Улитка центробежного вентилятора с крыльчаткой. Мощные конструкции вентиляционного типа для бытовых и промышленных нужд: вытяжка улитка и особенности ее работы

Одним из важнейших элементов производственного процесса является обеспечение комфортных условий труда. Состояние и состав воздушных масс в любой отрасли промышленности часто требует корректировки из-за пыли, выделения паров и газов, чрезмерной влажности, повышенной температуры или токсичных примесей. В зависимости от особенностей технологического процесса эти факторы влияют не только на здоровье работников, но и на герметичность оборудования.

Приемлемый температурный режим, комфортная влажность и удаление загрязненных примесями отработанных воздушных масс обеспечиваются системой вытяжной вентиляции. Не стоит ее путать с приточной, которая призвана нагнетать свежий воздух в помещения, хотя обе они осуществляют свои функции при помощи специальной техники – вентиляторов или эжекторов.

Широкое применение в промышленности получила вытяжная система с использованием радиальных или центробежных вентиляторов.

Вытяжные системы с использованием радиальных вентиляторов

Эффективные и простые устройства пользуются заслуженной популярностью и в бытовых условиях. Вытяжка улитка, как по-другому называют такие вентиляторы, быстро справляется с устранением запахов, излишней влажностью, снижением температуры на кухне, в ванной комнате, в гараже, подвальных помещениях или в погребах. Такие системы используются, например, в котельных или многоквартирных домах.

На рисунке показана схема, обеспечивающая вытяжку воздушных масс при помощи радиального вентилятора.

Конструкция

Простота сборки и доступность конструкционных элементов стали причиной того, что радиальные вентиляторы собираются не только в заводских условиях, но и в домашних. Ведь промышленная сборка, хотя и имеет гарантию качества, не всегда доступна по ценовому диапазону и в необходимой конфигурации для небольших жилых или подсобных помещений.

Конструкция стандартного центробежного вентилятора предусматривает обязательное наличие:

  1. Всасывающего патрубка, в который поступают отработанные газо-воздушные массы.
  2. Рабочего (турбинного) колеса, оснащенного радиальными лопастями. В зависимости от предназначения они могут быть загнуты вперед или назад от угла вращения. В последнем варианте бонусом будет экономия расходуемой электроэнергии до 20%. Они обеспечивают ускорение, а также задают направление движению воздуха.
  3. Спиральной коллекторной трубы или спирального кожуха, из-за которого конструкция и получила название улитки. Она призвана снизить скорость движения прогоняемого через устройство воздуха.
  4. Вытяжного канала. Из-за разной скорости, с которой воздушные массы двигаются во всасывающем патрубке и в спиральном кожухе, здесь создается достаточно сильное давление, которое может доходить до 30кПа в промышленных условиях.
  5. Электродвигателя.

Размеры улитки, мощность двигателя, угол вращения и форма лопастей и другие особенности зависят от сферы и конкретных условий применения.

Принцип действия

Эффективность вытяжных систем с применением улиток основана на их простом принципе действия.

В процессе работы электродвигатель запускает вращение рабочего колеса.

Турбинное колесо с радиальными лопатками, благодаря центростремительному движению, засасывают через патрубок и придают газо-воздушным массам ускорение.

Их движению передается вращательный характер центробежного усилия лопаток. Это обеспечивает разный вектор входящему и выходящему потокам.

Вследствие этого выходящий поток направляется в спиральный кожух. Конфигурация спирали обеспечивает торможение и последующую подачу потока под давлением в вытяжной канал.

Из вытяжного канала газо-воздушные массы выводятся в воздуховоды для дальнейшей очистки и выброса в атмосферу.

Если в воздуховодах предусмотрены перекрывающие клапаны, то радиальный вентилятор может работать как вакуумный насос.

Виды

Масштабы помещений, а также уровень загрязнения и нагрева воздуха в них требуют установки вытяжных систем соответствующего размера, мощности и конфигурации. Поэтому и центробежные вентиляторы бывают различных видов.

В зависимости от уровня давления, создаваемого воздушными массами в вытяжном канале, они классифицируются на вентиляторы:

  1. Низкого давления – до 1кПа. Чаще всего их конструкция предусматривает широкие листовые лопатки, которые загнуты вперед к всасывающему патрубку, с максимальной скоростью вращения до 50м/с. Сфера их применения – преимущественно вентиляционные системы. Они создают меньший уровень шума, вследствие этого их можно использовать в помещениях, где постоянно находятся люди.
  2. Среднего давления. При этом уровень нагрузки, создаваемой движением воздушных масс в вытяжном канале, может находиться в диапазоне от 1 до 3 кПа. Их лопасти могут иметь разный угол и направление наклона (как вперед, так и назад), выдерживают максимальную скорость до 80м/с. Сфера применения шире, чем у вентиляторов низкого давления: они также могут устанавливаться на технологических установках.
  3. Высокого давления. Такая техника применяется преимущественно для технологических установок. Полное давление в вытяжном канале составляет от 3кПа. Мощность установки создает окружную скорость всасываемых масс более 80 м/с. Турбинные колеса оснащаются исключительно лопастями загнутыми назад.

Давление является не единственным признаком, по которому различают радиальные вентиляторы. В зависимости от скорости воздушных масс, которая обеспечивается рабочим колесом, они делятся на два класса:

  • I класс – говорит о том, что фронтально загнутые лопасти обеспечивают скорость менее 30 м/с, а обратно загнутые – не более 50 м/с;
  • II класс включает более мощные установки: они обеспечивают скорость прогоняемым воздушным массам выше, чем вентиляторы I класса.

