По составу вода, которая получается из воздуха, сродни дождевой — а, значит, и росе, туману, дистилированной, обратноосмотической и талой воде. То есть, вода из воздуха относится к классу «слабоминерализованные воды «. В отличие от или воды обычной, слабоминерализованные воды содержат до 50 миллиграмм разнообразных солей в литре (кубическом дециметре).

Ранее мы упоминали, что генераторы атмосферной воды менее распространены, чем обычные фильтры, по ряду причин. Разберёмся в этом подробнее. Факторы, которые влияют на производительность генераторов атмосферной воды и их энернозатратность:

  • количество воды
  • температура воздуха
  • пропущенный обЪём воздуха в единицу времени.

Соответственно, чем более влажный воздух, тем меньше нужно энергии на его охлаждение для конденсации влаги. И тем более экономически выгодно получение воды из воздуха. Соответственно, чем более нагрет воздух, тем больше нужно энергии, чтобы его охладить. И чем больше воздуха охлаждается в единицу времени, тем больше будет получено воды.

В условиях жаркого и сухого воздуха, то есть, в тех местах, где вода действительно необходима, атмосферные генераторы воды будут потреблять наибольшее количество энергии. Но это количество можно уменьшить, если повлиять на перечисленные факторы.

Итак, нужно понимать:

Генератор воды из воздуха = кондиционер

Так, существует направление в разработке атмосферных генераторов воды, которое предполагает использование дополнительной фазы: между первым и вторым шагом получения воды из воздуха появляется ещё один — применение адсорбента или абсорбента , то есть, веществ, которые тем или иным способом поглощают воду из воздуха. Ну а потом вода должна выделиться из поглотившего её материла (для чего материал, например, нагревается) в виде испарений, и уже в более концентрированном виде охлаждается и конденсируется при меньшей температуре.

Воду предполагается поглощать ночью, когда относительная влажность повышена, а извлекать днем путем использования солнечной энергии для нагрева воздуха, подаваемого в слой адсорбента (воздухонагревателем в этом случае является приемник солнечной энергии).

В качестве адсорбента может использоваться широкопористый силикагель, цеолит. В качестве абсорбента — раствор гигроскопичной соли (например, хлорида лития). Возможны комбинации адсорбента и абсорбента, повышающие эффективность поглощения и выдачи воды. Для уменьшения энергозатрат на получение воды предлагают использовать аккумуляторы тепла и/или холода (в основном в виде дешевых, но массивных конструкций из камня или бетона), работающие в противофазе, противоточный теплообменник либо тепловой насос для рекуперации тепла конденсации воды

Естественно, не всегда все эти условия сочетаются оптимально, и адсорбенты в них не применяются, и именно поэтому сейчас более выгодно очищать водопроводную воду с помощью разнообразных , а не получать её из воздуха. Но с ростом дефицита воды вполне возможно, что обычные бытовые фильтры будут постепенно вытесняться генераторами атмосферной воды.

И, кстати, одновременно с ростом дефицита воды прогнозируется и глобальное потепление. Так что актуальными становятся не только генераторы, но и кондиционеры. И, следовательно, вывод — если уж и задумываться о создании генератора атмосферной воды, то лишь в комплекте с кондиционером, что снижает и себестоимость очищенной воды, и себестоимость охлаждения комнаты. Так что если вы — владелец кондиционера, то вы также владеете генератором атмосферной воды и легко можете получать воду из воздуха.

Ну или, если вы — владелец дачного участка, и хотите обеспечить себя водой из воздуха — то можно воспользоваться изобретением со странички http://www.freeseller.ru/dompower/vodosnab/2401-generator-vody-iz-vozdukha.html, где в качестве адсорбента используется газета, а в качестве источника энергии — солнце.

И, напоследок, интересный прибор для получения воды из воздуха — водяной конус:

On7gbKIa5zc

Система очень проста, и чем больше площадь поверхности для конденсации влаги, тем произвоидтельнее установка.

Таким образом, получить воду из воздуха очень просто!