Дымовая труба, расчет.

При устройстве печи в идеале хочется иметь такую конструкцию, которая автоматически давала бы столько воздуха, сколько надо для горения. С первого взгляда, это можно сделать с помощью дымовой трубы. Действительно, чем более интенсивно горят дрова, тем больше должно быть горячих дымовых газов, тем больше должна быть и тяга (модель карбюратора). Но это не так. Тяга вовсе не зависит от количества образующихся горячих дымовых газов. Тяга — это перепад давления в трубе от оголовка трубы до топливника. Определяется же она высотой трубы и температурой дымовых газов, а точнее - их плотностью.

Тягу определяют по формуле:

F= A(p в — p д) h

где F - тяга, А - коэффициент, p в - плотность наружного воздуха, p д - плотность дымовых газов, h - высота трубы

Плотность дымовых газов рассчитывают по формуле:

p д = p в (273+t в) / (273+t д)

где t в и t д - температура в градусах Цельсия наружного атмосферного воздуха вне трубы и дымовых газов в трубе.

Скорость движения дымовых газов в трубе (объёмный расход, то есть засасывающая способность трубы) G вовсе не зависит от высоты трубы и определяется разностью температур дымовых газов и наружного воздуха, а также площадью поперечного сечения дымовой трубы. Отсюда следует ряд практических выводов.

Во-первых , дымовые трубы делают высокими вовсе не для того, чтобы повысить расход воздуха через топливник, а только для увеличения тяги (то есть перепада давления в трубе). Это очень важно для предотвращения опрокидывания тяги (дымления печи) при ветровом подпоре (величина тяги должна всегда превышать возможный ветровой подпор).

Во-вторых , регулировать расход воздуха удобно с помощью устройств, изменяющих площадь живого сечения трубы, то есть с помощью задвижек. При увеличении площади поперечного сечения канала дымовой трубы, например, вдвое - можно ожидать примерно двукратного увеличения объёмного расхода воздуха через топливник.

Поясним это простым и наглядным примером. Имеем две одинаковые печи. Объединяем их в одну. Получаем вдвое большую печь с удвоенным количеством горящих дров, с двукратными расходом воздуха и площадью поперечного сечения трубы. Или (что является тем же самым), если в топливнике разгорается всё больше дров, то необходимо всё больше и больше открывать задвижки на трубе.

В-третьих , если печка горит нормально в установившемся режиме, а мы добавочно пустим в топливник поток холодного воздуха мимо горящих дров в трубу, то дымовые газы тотчас охладятся, и расход воздуха через печь сократится. При этом горящие дрова начнут затухать. То есть мы вроде бы непосредственно на дрова не влияем и направляем дополнительный поток мимо дров, а получается так, что труба может пропустить меньше дымовых газов, чем раньше, когда этот дополнительный поток воздуха отсутствовал. Труба сама сократит поток воздуха на дрова, что был ранее, и к тому же не пустит добавочный поток холодного воздуха. Иными словами, дымовая труба запрётся.

Вот почему так вредны подсосы холодного воздуха через щели в дымовых трубах, излишние потоки воздуха в топливнике да и вообще какие-либо теплопотери в дымовой трубе, приводящие к снижению температуры дымовых газов.

В-четвёртых , чем больше коэффициент газодинамического сопротивления дымовой трубы, тем меньше расход воздуха. То есть стенки дымовой трубы желательно выполнять как можно более гладкими, без завихрений и без поворотов.

В-пятых , чем меньше температура дымовых газов, тем более резко изменяется расход воздуха при колебаниях температуры дымовых газов, что и объясняет ситуацию неустойчивости работы трубы при розжиге печи.

В-шестых , при высоких температурах дымовых газов расход воздуха не зависит от температуры дымовых газов. То есть при сильном разгорании печи расход воздуха перестаёт увеличиваться и начинает зависеть только от сечения трубы.

Вопросы неустойчивости возникают не только при анализе тепловых характеристик трубы, но и при рассмотрении динамики газовых потоков в трубе. Действительно, дымовая труба представляет собой колодец, заполненный лёгким дымовым газом. Если этот лёгкий дымовой газ поднимается вверх не очень быстро, то не исключена вероятность того, что тяжёлый внешний воздух может попросту утонуть в лёгком газе и создать падающий нисходящий поток в трубе. Особенно вероятна такая ситуация при холодных стенках дымовой трубы, то есть во время розжига печи.

Рис. 1. Схема движения газов в холодной дымовой трубе: 1 - топливник; 2 - подача воздуха через поддувало; 3-дымовая труба; 4 - задвижка; 5 - каминный зуб; 6-дымовые газы; 7-проваливающийся холодный воздух; 8 - поток воздуха, вызывающий опрокидывание тяги.

а) гладкая открытая вертикальная труба
б) труба с задвижкой и зубом
в) труба с верхней задвижкой

Сплошные стрелки - направления движения лёгких горячих дымовых газов. Пунктирные стрелки - направления движения нисходящих потоков холодного тяжёлого воздуха из атмосферы.

На рис. 1а схематически изображена печь, в которую подаётся воздух 2 и выводятся через дымовую трубу дымовые газы 6. Если поперечное сечение трубы велико (или скорость движения дымовых газов мала), то в результате какой-либо флуктуации в трубу начинает проникать холодный тяжёлый атмосферный воздух 7, достигая даже топливника. Этот падающий поток может заменить «штатный» поток воздуха через поддувало 2. Даже если печь будет заперта на все дверцы и все заслонки воздухозаборных отверстий будут закрыты, то всё равно печь может гореть за счёт поступающего сверху воздуха. Кстати, именно так часто и бывает при догорании углей при закрытых дверях печей. Может даже произойти полное опрокидывание тяги: воздух будет поступать сверху через трубу, а дымовые газы - выходить через дверцу.

В действительности же на внутренней стенке дымовой трубы всегда имеются неровности, наросты, шероховатости, при соударении с которыми дымовые газы и встречные нисходящие холодные воздушные потоки взвихриваются и перемешиваются друг с другом. Холодный нисходящий поток воздуха при этом выталкивается или, нагреваясь, начинает подниматься вверх вперемешку с горячими газами.

Эффект разворачивания нисходящих потоков холодного воздуха вверх усиливается при наличии частично открытых задвижек, а также так называемого зуба, широко применяемого в технологии изготовления каминов (рис. 1б ). Зуб препятствует поступлению холодного воздуха из трубы в каминное пространство и предотвращает тем самым дымление камина.

Нисходящие потоки воздуха в трубе особенно опасны в туманную погоду: дымовые газы не в состоянии испарить мельчайшие капельки воды, охлаждаются, тяга снижается и может даже опрокинуться. Печь при этом сильно дымит, не разгорается.

По той же причине сильно дымят печи с сырыми дымовыми трубами. Для предотвращения возникновения нисходящих потоков особенно эффективны верхние задвижки (рис. 1в ), регулируемые в зависимости от скорости дымовых газов в дымовой трубе. Однако эксплуатация таких задвижек неудобна.