Кроме того, устройства производятся с разным направлением вращения относительно всасывающего патрубка:

  • ориентированные направо можно устанавливать с поворотом корпуса по ходу часовой стрелки;
  • налево – против хода часовой стрелки.

Сфера применения улиток во многом зависит от электродвигателя: его мощности и способа крепления к рабочему колесу:

  • оно может набирать обороты непосредственно на валу двигателя;
  • его вал соединяется с двигателем при помощи муфты и фиксируется одним или двумя подшипниками;
  • при помощи клиноременной передачи, при условии его фиксации одним или двумя подшипниками.

Ограничения в использовании

Радиальные вентиляторы целесообразно устанавливать для перемещения больших объемов газо-воздушных масс при условии, что они не содержат:

  • взрывчатых веществ;
  • волокнистых материалов и липких взвесей в количестве более 10 мг/м 3 ;
  • взрывоопасной пыли.

Важным условием эксплуатации является температурный режим окружающей среды: он не должен выходить за рамки от -40 0 С до +45 0 С. Кроме того, в составе проходящих газо-воздушных масс не должны присутствовать коррозионные агенты, способствующие ускоренному разрушению проточной части вентилятора.

Безусловно, для использования в некоторых отраслях промышленности, производятся вентиляторы с большой степенью коррозионной устойчивости, защитой от искр и перепадов температуры с корпусами и внутренними комплектующими из сплавов повышенной прочности.

Краткая характеристика центробежных вентиляторов

Центробежные вентиляторы относятся к категории нагнетателей, отличающихся наибольшим разнообразием конструктивных типов. Колеса вентиляторов могут иметь лопатки загнутые как вперед, так и назад относительно направления вращения колеса. Достаточно распространены вентиляторы с радиальными лопатками.

При проектировании следует учитывать, что вентиляторы с лопатками назад более экономичны и менее шумны.

КПД вентилятора растет с увеличением быстроходности и для колес конической формы с лопатками назад может достигать значения 0,9.

С учетом современных требований к энергосбережению при проектировании вентиляторных установок следует ориентироваться на конструкции вентиляторов, соответствующих отработанным аэродинамическим схемам Ц4-76, 0,55-40 и сходным с ними.

Компоновочные решения определяют КПД вентиляторной установки. При моноблочном исполнении (колесо на валу электропривода) КПД имеет максимальное значение. Использование в конструкции ходовой части (колесо на собственном валу в подшипниках) снижает КПД приблизительно на 2%. Клиноременная передача по сравнению с муфтой дополнительно снижает КПД еще минимум на 3%. Проектные решения зависят от давления вентиляторов и их быстроходности.

По развиваемому избыточному давлению воздушные вентиляторы общего назначения делятся на следующие группы:

1. вентиляторы высокого давления (до 1 кПа);

2. вентиляторы среднего давления (13 кПа);

3. вентиляторы низкого давления (312 кПа).

Некоторые специализированные вентиляторы высокого давления могут развивать давление до 20 кПа.

По быстроходности (удельному числу оборотов) вентиляторы общего назначения подразделяют на следующие категории:

1. быстроходные вентиляторы (11n s 30);

2. вентиляторы средней быстроходности (30n s 60);

3. быстроходные вентиляторы (60n s 80).

Конструктивные решения зависят от требуемой проектным заданием подачи. При больших подачах вентиляторы имеют колеса двустороннего всасывания.

Предлагаемый расчет относится к категории конструктивных и выполняется методом последовательных приближений.

Коэффициенты местных сопротивлений проточной части, коэффициенты изменения скорости и соотношения линейных размеров задаются в зависимости от проектного давления вентилятора с последующей проверкой. Критерием правильности выбора является соответствие расчетного давления вентилятора заданному значению.

Аэродинамический расчет центробежного вентилятора

Для расчета задаются:

1. Отношением диаметров рабочего колеса

2. Отношением диаметров рабочего колеса на выходе и на входе газа:

Меньшие значения выбираются для вентиляторов высокого давления.

3. Коэффициентами потерь напора:

а) на входе в рабочее колесо:

б) на лопатках рабочего колеса:

в) при повороте потока на рабочие лопатки:

г) в спиральном отводе (кожухе):

Меньшие значения вх, лоп, пов, к соответствуют вентиляторам низкого давления.

4. Выбираются коэффициенты изменения скорости:

а) в спиральном отводе (кожухе)

б) на входе в рабочее колесо

в) в рабочих каналах

5. Вычисляется коэффициент потерь напора, приведенный к скорости потока за рабочим колесом:

6. Из условия минимума потерь давления в вентиляторе определяется коэффициент Rв:

7. Находится угол потока на входе в рабочее колесо:

8. Вычисляется отношение скоростей

9. Определяется коэффициент теоретического напора из условия максимума гидравлического коэффициента полезного действия вентилятора:

10. Находится значение гидравлического к.п.д. вентилятора:

11. Определяется угол выхода потока из рабочего колеса, при оптимальном значении Г:

Град.

12. Необходимая окружная скорость колеса на выходе газа:

М/с.

где [кг/м 3 ] - плотность воздуха при условиях всасывания.

13. Определяется необходимое число оборотов рабочего колеса при наличии плавного входа газа в рабочее колесо

Об/мин.

Здесь 0 =0,91,0 - коэффициент заполнения сечения активным потоком. В первом приближении он может быть принят равным 1,0.

Рабочее число оборотов приводного двигателя принимается из ряда значений частот, характерных для электроприводов вентиляторов: 2900; 1450; 960; 725.

14. Наружный диаметр рабочего колеса:

15. Входной диаметр рабочего колеса:

Если действительное отношение диаметров рабочего колеса близко к принятому ранее, то уточнения в расчет не вносятся. Если значение получается больше 1м, то следует рассчитывать вентилятор с двухсторонним всасыванием. В этом случае в формулы следует подставлять половинную подачу 0,5Q .

Элементы треугольника скоростей при входе газа на рабочие лопатки

16. Находится окружную скорость колеса на входе газа

М/с.

17. Скорость газа на входе в рабочее колесо:

М/с.

Скорость С 0 не должна превышать 50 м/с.

18. Скорость газа перед лопатками рабочего колеса:

М/с.

19. Радиальная проекция скорости газа при входе на лопатки рабочего колеса:

М/с.

20. Проекция входной скорости потока на направление окружной скорости принимается равной нулю для обеспечения максимума напора:

С 1u = 0.

Поскольку С 1r = 0, то 1 = 90 0 , то есть вход газа на рабочие лопатки радиальный.

21. Относительная скорость входа газа на рабочие лопатки:

По рассчитанным значениям С 1 , U 1 , 1 , 1 , 1 строится треугольник скоростей при входе газа на рабочие лопатки. При правильном подсчете скоростей и углов треугольник должен замкнуться.

Элементы треугольника скоростей при выходе газа с рабочих лопаток

22. Радиальная проекция скорости потока за рабочим колесом:

М/с.

23. Проекция абсолютной скорости выхода газа на направление окружной скорости на ободе рабочего колеса:

24. Абсолютная скорость газа за рабочим колесом:

М/с.

25. Относительная скорость выхода газа с рабочих лопаток:

По полученным значениям С 2 , С 2u ,U 2 , 2 , 2 строится треугольник скоростей при выходе газа из рабочего колеса. При правильном расчете скоростей и углов треугольник скоростей должен также замкнуться.

26. По уравнению Эйлера производится проверка давления, создаваемого вентилятором:

Расчетное давление должно совпадать с проектным значением.

27. Ширина лопаток на входе газа в рабочее колесо:

здесь: УТ = 0,020,03 -коэффициент утечек газа через зазор между колесом и входным патрубком; u1 = 0,91,0 - коэффициент заполнения входного сечения рабочих каналов активным потоком.

28. Ширина лопаток на выходе газа из рабочего колеса:

где u2 = 0.91.0 - коэффициент заполнения активным потоком выходного сечения рабочих каналов.

Определение углов установки и числа лопаток рабочего колеса

29. Угол установки лопатки на входе потока в колесо:

где i - угол атаки, оптимальные значения которого лежат в пределах -3+5 0 .

30. Угол установки лопатки на выходе газа из рабочего колеса:

где - угол отставания потока вследствие отклонения потока в косом срезе межлопаточного канала. Оптимальные значения обычно принимаются из интервала у = 24 0 .

31. Средний установочный угол лопатки:

32. Число рабочих лопаток:

Округляем число лопаток до целого четного числа.

33. Уточняется принятый ранее угол отставания потока по формуле:

где k = 1,52,0 при загнутых назад лопатках;

k = 3,0 при радиальных лопатках;

k = 3,04,0 при загнутых вперед лопатках;

Уточненное значение угла должно быть близким к предварительно заданному значению. В противном случае следует задаться новым значением у.

Определение мощности на валу вентилятора

34. Полный КПД вентилятора: 78.80

где мех = 0,90,98 - механический к.п.д. вентилятора;

0,02 -величина утечек газа;

д = 0,02 - коэффициент потери мощности на трение рабочего колеса о газ (дисковое трение).

35. Необходимая мощность на валу двигателя:

25,35 кВт.

Профилирование лопаток рабочего колеса

Наиболее часто применяются лопатки, очерченные по дуге окружности.

36. Радиус лопаток колеса:

37. Радиус центров находим по формуле:

R ц =, м.


Построение профиля лопаток может быть выполнено также в соответствии с рис. 3.

Рис. 3. Профилирование лопаток рабочего колеса вентилятора

Расчет и профилирование спирального отвода

У центробежного вентилятора отвод (улитка) имеет постоянную ширину B , существенно превышающую ширину рабочего колеса.

38. Ширину улитки выбирают конструктивно:

В 2b 1 =526 мм.

Очертания отвода чаще всего соответствуют логарифмической спирали. Ее построение выполняется приближенно по правилу конструкторского квадрата. При этом сторона квадрата a в четыре раза меньше раскрытия спирального корпуса A .

39. Величину А определяем из соотношения:

где средняя скорость газа на выходе из улитки С а находится из соотношения:

С а =(0,60,75)*С 2u =33,88 м/с.

а = А /4 =79,5 мм.

41. Определим радиусы дуг окружностей, образующих спираль. Исходной окружностью для образования спирали улитки является окружность радиуса:

Радиусы раскрытия улитки R 1 , R 2 , R 3 , R 4 находим по формулам:

R 1 = R Н +=679,5+79,5/2=719,25 мм;

R 2 = R 1 + а =798,75 мм;

R 3 = R 2 + a =878,25 мм;

R 4 = R 3 + а =957,75 мм.

Построение улитки выполняется в соответствии с рис. 4.