Рис. 2. Зависимость коэффициента избытка воздуха а от времени протопки печи (сплошная кривая). Пунктирная кривая - потребный расход воздуха G потр для полного окисления продуктов сгорания дров (в том числе сажи и летучих веществ) в дымовых газах (в относительных единицах). Штрих-пунктирная кривая - реальный расход воздуха G трубы обеспечиваемый тягой трубы (в относительных единицах). Коэффициент избытка воздуха является частным отделения G трубы на G потр

Устойчивая и достаточно сильная тяга возникает только после прогрева стенок дымовой трубы, на что требуется значительное время, Так что в начале протопки воздуха всегда не хватает. Коэффициент избытка воздуха при этом меньше единицы, и печь дымит (рис. 2 ). И наоборот: по окончании протопки дымовая труба остаётся горячей, тяга долго сохраняется, хотя дрова уже практически сгорели (коэффициент избытка воздуха - больше единицы). Металлические печи с металлическими утеплёнными дымовыми трубами быстрее выходят на режим ввиду малой теплоёмкости по сравнению с кирпичными трубами.

Анализ процессов в дымовой трубе можно продолжить, но уже и так ясно, что как бы ни хороша была сама печь, все её достоинства могут быть сведены к нулю плохой дымовой трубой. Конечно, в идеальном варианте дымовую трубу надо было бы заменить современной системой принудительной вытяжки дымовых газов с помощью электрического вентилятора с регулируемым расходом и с предварительной конденсацией влаги из дымовых газов. Такая система помимо прочего могла бы очищать дымовые газы от сажи, окиси углерода и других вредных примесей, а также охлаждать сбрасываемые дымовые газы и обеспечивать рекуперацию тепла.

Но всё это - в далёкой перспективе. Для дачника и садовода дымовая труба порой и так может стать намного дороже самой печи, особенно в случае отопления многоуровневого дома. Банные дымовые трубы обычно попроще и покороче, но уровень тепловой мощности печи может быть очень большим. Такие трубы, как правило, сильно прогреты по всей длине, из них часто вылетают искры и пепел, но выпадение конденсата и сажи незначительно.

Если вы пока планируете использовать банное здание только как баню, то трубу можно делать и неутеплённой. Если же баня задумывается вами и как место возможного пребывания (временного проживания, ночёвок), особенно зимой, то целесообразнее трубу сразу делать утеплённой, причём качественно, «на всю жизнь». Печки при этом можно менять хоть каждый день, подбирать конструкцию поудачней и по-нужнее, а труба будет одна и та же.

По крайней мере, если печка работает в режиме длительного горения {тления дров), то утепление трубы абсолютно обязательно, поскольку при низких мощностях (1 — 5 кВт) неутеплённая металлическая труба станет совсем холодной, будет обильно течь конденсат, который в самые сильные морозы может даже замёрзнуть и перекрыть льдом трубу. Это особенно опасно при наличии искроуловительной сетки и зонтов с малыми проходными зазорами. Искроуловители целесообразны при интенсивных протопках летом и крайне опасны при слабых режимах горения дров зимой. По причине возможного забивания труб льдом установка дефлекторов и зонтов на печных трубах была запрещена в 1991 году (а на дымоходах газовых печей ещё раньше).

По тем же соображениям не стоит увлекаться высотой трубы - уровень тяги не так уж важен для безоборотной банной печи. Если же она будет поддымливать, всегда можно быстро проветрить помещение. А вот высоту над коньком крыши (не менее 0,5 м) следует соблюсти обязательно для предотвращения опрокидывания тяги при порывах ветра. На пологих же крышах труба должна выступать над снежным покровом. Во всяком случае лучше иметь трубу пониже, но потеплее (чем повыше, но холоднее). Высокие трубы зимой всегда холодные и опасные в эксплуатации.

Холодные дымовые трубы имеют массу недостатков. В то же время неутеплённые, но не очень длинные трубы на металлических печах при растопке прогреваются быстро (много быстрее, чем кирпичные трубы), остаются горячими при энергичной протопке и поэтому в банях (и не только в банях) применяются очень широко, тем более что они относительно дёшевы. Асбоцементные трубы на металлических печах не используют, так как они имеют большой вес, а также разрушаются при перегреве с разлётом осколков.

Рис. 3. Простейшие конструкции металлических дымовых труб: 1 - металлическая круглая дымовая труба; 2 - искроуловитель; 3 - колпак для защиты трубы от атмосферных осадков; 4 - стропила; 5 - обрешётка крыши; 6 -деревянные бруски между стропилами (или балками) для оформления противопожарного проёма (разделки) в крыше или перекрытии (при необходимости); 7 - конёк крыши; 8 - мягкая кровля (рубероид, гидростеклоизол, мягкая черепица, гофрированные картонно-битумные листы и т.п.); 9 - металлический лист для настила крыши и перекрытия проёма (допускается использовать плоский лист ацеида - асбоцементную электроизоляционную доску); 10 - металлическая водоотводная накладка; 11 - асбестовая герметизация зазора (стыка); 12 - металлический колпак-выдра; 13 - потолочные балки (с заполнением пространства утеплителем); 14 - обшивка потолка; 15 - пол чердака (при необходимости); 16 - металлический лист потолочной разделки; 17 - металлические усиливающие уголки; 18 - металлическая крышка потолочной разделки (при необходимости); 19 - утеплитель негорючий термостойкий (керамзит, песок, перлит, минвата); 20 - защитная накладка (металлический лист по слою асбестового картона толщиной 8 мм); 21 - металлический экран трубы.

а) нетеплоизолированная труба;
б) теплоизолированная экранированная труба с сопротивлением теплопередаче не менее 0,3 м 2 -град/Вт (что эквивалентно толщине кирпича 130 мм или толщине утеплителя типа минваты 20 мм).

На рис. 3 представлены типичные монтажные схемы неутеплённых металлических труб. Саму трубу следует приобретать из нержавеющей стали толщиной не менее 0,7 мм. Наиболее ходовой диаметр российской трубы - 120 мм, финской - 115 мм.

По ГОСТ 9817-95 площадь поперечного сечения многооборотной дымовой трубы должна составлять не менее 8 см 2 на 1 кВт номинальной тепловой мощности, выделяющейся в топке при горении дров. Эту мощность не следует путать с тепловой мощностью теплоёмкой печи, выделяющейся с наружной кирпичной поверхности печи в помещение по СНиП 2.04.05-91. Это - одно из многочисленных недоразумений наших нормативных документов. Поскольку теплоёмкие печи обычно топятся лишь 2-3 часа в сутки, то мощность в топке примерно в десять раз больше мощности выделения тепла с поверхности кирпичной печи.

В следующий раз мы поговорим об особенностях монтажа дымовых труб.

Опубликовано: 15.11.2009 | |

При эксплуатации маломощных теплогенераторов, очень большое значение имеет такой фактор, как правильно спроектированный и корректно смонтированный дымоход. Естественно возникает необходимость расчета. Как и всякий теплотехнический расчет, расчет дымоходов бывает конструкционный и поверочный.

Первый из них представляет собой последовательность вложенных итераций (т.е. в начале расчета мы задаем некоторые параметры, такие как высота и материал дымохода, скорость дымовых газов и т.д., а потом путем последовательных приближений уточняем эти значения).

Однако на практике гораздо чаще приходится сталкиваться с необходимостью поверочного расчета дымохода, так как обычно котел подключается к уже существующей системе дымоудаления. В этом случае у нас уже есть высота дымовой трубы, материал и площадь сечения дымохода и т.д.

Стоит задача проверки совместимости параметров дымового канала и теплогенератора.