Рис. 4.

Вблизи рабочего колеса отвод переходит в так называемый язык, разделяющий потоки и уменьшающий перетечки внутри отвода. Часть отвода, ограниченную языком, называют выходной частью корпуса вентилятора. Длина выходного отверстия C определяет площадь выходного отверстия вентилятора. Выходная часть вентилятора является продолжением отвода и выполняет функции криволинейного диффузора и напорного патрубка.

Положение колеса в спиральном отводе задают, исходя из минимума гидравлических потерь. Для уменьшения потерь от дискового трения колесо смещено к задней стенке отвода. Зазор между основным диском колеса и задней стенкой отвода (со стороны привода) с одной стороны, и колесом и языком с другой, определяется аэродинамической схемой вентилятора. Так, например, для схемы Ц4-70 они составляют соответственно 4 и 6,25%.

Профилирование всасывающего патрубка

Оптимальная форма всасывающего патрубка соответствует суживающимся сечениям по ходу газа. Сужение потока увеличивает его равномерность и способствует ускорению при входе на лопатки рабочего колеса, что уменьшает потери от удара потока о кромки лопаток. Лучшими показателями обладает плавный конфузор. Сопряжение конфузора с колесом должно обеспечивать минимум протечек газа с нагнетания на всос. Величина протечек определяется зазором между выходной частью конфузора и входом в колесо. С этой точки зрения зазор должен быть минимален, его реальное значение должно зависеть только от величины возможных радиальных биений ротора. Так, для аэродинамической схемы Ц4-70 размер зазора составляет 1% от наружного диаметра колеса.

Лучшими показателями обладает плавный конфузор. Однако в большинстве случаев оказывается достаточно обычного прямого конфузора. Входной диаметр конфузора должен быть больше диаметра всасывающего отверстия колеса в 1,32,0 раза.

Министерство образования и науки РФ

ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Кафедра промышленной теплоэнергетики

КУРСОВОЙ ПРОЕКТ

по дисциплине: «Тепловые двигатели и нагнетатели»

на тему: «Расчет центробежного дутьевого вентилятора консольного типа»

Студент Яков Д.В.

Группа ЭН-390901

Преподаватель Колпаков А.С.

Екатеринбург 2011

1. Исходные данные

Результаты расчета

Краткая характеристика центробежных вентиляторов

Аэродинамический расчет центробежного вентилятора

Механический расчет

Выбор привода вентилятора

Список литературы

1. Исходные данные

Таблица 1.

Наименование

Ед. измер.

Производительность вентилятора

тыс. м3/час

Полное давление вентилятора

Параметры газа на входе в агрегат:





Абсолютное давление


Температура


Плотность

Молекулярная масса газа

Принятая исходная система коэффициентов:






Коэффициенты потерь напора:





На входе в рабочее колесо


На лопатках рабочего колеса


При повороте потока на рабочие лопатки



коэффициенты изменения скорости:





В спиральном отводе (кожухе)




На входе в рабочее колесо



Рабочим телом во всех предлагаемых вариантах расчета центробежного вентилятора является воздух.

2. Результаты расчета

Таблица 2.

Наименование

Ед. измер.

Тип вентилятора

Консольного типа

Гидравлический КПД

Механический КПД

Общий КПД

Мощность на валу агрегата

Число оборотов


Геометрия проточной части агрегата:




Диаметр просвета колеса на входе

Диаметр входа на лопатки колеса

Отношение диаметров просвета и входа

Диаметр вала

Диаметр колеса

Отношение диаметров выхода и входа (модуль колеса)

Ширина колеса на входе

Ширина колеса на выходе

Угол установки лопатки на входе

Угол установки лопатки на выходе

Число лопаток колеса


Элементы треугольника скоростей на входе в рабочее колесо:




Скорость входа в рабочее колесо

Скорость входа газа на лопатки

Окружная скорость

Угол входа потока на лопатки колеса


Элементы треугольника скоростей на выходе из рабочего колеса:




Скорость выхода из рабочего колеса

Окружная скорость

Относительная скорость потока

Закрутка потока

Отношение скоростей C2r/U2

Угол выхода потока из колеса


Профилирование лопаток рабочего колеса дугой окружности




Радиус окружности центров

Радиус окружности профиля лопатки

. Краткая характеристика центробежных вентиляторов

Центробежные вентиляторы относятся к категории нагнетателей, отличающихся наибольшим разнообразием конструктивных типов. Колеса вентиляторов могут иметь лопатки загнутые как вперед, так и назад относительно направления вращения колеса. Достаточно распространены вентиляторы с радиальными лопатками.

При проектировании следует учитывать, что вентиляторы с лопатками назад более экономичны и менее шумны.

КПД вентилятора растет с увеличением быстроходности и для колес конической формы с лопатками назад может достигать значения ~0,9.

С учетом современных требований к энергосбережению при проектировании вентиляторных установок следует ориентироваться на конструкции вентиляторов, соответствующих отработанным аэродинамическим схемам Ц4-76, 0,55-40 и сходным с ними.

Компоновочные решения определяют КПД вентиляторной установки. При моноблочном исполнении (колесо на валу электропривода) КПД имеет максимальное значение. Использование в конструкции ходовой части (колесо на собственном валу в подшипниках) снижает КПД приблизительно на 2%. Клиноременная передача по сравнению с муфтой дополнительно снижает КПД еще минимум на 3%. Проектные решения зависят от давления вентиляторов и их быстроходности.

По развиваемому избыточному давлению воздушные вентиляторы общего назначения делятся на следующие группы:

Вентиляторы высокого давления (до 1 кПа);

Вентиляторы среднего давления (1¸3 кПа);

Вентиляторы низкого давления (3¸12 кПа).

Некоторые специализированные вентиляторы высокого давления могут развивать давление до 20 кПа.

По быстроходности (удельному числу оборотов) вентиляторы общего назначения подразделяют на следующие категории:

Быстроходные вентиляторы (11<n s <30);

Вентиляторы средней быстроходности (30<n s <60);

Быстроходные вентиляторы (60<n s <80).

Конструктивные решения зависят от требуемой проектным заданием подачи. При больших подачах вентиляторы имеют колеса двустороннего всасывания.

Предлагаемый расчет относится к категории конструктивных и выполняется методом последовательных приближений.

Коэффициенты местных сопротивлений проточной части, коэффициенты изменения скорости и соотношения линейных размеров задаются в зависимости от проектного давления вентилятора с последующей проверкой. Критерием правильности выбора является соответствие расчетного давления вентилятора заданному значению.

4. Аэродинамический расчет центробежного вентилятора

Для расчета задаются:

Отношением диаметров рабочего колеса

.

Отношением диаметров рабочего колеса на выходе и на входе газа:

.

Меньшие значения выбираются для вентиляторов высокого давления.

Коэффициентами потерь напора:

а) на входе в рабочее колесо:

б) на лопатках рабочего колеса:

в) при повороте потока на рабочие лопатки:

;

г) в спиральном отводе (кожухе):

Меньшие значения x вх, x лоп, x пов, x к соответствуют вентиляторам низкого давления.

Выбираются коэффициенты изменения скорости:

а) в спиральном отводе (кожухе)

б) на входе в рабочее колесо

;

в) в рабочих каналах

.


.

Из условия минимума потерь давления в вентиляторе определяется коэффициент R в:

.

Находится угол потока на входе в рабочее колесо:

, град.

Вычисляется отношение скоростей

.

Определяется коэффициент теоретического напора из условия максимума гидравлического коэффициента полезного действия вентилятора:

.

Находится значение гидравлического к.п.д. вентилятора:

.

11. Определяется угол выхода потока из рабочего колеса, при оптимальном значении h Г:

, град.

Необходимая окружная скорость колеса на выходе газа:

, м/с.

где r [кг/м 3 ] - плотность воздуха при условиях всасывания.

Определяется необходимое число оборотов рабочего колеса при наличии плавного входа газа в рабочее колесо

, об/мин.

Здесь m 0 =0,9¸1,0 - коэффициент заполнения сечения активным потоком. В первом приближении он может быть принят равным 1,0.

Рабочее число оборотов приводного двигателя принимается из ряда значений частот, характерных для электроприводов вентиляторов: 2900; 1450; 960; 725.

Наружный диаметр рабочего колеса:

, мм.

Входной диаметр рабочего колеса:

, мм.

Если действительное отношение диаметров рабочего колеса близко к принятому ранее, то уточнения в расчет не вносятся. Если значение получается больше 1м, то следует рассчитывать вентилятор с двухсторонним всасыванием. В этом случае в формулы следует подставлять половинную подачу 0,5Q .

Элементы треугольника скоростей при входе газа на рабочие лопатки

16. Находится окружную скорость колеса на входе газа

, м/с.

Скорость газа на входе в рабочее колесо:

, м/с.

Скорость С 0 не должна превышать 50 м/с.

Скорость газа перед лопатками рабочего колеса:

, м/с.

Радиальная проекция скорости газа при входе на лопатки рабочего колеса:

М/с.

Проекция входной скорости потока на направление окружной скорости принимается равной нулю для обеспечения максимума напора:

С 1u = 0.

Поскольку С 1r = 0, то a 1 = 90 0 , то есть вход газа на рабочие лопатки радиальный.

Относительная скорость входа газа на рабочие лопатки:

w 1 =, м/с.

По рассчитанным значениям С 1 , U 1 , w 1 , a 1 , b 1 строится треугольник скоростей при входе газа на рабочие лопатки. При правильном подсчете скоростей и углов треугольник должен замкнуться.

Элементы треугольника скоростей при выходе газа с рабочих лопаток

22. Радиальная проекция скорости потока за рабочим колесом:

, м/с.

Проекция абсолютной скорости выхода газа на направление окружной скорости на ободе рабочего колеса:

Абсолютная скорость газа за рабочим колесом:

, м/с.

Относительная скорость выхода газа с рабочих лопаток:

По полученным значениям С 2 , С 2u ,U 2 , w 2 , b 2 строится треугольник скоростей при выходе газа из рабочего колеса. При правильном расчете скоростей и углов треугольник скоростей должен также замкнуться.


По уравнению Эйлера производится проверка давления, создаваемого вентилятором:

Па.

Расчетное давление должно совпадать с проектным значением.

Ширина лопаток на входе газа в рабочее колесо:

, мм,

здесь: a УТ = 0,02¸0,03 -коэффициент утечек газа через зазор между колесом и входным патрубком; m u1 = 0,9¸1,0 - коэффициент заполнения входного сечения рабочих каналов активным потоком.

Ширина лопаток на выходе газа из рабочего колеса:

, мм,

где m u2 = 0.9¸1.0 - коэффициент заполнения активным потоком выходного сечения рабочих каналов.