То есть необходимым условием корректной работы дымохода является превышение cамотяги над потерями напора в дымоходе на величину минимально допустимого разряжения в дымоотводящем патрубке теплогенератора. Величина естественной тяги зависит от многих факторов

  • Формы поперечного сечения дымохода (прямоугольная, круглая и т.д.)
  • Температуры дымовых газов на выходе из теплогенератора
  • Материала дымохода (нержавеющая сталь, кирпич и т.д.)
  • Шероховатости внутренней поверхности дымохода
  • Неплотностей газохода, при сочленениях элементов (трещины в покрытии и т.п.)
  • Параметров наружного воздуха (температура, влажность)
  • Высоты над уровнем моря
  • Параметров вентиляции помещения, где установлен котел
  • Качества настройки теплогенератора - полноты сгорания топлива (соотношения топливо/воздух).
  • Типа работы горелки (модуляционный или дискретный)
  • Степени загрязненности элементов газовоздушного тракта (котла и дымохода)

Величина самотяги
В первом приближении величину самотяги можно проиллюстрировать на примере рис. 1 .

Где hc - величина самотяги;
Hд - эффективнаявысота дымохода;
в - плотность воздуха;
г - плотность дымовых газов.
Как видно из формулы , основную переменную составляющую образуют плотности дымовых газов и воздуха, которые являются функциями от их температуры.

Для того, чтобы показать насколько сильно величина самотяги зависит от температуры дымовых газов, мы приводим следующий график, иллюстрирующий эту зависимость (см. рис. 2 ).


Однако на практике гораздо чаще встречаются случаи, когда изменяется не только температура дымовых газов, но и температура воздуха. В таб. 1 приведены величины удельной самотяги на один метр высоты дымовой трубы в зависимости от температур продуктов сгорания и воздуха.


Естественно, что таблица дает весьма приблизительный результат и для более точной оценки (во избежание интерполирования значений) необходимо подсчитывать реальные значения плотности продуктов сгорания и окружающего воздуха.
в - плотность воздуха при рабочих условиях:

где tос - температура окружающей среды, °С, принимается для наихудших условий работы оборудования - летнего времени. При отсутствии данных принимается 20 °С;
вну - плотность воздуха при нормальных условиях - 1,2932 кг/м3.
г - плотность дымовых газов при рабочих условиях:

где гну - плотность продуктов сгорания при нормальных условиях, пр= 1,2 для природного газа можно принять - 1,26 кг/м3.

Для удобства обозначим, a=1/273
тогда

где 1 + a x t - температурная составляющая.
Для упрощения операций будем считать плотность дымовых газов равной плотности воздуха и сводим все значения плотности, приведенные к нормальным условиям на промежутке t = -20 +400 °С, в табл. 2 .

Практическое вычисление самотяги
Для вычисления естественной тяги необходимо уточнить среднюю температуру газов в трубе ϑcp. Температура на входе в трубу ϑ1 определяется из паспортных данных оборудования. Температуру продуктов сгорания на выходе из устья дымохода ϑ2 находят с учетом их охлаждения по длине трубы.

Охлаждение газов в трубе на 1 метр её высоты определяется по формуле:

где Q - номинальная тепловая мощность котла, кВт;
В - коэффициент: 0,85 - неизолированная металлическая труба, 0,34 - изолированная металлическая труба, 0,17 - кирпичная труба с толщиной кладки до 0,5 метра.
Температура на выходе из трубы:

где Hд - эффективная высота дымовой трубы в метрах.

Средняя температура продуктов сгорания в дымоходе:

На практике величину самотяги просчитывают для следующих граничных условий:
1. Для температуры наружного воздуха 20 °С (летний режим работы теплогенератора).
2. Если летняя расчетная температура наружного воздуха отличается более чем на 10 °С от 20 °С, то принимается расчетная температура.
3. Если теплогенератор эксплуатируется только в зимний период, то расчет ведется по средней температуре за отопительный период.

Для примера возьмем установку со следующими параметрами (рис. 3) :

  • мощность 28 кВт;
  • температура дымовых газов 125 °С;
  • высота дымовой трубы 8 м;
  • дымовая труба выполнена из кирпича.


Охлаждение газов в трубе на 1 метр её высоты по :

Температура дымовых газов на выходе из трубы по :
ϑ2 = 125 — 8 x 1,016 = 117, °С.
Средняя температура продуктов сгорания в дымоходе по :
ϑср = (125 + 117)/2 = 121, °С.
Величину самотяги вычисляем по :
hc = 8(1,2049 — 0,8982) = 2,4536, мм вод.ст.

Вычисление оптимальной площади поперечного сечения дымового канала

1. Первый вариант определения диаметра дымохода
Диаметр трубы принимается либо по паспортным данным (по диаметру выходного патрубка из котла) в случае монтажа отдельной дымовой трубы к каждому котлу, либо по формуле при объединении нескольких котлов в общий дымоход (суммарная мощность до 755 кВт).

Для цилиндрических труб определяется диаметр:

r - коэффициент, зависящий от вида используемого топлива. Газ: r = 0,016, жидкое топливо: r = 0,024, уголь: r = 0,030, дрова: r = 0,045.

2. Второй вариант определения диаметра дымохода (с учетом скорости продуктов сгорания)
Согласно Norma UNI-CTI 9615, площадь поперечного сечения дымохода можно вычислить по формуле:

где mг
д - массовый расход продуктов сгорания, кг/час.
Для примера рассмотрим следующий случай:

  • Высота дымовой трубы 7 м;
  • Массовый расход продуктов сгорания 81 кг/час;
  • Плотность продуктов сгорания (при ϑср =120 °С) г = 0,8982 кг/м3;
  • Скорость продуктов сгорания (в первом приближении) wг = 1,4 м/с.

По определяем ориентировочную площадь сечения дымового канала:
F = (0,225 кг/c)/(1,4 м/c x 0,8982) = 0,0178 м2 = 179 см2.

Отсюда вычисляем диаметр дымового канала и подбираем ближайший стандартный дымоход: 150 мм.

По новому значению диаметра дымовой трубы определяем площадь дымового канала и уточняем скорость дымовых газов.

wг = (0,225 кг/c)/(0,8982 кг/м3 x 0,01327 м2) = 1,89 м/c.
После этого проверяем, чтобы скорость дымовых газов укладывалась в диапазон 1,5-2,5 м/с.

При слишком высокой скорости дымовых газов увеличивается гидравлическое сопротивление дымохода, а при слишком низкой - активно образуется конденсат водяных паров.

Для примера просчитаем также скорость дымовых газов при нескольких ближайших типоразмерах дымохода:
Ø 110 mm: wг = 2,64 м/с.
Ø 130 mm: wг = 1,89 м/с.
Ø 150 mm: wг = 1,42 м/с.
Ø 180 mm: wг = 0,98 м/с.
Результаты представлены на рис. 4 . Как видим, из полученных значений скоростным условиям удовлетворяют два типоразмера: Ø 130 mm и Ø 150 mm. В принципе, мы можем остановиться на любом из этих значений, однако Ø 150 mm предпочтительней, так как потери напора в этом случае будут меньше.