Определение углов установки и числа лопаток рабочего колеса

29. Угол установки лопатки на входе потока в колесо:

, град,

где i - угол атаки, оптимальные значения которого лежат в пределах -3¸+5 0 .

Угол установки лопатки на выходе газа из рабочего колеса:

, град,

Средний установочный угол лопатки:

, град.

Число рабочих лопаток:


Округляем число лопаток до целого четного числа.

Уточняется принятый ранее угол отставания потока по формуле:

,

где k = 1,5¸2,0 при загнутых назад лопатках;

k = 3,0 при радиальных лопатках;

k = 3,0¸4,0 при загнутых вперед лопатках;

b 2л =;

s =b 2л -b 2 =2

Уточненное значение угла s должно быть близким к предварительно заданному значению. В противном случае следует задаться новым значением σ .

Определение мощности на валу вентилятора

34. Полный КПД вентилятора: 78.80

,

где h мех = 0,9¸0,98 - механический к.п.д. вентилятора;

0,02 -величина утечек газа;

a д = 0,02 - коэффициент потери мощности на трение рабочего колеса о газ (дисковое трение).

Необходимая мощность на валу двигателя:

=25,35 кВт.

Профилирование лопаток рабочего колеса

Наиболее часто применяются лопатки, очерченные по дуге окружности.

Радиус лопаток колеса:

, м.

Радиус центров находим по формуле:

ц =, м.

Построение профиля лопаток может быть выполнено также в соответствии с рис. 3.

Рис. 3. Профилирование лопаток рабочего колеса вентилятора

Расчет и профилирование спирального отвода

У центробежного вентилятора отвод (улитка) имеет постоянную ширину B , существенно превышающую ширину рабочего колеса.

Ширину улитки выбирают конструктивно:

В »2b 1 =526 мм.

Очертания отвода чаще всего соответствуют логарифмической спирали. Ее построение выполняется приближенно по правилу конструкторского квадрата. При этом сторона квадрата a в четыре раза меньше раскрытия спирального корпуса A .

39. Величину А определяем из соотношения:

, м.

где средняя скорость газа на выходе из улитки С а находится из соотношения:

С а =(0,6¸0,75)*С 2u =33,88 м/с.

а = А /4 =79,5 мм.

Определим радиусы дуг окружностей, образующих спираль. Исходной окружностью для образования спирали улитки является окружность радиуса:

, мм.

Радиусы раскрытия улитки R 1 , R 2 , R 3 , R 4 находим по формулам:

1 = R Н +=679,5+79,5/2=719,25 мм;

R 2 = R 1 + а =798,75 мм;

R 3 = R 2 + a =878,25 мм; 4 = R 3 + а =957,75 мм.

Построение улитки выполняется в соответствии с рис. 4.

Рис. 4. Профилирование улитки вентилятора по методу конструкторского квадрата

Вблизи рабочего колеса отвод переходит в так называемый язык, разделяющий потоки и уменьшающий перетечки внутри отвода. Часть отвода, ограниченную языком, называют выходной частью корпуса вентилятора. Длина выходного отверстия C определяет площадь выходного отверстия вентилятора. Выходная часть вентилятора является продолжением отвода и выполняет функции криволинейного диффузора и напорного патрубка.

Положение колеса в спиральном отводе задают, исходя из минимума гидравлических потерь. Для уменьшения потерь от дискового трения колесо смещено к задней стенке отвода. Зазор между основным диском колеса и задней стенкой отвода (со стороны привода) с одной стороны, и колесом и языком с другой, определяется аэродинамической схемой вентилятора. Так, например, для схемы Ц4-70 они составляют соответственно 4 и 6,25%.

Профилирование всасывающего патрубка

Оптимальная форма всасывающего патрубка соответствует суживающимся сечениям по ходу газа. Сужение потока увеличивает его равномерность и способствует ускорению при входе на лопатки рабочего колеса, что уменьшает потери от удара потока о кромки лопаток. Лучшими показателями обладает плавный конфузор. Сопряжение конфузора с колесом должно обеспечивать минимум протечек газа с нагнетания на всос. Величина протечек определяется зазором между выходной частью конфузора и входом в колесо. С этой точки зрения зазор должен быть минимален, его реальное значение должно зависеть только от величины возможных радиальных биений ротора. Так, для аэродинамической схемы Ц4-70 размер зазора составляет 1% от наружного диаметра колеса.

Лучшими показателями обладает плавный конфузор. Однако в большинстве случаев оказывается достаточно обычного прямого конфузора. Входной диаметр конфузора должен быть больше диаметра всасывающего отверстия колеса в 1,3¸2,0 раза.

. Механический расчет

вентилятор лопатка колесо привод

1. Проверочный расчет лопаток рабочего колеса на прочность

При работе вентилятора лопатки несут три вида нагрузок:

· центробежные силы собственной массы;

· разность давлений перемещаемой среды на рабочую и тыльную стороны лопатки;

· реакция деформирующихся основного и покрывного дисков.

На практике нагрузки второго и третьего видов не учитывают, потому что эти нагрузки значительно меньше нагрузок от центробежных сил.

При расчете лопатку рассматривают как балку, работающую на изгиб. Ориентировочно изгибающее напряжение в лопатке можно подсчитать по формуле:

s ил == 779 кг/см 2 ,

где R 1 и b 1 - радиус колеса на всосе и толщина лопатки соответственно, мм .

Проверочный расчет на прочность основного диска рабочего колеса

При проектировании рабочих колес толщины дисков назначаются конструктором с последующей проверкой напряжений расчетом.