Для удобства подбора типоразмера дымохода можно использовать диаграмму рис. 5 .
Для примера:

  • Расход продуктов сгорания 468 м3/час; диаметр газохода Ø 300 мм - скорость продуктов сгорания wг = 1,9 м/с
  • Расход продуктов сгорания 90 м3/час; диаметр газохода Ø 150 мм - скорость продуктов сгорания wг = 1,4 м/с

Потери напора в дымоходе
Сумма сопротивлений трубы:

Сопротивление трения:

Потери в местных сопротивлениях:

= 1,0; 0,9; 0,2-1,4 - коэффициенты местного сопротивления с выходной скоростью (на выходе из трубы), на входе в дымовую трубу и в поворотах - отводах и тройниках (коэффициент выбирают в зависимости от их конфигураций), соответственно.

- коэффициент сопротивления трения:
для кирпичных труб = 0,05;
для стальных труб = 0,02.
g - ускорение свободного падения, равное 9,81 м/с2.
d - диаметр дымовой трубы, м.
wг - скорость продуктов сгорания в трубе:

Vдг - действительный объём продуктов сгорания:

BT - расход топлива с учетом теплотворной способности данного топлива:

- КПД установки из паспортных данных на оборудование (0,9-0,95);
Qнр - низшая теплотворная способность (в зависимости от состава топлива), для газа - 8000 ккал/м3;
Voг - теоретический объем продуктов сгорания, для природного газа можно принять 10,9 м3/м3;
Voв - теоретически необходимое количество воздуха, для сжигания 1 м3 природного газа 8,5-10
м3/м3;
- коэффициент избытка воздуха, для природного газа 1,05-1,25.

Проверка тяги производится по формуле:

hбар - барометрическое давление, принимается 750 мм вод.ст.
HП - перепад полных давлений газового тракта, мм вод.ст., без учета сопротивления и самотяги трубы.
1,2 - коэффициент запаса по тяге.
Перепад полных давлений по газовому тракту (общий вид формулы):

где hT’’ - разряжение на выходе из топки, необходимое для предотвращения выбивания газов, обычно принимается 2-5 мм вод.ст.
В данном случае для проверки тяги перепад полных давлений берется без учета суммарного сопротивления h и самотяги трубы hc.
Таким образом:
HП = hT’’ = 2-5 мм вод.ст.
Для наглядности изобразим процессы, происходящие в дымовом канале на напорной диаграмме (рис. 6 ).

По горизонтальной оси отложим перепады давления и потери напора, а по горизонтальной высоту дымохода.

Тогда отрезок DB будет обозначать величину cамотяги, а линия DA - перепад давлений по высоте дымовой трубы.

С другой стороны от оси АВ откладываем потери напора в дымоходе. Графически потери давления по длине дымохода будет символизировать отрезок АС .

Производим зеркальную проекцию отрезка ВС и получаем точку С’ . Область, затушеванная зеленым цве- том, символизирует разряжение в дымовом канале.

Очевидно, что величина естественной тяги уменьшается по высоте дымохода, а потери напора возрастают от устья к основанию дымовой трубы.

Пример корректного монтажа дымохода и выдержки из ДБН.В.2.5-20-2001 «Газоснабжение»

При проектировании и монтаже дымоходов обязательно необходимо соблюдать следующие пункты отечественных норм и правил:

ДБН В.2.5-20-2001 Приложение Ж «Отвод продуктов сгорания».

Ж.З. Отвод продуктов сгорания от бытовых газовых приборов, печей и другого бытового газового оборудования, в конструкции которых предусмотрен отвод продуктов сгорания в дымоход, следует предусматривать от каждого прибора, агрегата или печи по обособленному дымоходу.
В существующих зданиях допускается предусматривать присоединение к одному дымоходу не более двух водонагревателей или отопительных печей, расположенных на одном или разных этажах здания, при условии ввода продуктов сгорания в дымоход на разных уровнях, не ближе 0,5 м один от другого, или на одном уровне с устройством в дымоходе рассечки на высоту не менее 0,5 м.

Ж.6. Площадь сечения дымохода не должна быть меньше площади сечения патрубка газового прибора, присоединяемого к дымоходу. При присоединении к дымоходу двух приборов, печей и т.п. сечение дымохода следует определять с учетом одновременной их работы. Конструктивные размеры дымоходов должны определяться расчетом.

Ж.7 . Дымоходы следует выполнять из морозостойкого кирпича (Мрз 125), глиняного кирпича, жаростойкого бетона для многоэтажных зданий и асбесто-цементных труб для одноэтажных зданий. Допускается отвод продуктов сгорания предусматривать по стальным дымовым трубам. Конструкции дымовых каналов также могут быть заводского изготовления, поставляемые в комплекте с газовым оборудованием. При установке асбестоцементных и стальных труб вне здания или при прохождении их через чердак здания они должны быть теплоизолированные для предотвращения образования конденсата. Конструкция дымовых каналов в наружных стенах и приставных к этим стенам каналов также должна обеспечивать температуру газов на выходе из них выше точки росы. Запрещается выполнять каналы из шлакобетонных и других неплотных или пористых материалов.

Ж.9 . Присоединение газового оборудования к дымоходам следует предусматривать соединительными трубами, изготовленными из кровельной или оцинкованной стали толщиной не менее 1,0 мм, гибкими металлическими гофрированными патрубками или унифицированными элементами, поставляемыми в комплекте с оборудованием. Соединительная дымоотводящая труба, соединяющая газовый прибор с дымоходом, должна иметь вертикальный участок. Длина вертикального участка соединительной трубы, считая от низа дымоотводящего патрубка газового прибора до оси горизонтального участка трубы, должна быть не менее 0,5 м. В помещениях высотой до 2,7 м для приборов со стабилизаторами тяги допускается уменьшение длины вертикального участка до 0,25 м, без стабилизаторов тяги до 0,15 м. Суммарная длина горизонтальных участков соединительных труб в новых домах должна быть не более 3 м, в существующих домах - не более 6 м. Уклон трубы должен быть не менее 0,01 в сторону газового прибора. На дымоотводящих трубах допускается предусматривать не более трех поворотов с радиусом закругления не менее диаметра трубы. Ниже места присоединения дымоотводящей трубы от прибора к дымоходу должно быть предусмотрено устройство «кармана» сечением не менее сечения дымохода и глубиной не менее 25 см, имеющий люк для очистки. Дымоотводящие трубы, прокладываемые через неотапливаемые помещения, при необходимости должны быть покрыты изоляцией. Прокладка дымоотводящих труб от приборов и печей через жилые комнаты не допускается

Ж.10 . Расстояние от соединительной трубы до потолка или стены из несгораемых материалов принимается не менее 5 см, а из сгораемых и трудносгораемых материалов - не менее 25 см.

Ж.15. Дымовые трубы от газовых приборов в зданиях должны быть выведены:
- выше границы зоны ветрового подпора, но не менее 0,5 м выше конька крыши при расположении их (считая по горизонтали) не далее 1,5 м от конька крыши;
- в уровень с коньком крыши, если они отстоят на расстоянии до 3 м от конька крыши;
- не ниже прямой, проведенной от конька вниз под углом 10° к горизонту, при расположении труб на расстоянии более 3 м от конька крыши. Зоной ветрового подпора дымовой трубы считается пространство ниже линии, проведенной под углом 45° к горизонту от наиболее высоких точек вблизи расположенных сооружений и деревьев. Во всех случаях высота трубы над прилегающей частью крыши должна быть не менее 0,5 м, а для домов с совмещенной кровлей (плоской крышей) - не менее 2,0 м. Установка на дымоходах зонтов и других насадок не допускается.