Для колес одностороннего всасывания максимальное значение тангенциального напряжения можно проверить по формуле:

s τ = кг/см 2

где G л - суммарная масса лопаток, кг ;

δ / - толщина диска, мм ;

n 0 - число оборотов, об/мин .

л ==110 кг ,

где ρ = 7850 кг/м 3 .

Коэффициенты k 1 и k 2 определяются по номограмме (Рис. 5).

Рис. 5. Номограмма для определения коэффициентов k 1 и k 2

Полученное напряжение не должно превышать предел текучести для стали [s τ ] = 2400 кг/см 2 .

6. Выбор привода вентилятора

Для привода вентиляторов консольного типа преимущественно используются асинхронные электродвигатели серии 4А и их аналоги других серий. Для выбора электродвигателя руководствуются частотой вращения вентилятора и его мощностью. При этом требуется учесть необходимость запаса по мощности во избежание выхода двигателя из строя при запуске, когда возникают большие пусковые токи. Коэффициент запаса вентиляторов общего назначения =1,05¸1,2 выбирается, исходя из величины мощности вентилятора. Большие значения коэффициента соответствуют меньшим значениям мощности.

Для дутьевых вентиляторов мощность привода выбирается с учетом коэффициентов запаса по давлению k д =1,15 и подаче k п =1,1. Запас по мощности двигателя k N =1,05.

Выбор электродвигателей производится по каталогам и справочникам . Выбираем электродвигатель АИР180М4 с частотой вращения 1500 об/мин и мощностью 30 кВт.

Заводское обозначение

Тип эл./двигателя

Установл. мощность двиг. кВт

Потр. мощность кВт

Подача тыс. м3/ч

Давл. даПа

Габариты (LхВхН), мм








ВДН10-1500 об/мин


7. Список литературы

1. Соломахова Т.С., Чебышева К.В. Центробежные вентиляторы. Аэродинамические схемы и характеристики: Справочник. М.: Машиностроение, 1980. 176 с.

Вахвахов Г.Г. Энергосбережение и надежность вентиляторных установок. М.: Стройиздат, 1989. 176 с.

Аэродинамический расчет котельных установок (нормативный метод). / Под ред. С.И. Мочана. Л.: Энергия, 1977. 256 с.

Тягодутьевые машины: Каталог. «Сибэнергомаш». 2005.

Алиев Электротехнический справочник

Вентиляторы улитки свое название получи по форме корпуса, которая напоминает панцирь этого моллюска. Сегодня этот вид оборудования применяется и в промышленности, и в жилищном строительстве в вентиляционных системах. Производители предлагают сегодня несколько моделей улиток для вентиляции. Но все они работают по одному и тому же принципу – центробежная сила, создаваемая вращением лопаток на роторе, захватывает воздух через входное отверстие виде улитки и выталкивает его через прямолинейное выходное отверстие, расположенное под 90° в другой плоскости к входному.

Общие данные о центробежных (радиальных) вентиляторах

Вентиляторы улитки имеют двойственное обозначение (маркировку): ВР и ВЦ, то есть, радиальный и центробежный. Первое говорит о том, что лопатки рабочего органа оборудования расположены радиально относительно своего ротора. Второе – это обозначение физического принципа работы прибора, то есть, процесс забора и перемещения воздушных масс происходит за счет центробежной силы.

Именно центробежные вентиляторы в системах вентиляции показали себя с положительной стороны за счет высокой эффективности отвода воздуха.

Принцип действия

Как уже было сказано, вентиляторы этой модификации работают на основе действия центробежной силы.

  1. Лопатки, закрепленные на роторе устройства, вращаются с большой скоростью, создавая завихрения внутри корпуса.
  2. Давление на входе падает, что становится причиной всасывания близ расположенного воздуха, который устремляется внутрь.
  3. Под действием лопаток он отбрасывается к периферии пространства, где создается высокое давление.
  4. Под его действием воздушный поток устремляется к выходному патрубку.

Так работают все центробежные модели, которые устанавливаются не только в системах вентиляции, но и дымоудаления. О последних надо сказать, что изготавливают их корпус из алюминиевого сплава или стали, покрытой жаростойкими материалами, а комплектуют взрывозащищенным электродвигателем.

Особенности конструкции

Как уже было сказано, основная особенность конструкции – улитка. Необходимо обозначить и форму лопаток. В вентиляторах этой марки применяют три их разновидности:

  • с прямым наклоном,
  • с наклоном назад,
  • в виде крыла.

Первая позиция – это небольшие вентиляторы с большой мощностью и производительностью. То есть, они могут создавать условия, при которых другие модели требуют наличия большого корпуса. При этом они работают с низким уровнем шума. Вторая позиция – это экономный вариант, который потребляет на 20% электроэнергии меньше, чем другие позиции. Такие вентиляторы легко переносят нагрузки.

Что касается исполнения, которое относится к электродвигателю, то здесь также три позиции:

  • ротор закреплен напрямую с валом двигателя через муфту и подшипники;
  • через ременную передачу с помощью шкивов;
  • крыльчатка насажена на вал электродвигателя.

И еще одна особенность – это места соединения вентилятора с воздуховодами вентиляционной системы. Входной патрубок имеет прямоугольную форму отверстия, выходной круглую.