Ж.20 . Длина горизонтального участка дымового канала от отопительного оборудования с герметичной камерой сгорания при выходе через наружную стену принимается не более 3 м.

Заключение
Как показывает многолетний опыт эксплуатации теплогенераторов с открытой камерой сгорания, накопленный в нашей организации, от правильно спроектированного и корректно смонтированного дымохода в большой мере зависит надежная и стабильная работа теплогенерирующей установки (см. рис. 7).

Поэтому необходимо уделять данному вопросу самое пристальное внимание уже на стадии проектирования системы теплоснабжения, а также проводить поверочные расчеты при ремонте, модернизации и замене теплогенераторов. Надеемся, данный материал поможет широким кругам читателей разобраться с этим немаловажным вопросом.

7. ГАЗОВОЗДУШНЫЙ ТРАКТ, ДЫМОВЫЕ ТРУБЫ, ОЧИСТКА ДЫМОВЫХ ГАЗОВ
Газовоздушный тракт

7.1. При проектировании котельных тягодутьевые установки (дымососы и дутьевые вентиляторы) следует принимать в соответствии с техническими условиями заводов-изготовителей. Как правило, тягодутьевые установки должны предусматриваться индивидуальными к каждому котлоагрегату.

7.2. Групповые (для отдельных групп котлов) или общие (для всей котельной) тягодутьевые установки допускается применять при проектировании новых котельных с котлами производительностью до 1 Гкал/ч и при проектировании реконструируемых котельных.

7.3. Групповые или общие тягодутьевые установки следует проектировать с двумя дымососами и двумя дутьевыми вентиляторами. Расчетная производительность котлов, для которых предусматриваются эти установки, обеспечивается параллельной работой двух дымососов и двух дутьевых вентиляторов.

7.4. Выбор тягодутьевых установок следует производить с учетом коэффициентов запаса по давлению и производительности согласно прил. 3 к настоящим нормам и правилам.

7.5. При проектировании тягодутьевых установок для регулирования их производительности следует предусматривать направляющие аппараты, индукционные муфты и другие устройства, обеспечивающие экономичные способы регулирования и поставляемые комплектно с оборудованием.

7.6. Проектирование газовоздушного тракта котельных выполняется в соответствии с нормативным методомаэродинамического расчета котельных установок ЦКТИ им. И.И.Ползунова.

(К) Для встроенных, пристроенных и крышных котельных в стенах следует предусматривать проемы для подачи воздуха на горение, расположенные, как правило, в верхней зоне помещения. Размеры живого сечения проемов определяются исходя из обеспечения скорости воздуха в них не более 1 м/с.

7.7. Газовое сопротивление серийно выпускаемых котлов следует принимать по данным заводов-изготовителей.

7.8. В зависимости от гидрогеологических условий и компоновочных решений котлоагрегатов наружные газоходы должны предусматриваться подземными или надземными. Газоходы следует предусматривать кирпичными или железобетонными. Применение надземных металлических газоходов допускается, в виде исключения, при наличии соответствующего технико-экономического обоснования.

7.9. Газовоздухопроводы внутри котельной допускается проектировать стальными, круглого сечения. Газовоздухопроводы прямоугольного сечения допускается предусматривать в местах примыкания к прямоугольным элементам оборудования.

7.10. Для участков газоходов, где возможно скопление золы, должны предусматриваться устройства для очистки.

7.11. Для котельных, работающих на сернистом топливе, при возможности образования в газоходах конденсата следует предусматривать защиту от коррозии внутренних поверхностей газоходов в соответствии со строительными нормами и правилами по защите строительных конструкций от коррозии.

Дымовые трубы

7.12. Дымовые трубы котельных должны сооружаться по типовым проектам. При разработке индивидуальных проектов дымовых труб необходимо руководствоваться техническими решениями, принятыми в типовых проектах.

7.13. Для котельной необходимо предусматривать сооружение одной дымовой трубы. Допускается предусматривать две трубы и более при соответствующем обосновании.

7.14. (К) Высота дымовых труб при искусственной тяге определяется в соответствии с Указаниями по расчету рассеивания в атмосфере вредных веществ, содержащихся в выбросах предприятий и Санитарными нормами проектирования промышленных предприятий. Высота дымовых труб при естественной тяге определяется на основании результатов аэродинамического расчета газовоздушного тракта и проверяется по условиям рассеивания в атмосфере вредных веществ. При расчете рассеивания в атмосфере вредных веществ следует принимать максимально допускаемые концентрации золы, окислов серы, двуокиси азота и окиси углерода. При этом количество выделяемых вредных выбросов принимается, как правило, по данным заводов изготовителей котлов, при отсутствии этих данных - определяются расчетным путем.

Высота устья дымовых труб для встроенных, пристроенных и крышных котельных должна быть выше границы ветрового подпора, но не менее 0,5 м выше крыши, а также не менее 2 м над кровлей более высокой части здания или самого высокого здания в радиусе 10 м.

7.15. (К) Диаметры выходныхотверстий стальных дымовых труб определяются из условия оптимальных скоростей газов на основании технико-экономических расчетов. Диаметры выходных отверстий кирпичных и железобетонных труб определяются на основании требований п. 7.16 настоящих норм и правил.

7.16. В целях предупреждения проникновения дымовых газов в толщу конструкций кирпичных и железобетонных труб не допускается положительное статическое давление на стенки газоотводящего ствола. Для этого должно выполняться условие R < 1, где R - определяющий критерий, равный

Л - коэффициент сопротивления трению;

i - постоянный уклон внутренней поверхности верхнего участка трубы;

Yx - плотность наружного воздуха при расчетном режиме, кг/ м 3 ;

d0 - диаметр выходного отверстия трубы, м;

h0 - динамическое давление газа в выходном отверстии трубы, кгс/м 2:

W0 - скорость газов в выходном отверстии трубы, м/c;

g - ускорение силы тяжести, м 2 /с;

Yr - плотность газа при расчетном режиме, кг/м 3 .

Проверочный расчет должен производиться для зимнего и летнего расчетных режимов работы котельных.

При R > 1 следует увеличить диаметр трубы или применить трубу специальной конструкции (с внутренним газонепроницаемым газоотводящим стволом, с противодавлением между стволом и футеровкой).

7.17. Образование конденсата в стволах кирпичных и железобетонных труб, отводящих продукты сжигания газообразного топлива, при всех режимах работы не допускается.

7.18. Для котельных, работающих на газообразном топливе, допускается применение стальных дымовых труб при экономической нецелесообразности повышения температуры дымовых газов.

(К) Для автономных котельных дымовые трубы должны быть газоплотными, изготавливаться из металла или из негорючих материалов. Трубы должны иметь, как правило, наружную тепловую изоляцию для предотвращения образования конденсата и люки для осмотра и чистки.

7.19. Проемы для газоходов в одном горизонтальном сечении ствола трубы или стакана фундамента должны располагаться равномерно по окружности.

Суммарная площадь ослабления в одном горизонтальном сечении не должна превышать 40% общей площади сечения для железобетонного ствола или стакана фундамента и 30% - для ствола кирпичной трубы.

7.20. Подводящие газоходы в месте примыкания к дымовой трубе необходимо проектировать прямоугольной формы.

7.21. В сопряжении газоходов с дымовой трубой необходимо предусматривать температурно-осадочные швы или компенсаторы.

7.22. Необходимость применения футеровки и тепловой изоляции для уменьшения термических напряжений в стволах кирпичных и железобетонных труб определяется теплотехническим расчетом.

7.23. В трубах, предназначенных для удаления дымовых газов от сжигания сернистого топлива, при образовании конденсата (независимо от процента содержания серы) следует предусматривать футеровку из кислотоупорных материалов по всей высоте ствола. При отсутствии конденсата на внутренней поверхности газоотводящего ствола трубы при всех режимах эксплуатации допускается применение футеровки из глиняного кирпича для дымовых труб или глиняного обыкновенного кирпича пластического прессования марки не ниже 100 с водопоглощением не более 15% на глиноцементном или сложном растворе марки не ниже 50.

7.24. Расчет высоты дымовой трубы и выбор конструкции защиты внутренней поверхности ее ствола от агрессивного воздействия среды должны выполняться исходя из условий сжигания основного и резервного топлива.

7.25. Высота и расположение дымовой трубы должны согласовываться с местным Управлением Министерства гражданской авиации. Световое ограждение дымовых труб и наружная маркировочная окраска должны соответствовать требованиям Наставления по аэродромной службе в гражданской авиации СССР.

7.26. В проектах следует предусматривать защиту от коррозии наружных стальных конструкций кирпичных и железобетонных дымовых труб, а также поверхностей стальных труб.

7.27. В нижней части дымовой трубы или фундаменте следует предусматривать лазы для осмотра трубы, а в необходимых случаях - устройства, обеспечивающие отвод конденсата.

Очистка дымовых газов

7.28. Котельные, предназначенные для работы на твердом топливе (угле, торфе, сланце и древесных отходах), должны быть оборудованы установками для очистки дымовых газов от золы в случаях, когда

A p B>5000 (3)

B- максимальный часовой расход топлива, кг.

Примечание. Приприменениитвердого топлива в качестве аварийного установка золоуловителей не требуется.

7.29. Выбор типа золоуловителей производится в зависимости от объема очищаемых газов, требуемой степени очистки и компоновочных возможностей на основании технико-экономического сравнения вариантов установки золоуловителей различных типов.

В качестве золоулавливающих устройств следует принимать:

  • блоки циклонов ЦКТИ или НИИОГАЗ - при объеме дымовых газов от 6000 до 20000 м 3 /ч;
  • батарейные циклоны - при объеме дымовых газов от 15000 до 150000 м 3 /ч;
  • батарейные циклоны с рециркуляцией и электрофильтры - при объеме дымовых газов свыше 100000 м 3 /ч.

"Мокрые" золоуловители с низконапорными трубами Вентури с каплеуловителями могут применяться при наличии системы гидрозолошлакоудаления и устройств, исключающих сброс в водоемы вредных веществ, содержащихся в золошлаковой пульпе.

Объемы газов принимаются при их рабочей температуре.

7.30. Коэффициенты очистки золоулавливающих устройств принимаются по расчету и должны быть в пределах, установленных прил. 4 к настоящим нормам и правилам.

7.31. Установку золоуловителей необходимо предусматривать на всасывающей стороне дымососов, как правило, на открытых площадках.

При соответствующем обосновании допускается установка золоуловителей в помещении.

7.32. Золоуловители предусматриваются индивидуальные к каждому котлоагрегату. В отдельных случаях допускается предусматривать на несколько котлов группу золоуловителей или один секционированный аппарат.

7.33. При работе котельной на твердом топливе индивидуальные золоуловители не должны иметь обводных газоходов.

7.34. Форма и внутренняя поверхность бункера золоуловителя должны обеспечивать полный спуск золы самотеком, при этом угол наклона стенок бункера к горизонту принимается 60° и в обоснованных случаях допускается не менее 55°.

Бункера золоуловителей должны иметь герметические затворы.

7.35. Скорость газов в подводящем газоходе золоулавливающих установок следует принимать не менее 12 м/с.

7.36. "Мокрые" искрогасители следует применять в котельных, предназначенных для работы на древесных отходах, в случаях когда A p B<5000 После золоуловителей искрогасители не устанавливаются.

Д.т.н. И.И. Стриха, профессор, главный научный сотрудник,
РУП «БелТЭИ», г. Минск, Республика Беларусь

Введение

Для достижения высокой экономичности котельных установок требуется снижать температуру уходящих газов. Однако уровень ее снижения лимитируется условиями обеспечения надежной работы дымовых труб.

Широкое распространение в котельных получили дымовые трубы с несущим стволом и футеровкой из кирпича. Для таких труб факторами, определяющими их надежность и долговечность, является температурное состояние поверхности футеровки и ствола, а также состав отводимых газов. Перевод котлов на непроектные виды топлива или отклонение их режимов работы от проектных значений должны сопровождаться соответствующими расчетами для создания условий, обеспечивающих надежную эксплуатацию дымовых труб.

Причины повреждений

В начальный период массового возведения кирпичных дымовых труб котельные, как правило, работали на твердых и жидких видах топлива с температурой отводимых газов от котлов 200-250 ОС. Это не приводило к повреждениям элементов трубы, выполненных из обыкновенного глиняного кирпича М-100. Зазор между футеровкой и стволом с заполнением теплоизоляционным материалом, а при соответствующих значениях температуры уходящих газов и климатических условиях и без заполнения, позволял поддерживать требуемые температурные перепады по элементам дымовых труб и обеспечивать достаточно длительную их работу.

Опыт эксплуатации дымовых труб различных конструкций на тепловых электростанциях и котельных показывает, что с переводом котлов с твердого и жидкого топлива на сжигание природного газа, повреждения элементов дымовых труб стали отмечаться чаще. Срок службы футеровки в зависимости от климатических условий и температуры отводимых газов на ряде объектов не превышает 3-4 года. В южных районах бывшего СССР при температуре отводимых продуктов сгорания природного газа (зимой) 80-130 ОС образования конденсата на поверхности элементов дымовых труб не отмечалось и их повреждений не было.

В то же время кирпичные дымовые трубы, размещенные в центральных районах бывшего СССР, при работе котлов на газе с частичными нагрузками и температурой уходящих газов зимой до 100 ОС подвергаются повреждениям. Последние усиливаются при пониженных скоростях дымовых газов в устье трубы (до 2 м/с) и при подземном расположении боровов. При этом грунтовые воды, попадая в газовый тракт, ускоряют процесс разрушения трубы. В работе приводятся сведения о неудовлетворительном состоянии дымовых труб котельных при работе котлов на газе с температурой отводимых продуктов сгорания зимой 70-100 ОС и их скоростью на выходе 1,5-6,5 м/с. В результате обследования состояния этой трубы установлено намокание кладки, локальное отслаивание кирпича и т.п. Аналогичная ситуация отмечается для кирпичной дымовой трубы при работе котлов на газе и отводе их с температурой 40-60 ОС внутри ствола и скоростью 1 -2 м/с. Верхняя часть трубы (до 12 м) покрывалась наледями, кирпич отслаивался и разваливался. При переходе к температуре дымовых газов 150 ОС эти недостатки были полностью устранены.

Основной причиной разрушений футеровки и несущего ствола дымовой трубы при работе котлов на природном газе является отклонение от проектных значений температурно-влажностного и аэродинамического режимов трубы. Как известно, температура точки росы продуктов сгорания природного газа составляет 55-60 ОС. При снижении скорости дымовых газов в трубе и понижении температуры газов до 100 ОС температура внутренней поверхности футеровки трубы снижается до точки росы продуктов сгорания и ниже. Коэффициент теплоотдачи со стороны газов снижается до 2-6 Вт/(м2.К) вместо 35 Вт/(м2.К) для проектных условий при номинальных параметрах котлов, подсоединенных к трубе. Конденсат из дымовых газов попадает на поверхность футеровки, а затем фильтруется в кирпич через швы в ней и кладке ствола, а при отрицательной температуре наружного воздуха происходит замерзание этого конденсата, и вследствие этого кирпич и швы в кладке разрушаются.

При понижении скорости дымовых газов до соответствующего уровня появляются условия попадания холодного воздуха в трубу, что приводит к охлаждению кладки в верхней ее части. Рекомендуется принимать скорость на выходе из трубы порядка 6 м/с, т.е. в 1,3-1,5 раза выше скорости ветра, чтобы избежать попадания холодного воздуха.

При больших скоростях дымовых газов в трубе может создаваться избыточное статическое давление . При этом дымовые газы через швы футеровки проникают в зону с температурой материала ниже температуры точки росы, где и происходит образование конденсата, что приводит к разрушению кладки. Величина статического давления зависит от скорости дымовых газов, формы и высоты трубы, температуры дымовых газов и наружного воздуха. Оптимальной для кирпичных дымовых труб считается скорость на выходе из трубы 6-18 м/с, которая должна подтверждаться расчетом.

Аналогичные повреждения дымовых труб происходят и при работе котлов на сернистых мазутах. При этом положение усугубляется наличием в дымовых газах сернистых соединений (сернистого газа и серного ангидрида) и повышением за счет этого температур их точки росы до 120-150 ОС. Дополнительно возникают процессы сульфатизации силикатных материалов и коррозионного разрушения. Повреждения материалов труб происходят также за счет неравномерной усадки фундамента и других причин, не связанных с температурно-влажностным и аэродинамическим режимами.

При работе дымовых труб в условиях конденсации на поверхность футеровки газоотводящего ствола коррозионных компонентов, а также при отклонении температурно-влажностного режима от проектных значений требуется ее защита от низкотемпературной коррозии и разрушений. За рубежом в последние годы в качестве газоотводящих стволов дымовых труб применяют металлические трубы, а также трубы из керамики, стекла, синтетических материалов. Последние, в зависимости от их состава, могут предназначаться для разных температур отводимых газов: до 80, 120, 160 ОС и выше.

Среди важнейших причин, вызывающих повреждения дымовых труб ТЭС, можно отметить следующие:

Перегрузка по газам, связанная с подключением к ним дополнительных источников;

Самоокутывание оголовка трубы, происходящее при определенных соотношениях скоростей дымовых газов и воздуха;

Переменные нагрузочные и температурные режимы;

Повышение содержания коррозионных агентов в отводимых газах против расчетных значений.

Из-за снижения нагрузок котлов, подключенных к дымовым трубам, последние подвергаются ускоренному износу. В таких условиях при недостаточной газоплотности футеровки в теплоизоляции и бетоне несущего ствола неизбежно образуется и накапливается конденсат, что приводит к снижению несущей способности трубы вследствие выщелачивания и размораживания бетона. Футеровка, выполненная из кислотостойкого кирпича, и бетон подвергаются сульфатной коррозии, которая менее чем за 10 лет может вывести из строя железобетонную дымовую трубу, которая рассчитана на более длительный срок эксплуатации (не менее 50 лет).

Η многих котельных дымовые трубы эксплуатируются с отступлениями от проектных условий и без надлежащего контроля текущего состояния. Это приводит к тому, что ремонт их усложняется, а эксплуатация дымовых труб продолжается с частично разрушенной футеровкой.

Особое место занимают вопросы соблюдения требований проектов при возведении дымовых труб. Качество строительства таких ответственных сооружений зачастую не отвечает их назначению. Наиболее частыми отступлениями от проектов являются: неплотность мест примыкания газоходов к дымовой трубе, занижение марки бетона, наличие раковин и пустот и т.п.

В эксплуатационных условиях имеет место отклонение внутреннего ствола трубы (футеровки) от вертикали. Основной причиной таких отклонений является неравномерность температур поверхности футеровки по окружности. Температурное воздействие дымовых газов с неравномерным распределением температур вызывает различные напряжения, расширения и сжатия при смене температур, обусловленной пусками, остановами и другими изменениями режимов работы котлов. При пониженной нагрузке подключенных к дымовой трубе котлов возможно дополнительное увлажнение дымовых газов, что вызывает появление гидратов в материале футеровки дымовой трубы, имеющих свойство необратимо расширяться и приводить к набуханию этих материалов. Такие условия являются предпосылкой и одной из причин отклонений газоотводящего ствола от вертикали и его разрушений.

Мероприятия для обеспечения длительной эксплуатации

Комитетом РФ по металлургии в 1993 г. выпущено «Руководство по эксплуатации промышленных дымовых и вентиляционных труб», разработанное Московским инженерно-строительным институтом при участии института ВНИПИТеплопроект и других организаций. Данное руководство по своей сущности и содержанию может быть использовано в различных отраслях промышленности. В нем приведены сведения об условиях нормальной эксплуатации промышленных дымовых и вентиляционных труб, включая трубы с газоотводящими стволами или с футеровкой из пластмасс (для отвода газов с температурой около 90 ОС). В 2004 г. было выпущено справочное издание , в котором освещены различные аспекты комплекса вопросов, связанных с обеспечением условий безопасной эксплуатации дымовых труб и определены направления дальнейших исследований.

В соответствии с нормативными документами кирпичные и армокирпичные дымовые трубы должны иметь срок службы 70-100 лет, железобетонные - не менее 50 лет, металлические -20-30 лет, трубы с газоотводящими стволами и футеровкой из пластмасс - 15-20 лет.

В перечне условий, обеспечивающих длительную эксплуатацию дымовых труб, приведены требования соблюдения проектного температурно-влажностного режима и состава отводимых дымовых газов. Одним из важнейших условий является проведение систематического технического надзора, обследований и соответствующих ремонтов. Обращается внимание на условия предотвращения неравномерных осадок оснований под фундаменты дымовых труб.

В последнее время получили распространение современные методы обследования дымовых труб с применением новейших средств контроля, в частности термографирование тепловизионным методом, не требующим остановки трубы. Кроме того, в состав работ по обследованию технического состояния дымовых труб входит:

Изучение процессов тепло- и массопереноса;

Расчет аэродинамических характеристик;

Измерение концентраций вредных выбросов;

Определение прочности бетона ультразвуковым и склерометрическим методами.

Необходимо отметить, что выполнение обследования технического состояния дымовых труб является ответственным мероприятием и к его выполнению должны привлекаться специализированные организации, имеющие достаточный опыт в этом направлении и располагающие соответствующими приборами.

Результаты обследований

В результате обследований технического состояния дымовых труб для всех них установлены наиболее характерные виды дефектов, а также общие недостатки в организации эксплуатации:

■ приборы КИП и средства сигнализации по контролю температурно-влажностных параметров газового потока на соответствующих отметках трубы отсутствуют;

■ в местах примыкания газоходов от котлов к общим газоходам и в местах подключения их к дымовым трубам нередко имеются неплотности, щели по всему периметру, что приводит к дополнительному охлаждению и увлажнению отводимых дымовых газов и последующему отрицательному влиянию на состояние элементов дымовых труб;

■ происходит отслоение бетона от продольной и поперечной арматуры, которая по всей высоте подвергается коррозии;

■ разрушаются плиты покрытия в отдельных местах газоходов;

■ в местах сопряжений звеньев футеровки трубы разрушаются слезниковые кирпичи, кладка закругленных участков газоходов имеет места коррозии кладочного раствора;

■ в балках перекрытия проема дымовой трубы разрушается защитный слой бетона, в результате этого оголяется арматура;

■ отмечаются многочисленные вспучивания кладки футеровки трубы;

■ происходят перемещения элементов чугунного колпака за счет вспучивания футеровки верхнего барабана.

Ηа большинстве дымовых труб разрушения основного материала футеровок (кислотоупорного кирпича) за счет низкотемпературной коррозии происходят редко, отмечается преимущественно разрушение материала швов и антикоррозионных покрытий футеровки. В отдельных случаях имели место локальные вспучивания швов кирпича за счет воздействия на них дымовых газов, содержащих сернистые соединения.

Η основании результатов выполненных различными организациями обследований можно считать, что основной причиной большинства разрушений футеровок труб, появления трещин в них и бетоне несущего ствола (при соблюдении технологических норм строительства труб) является отступление от проектных параметров температурно-влажностного режима эксплуатации и возникновение за счет этого допустимых термических напряжений в отдельных элементах труб.

Для повышения надежности эксплуатирующихся дымовых труб и газоходов в качестве первоочередных мероприятий необходимо выполнить следующие из них:

При частичном или полном разрушении футеровки кирпичных дымовых труб восстанавливать ее из кислотостойкого кирпича, либо предусматривать установку газоотводящего ствола из стеклопластика или металла. Оголовок трубы рекомендуется выполнять из чугунных звеньев или из кислотостойкого раствора;

При восстановлении кирпичных и железобетонных стен газоходов применять внутреннюю облицовку торкретсиликатполимерным или кислотоупорным кирпичом на андезитовой замазке; плиты перекрытия и покрытия газоходов при их замене применять из силикатополимербетона, исключив использование пустотных плит;

Для восстановления несущей способности железобетонных стволов применять железобетонные обоймы;

Не допускать подсоса наружного воздуха в газоходы и дымовые трубы;

Ввести в практику технического освидетельствования состояния дымовых труб применение тепловизионного метода, не требующего остановки трубы и позволяющего оперативно определять места повреждений.

Следует отметить, что в дымовой трубе с футеровкой газоотводящего ствола из стеклопластика несущий железобетонный или кирпичный ствол надежно защищен от воздействия дымовых газов и конденсата, а вследствие этого и коррозии их материалов. Газоотводящие стволы дымовых труб из стеклопластика в 10-20 раз легче, чем кирпичная футеровка, они обладают повышенной пропускной способностью и высокой коррозионной стойкостью против воздействия агрессивных дымовых газов, а соответственно более высоким эксплуатационным ресурсом. Газоотводящие стволы из стеклопластика могут изготавливаться в заводских условиях в виде отдельных царг или сегментов, готовых для сборки.

Выводы

Снижение надежности дымовых труб в значительной степени происходит из-за несоблюдения правил эксплуатации, выражающегося в отступлении эксплуатационных значений температурно-влажностных и аэродинамических параметров от рекомендуемых проектом. Не-плотности в наружных газоходах, а также разрушения их теплоизоляции приводят к охлаждению дымовых газов и разбавлению их воздухом. Вследствие этого усиливается конденсация коррозионных агентов на поверхности футеровки, что вызывает коррозию ее материала и швов. Кроме того, разрушение футеровки, в особенности материалов швов кладки, происходит за счет термических деформаций, вызываемых недопустимыми температурными напряжениями из-за превышения нормативных значений перепадов температур по толщине материала.

Для обеспечения длительной и надежной работы дымовых труб необходимо осуществлять соответствующие мероприятия. Важнейшие из них приведены ниже.

1. Обеспечить ведение производственно-технической документации по дымовым трубам .

В состав такой документации в первую очередь, должны входить:

Паспорт установленного образца;

Журналы наблюдений за режимом работы (температурой, давлением и т.п.);

Инструкция по эксплуатации с отражением контролируемых параметров и их предельных значений, очередности освидетельствований и т.п.;

Комплект документации по осуществлению технического надзора за проведением ремонтов дымовых труб и газоходов (журналы производства работ, в том числе антикоррозионных, теплоизоляционных, футеровочных и т.п.; сертификаты и результаты испытаний образцов применяемых материалов; акты приемки выполненных работ).

2. Не допускать без согласования с проектной организацией изменений показателей, предусмотренных проектом температурно-влажно-стного и аэродинамического режимов трубы.

3. Установить контроль за появлением конденсата в трубе и организовать его отвод за пределы фундамента дымовой трубы.

При падении температуры отводимых газов ниже минимально допустимого уровня (особенно при работе котлов на природном газе) необходимо принимать меры по ее повышению, в первую очередь путем усиления теплоизоляции примыкающих газоходов и дымососов, исключения подсосов воздуха и, при необходимости, путем устройства дополнительной гидроизоляции футеровки.

4. При изменении условий эксплуатации дымовых труб необходимо выполнять поверочные расчеты для определения оптимальных значений показателей теплового состояния и аэродинамических показателей газоотводящего ствола при отсутствии самоокутывания оголовка трубы.

5. Периодически, при проведении каждого из обследований технического состояния дымовой трубы (не реже 1 раза в 5 лет) осуществлять отбор проб футеровки, а при необходимости и несущего ствола, для определения степени их сульфатизации и разрушений, а также для установления изменения их прочностных характеристик и расчета остаточного рабочего ресурса или обоснований изменения условий эксплуатации.

6. При выполнении ремонтных работ по частичной замене футеровки дымовых труб и газоходов следует применять только те материалы, которые рекомендованы проектом и имеют соответствующие сертификаты, или материалы, прошедшие предварительные испытания в соответствующих коррозионных средах, отвечающих условиям температурно-влажностного режима эксплуатации дымовых труб.

7. Организовать систематическое инструментальное наблюдение за равномерностью осадки оснований под фундаменты и вертикального несущего ствола дымовой трубы и периодически производить проверку их устойчивости.

Приведенный выше перечень мероприятий по обеспечению надежной эксплуатации дымовых труб не является исчерпывающим. Применительно к конкретным условиям эксплуатации этот перечень может быть расширен и дополнен другими мероприятиями.

Литература

1. Шишков И.А., Лебедев В.Г., Беляев Д.С. Дымовые трубы энергетических установок. М.: Энергия, 1976. 176 с.

2. Рихтер Л.А. Тепловые электрические станции и защита атмосферы. М.: Энергия, 1975. 312 с.

3. Промышленные дымовые и вентиляционные трубы: Справочное издание / Ф. П. Дужих, В.П. Осоловский, М.Г. Лады-гичев; Под общей ред. Ф.П. Дужих. М.: Теплотехник, 2004. 464 с.

4. СП 13-101-99. Правила надзора, обследования, проведения технического обслуживания и ремонта промышленных дымовых и вентиляционных труб.