Виды

Виды центробежных вентиляторов улиток – это три позиции, отличающиеся друг от друга мощностью. Этот параметр зависит от скорости вращения электродвигателя, а соответственно и ротора, а также от количества лопаток в конструкции устройства. Вот три вида:

  1. Вентиляторы улитки низкого давления, параметр которых не превышает 100 кг/см². Чаще всего их используют в системах вентиляции многоквартирных домов. Устанавливают улитки на крышах.
  2. Модели среднего давления – 100-300 кг/см². Устанавливаются в системах вентиляции промышленных объектов.
  3. Разновидность высокого давления – 300-1200 кг/см². Это мощные вентиляторные установки, которые обычно включают в систему воздухоотвода лакокрасочных цехов, в производствах, где установлен пневмотранспорт, на складах с горюче-смазочными материалами и прочих помещениях.

Есть еще одно разделение вентиляторов улиток – по своему назначению. Это в первую очередь приборы общего назначения. Далее еще три позиции: взрывозащищенные, термостойкие и коррозионостойкие.

Ограничения в использовании

  • с липкими взвесями с концентрацией более 10 мг/м³;
  • с волокнистыми материалами в воздухе;
  • со взрывоопасными включениями;
  • с коррозионными частицами;
  • и на складах, где хранится взрывчатка.

Во всех остальных случаях использовать улитки можно без ограничений. И еще один момент, регламентирующий условия их эксплуатации, это температурный режим, который нельзя нарушать: от -45С до +45С.

Популярные модели

В принципе, по-модельного разделения улиток не существует. Есть определенные марки, которые выпускаются всеми производителями. И делятся они в основном по прямому назначению. К примеру, вентилятор ВРП, где буква «П» обозначает, что это пылевая модель, которую используют в системах вентиляции и аспирации, для удаления воздуха с большой концентрацией пыли. То есть, это специфичная модель, которую надо использовать именно по прямому назначению. Конечно, этот прибор легко справится и с обычным воздухом, но он дороже стандартных ВР или ВЦ, потому что в его конструкции используется толстый металл для изготовления корпуса и лопаток, отсюда и более высокая мощность электродвигателя.

То же самое касается вентиляторов марки ВР ДУ, то есть, для дымоудаления. Изготавливают их из более качественных материалов с установкой взрывозащищенного двигателя. Отсюда и высокая их цена. Что касается других позиций, то ВР разделяется на виды, о которых было уже сказано, и в каждой группе есть свои модели со своими техническими характеристиками.

Как сделать своими руками

Вопрос, поставленный названием этого раздела, можно отнести к категории риторических. То есть, в принципе, сделать улитку своими руками можно, если владеть навыками жестянщика или сварщика. Потому что собирать прибор придется из листового металла. А в зависимости от мощности и производительности устройства металл будет разной толщины.

Плюс ко всему самостоятельно сделать лопатки и качественно прикрепить их к ротору – сложно. Потому что ротор будет вращаться с огромной скоростью, и если балансировка конструкции нарушена, то вентилятор разнесет на части в первые 20 секунд работы. Да и правильно подобрать электродвигатель надо с учетом мощности и скорости вращения, плюс грамотно провести подсоединение его к ротору вентилятора. Так что не пытайтесь ничего делать своими руками – это опасно для вашей же жизни.

Все аппараты, независимо от назначения, предназначены для создания потока воздуха (чистого или содержащего примеси других газов или мелкие однородные частицы) разного давления. Оборудование подразделяется на классы по созданию низкого, среднего и высокого давления.

Агрегаты называются центробежными (а также радиальными) из-за способа создания воздушного потока вращением радиального рабочего колеса лопаточного типа (форма барабана или цилиндра) внутри спиральной камеры. Профиль лопатки может быть прямым, изогнутым, «профилем крыла». В зависимости от скорости вращения, типа и количества лопаток давление воздушного потока может варьироваться от 0,1 до 12 кПа. Вращение в одну сторону удаляет газовые смеси, в противоположную — нагнетает чистый воздух в помещение. Изменить вращение можно с помощью перекидного переключателя, меняющего фазы тока местами на клеммах электрического двигателя.

Корпус оборудования общего назначения для работы в неагрессивных газовых смесях (воздух чистый или задымленный, содержание частиц менее 0,1 г/м3) изготавливается из листовой углеродистой или оцинкованной стали различной толщины. Для более агрессивных газовых смесей (присутствуют активные газы или испарения кислот и щелочей) используются коррозионно-устойчивые (нержавеющие) стали. Такое оборудование может работать при температуре среды до 200 градусов тепла. В изготовлении взрывозащищенного варианта для работы в опасных условиях (горное оборудование, большое содержание взрывоопасной пыли) применяются более пластичные металлы (медь) и алюминиевые сплавы. Оборудование для взрывоопасных условий отличается повышенной массивностью и при работе исключает искрение (главную причину взрывов пыли и газов).

Барабан (рабочее колесо) с лопатками изготавливается из сортов стали, не подверженных коррозии и достаточно пластичных, чтобы выдержать длительные вибрационные нагрузки. Форма и количество лопаток проектируются из расчета аэродинамических нагрузок при определенной скорости вращения. Большое количество лопаток, прямых или слегка изогнутых, вращающихся с большой скоростью, создают более устойчивый воздушный поток и издают меньше шума. Но давление воздушного потока все же ниже, чем у барабана, на котором установлены лопатки с аэродинамическим «профилем крыла».

«Улитка» относится к оборудованию с повышенной вибрацией, причины которой именно в низком уровне сбалансированности вращающегося рабочего колеса. Вибрация вызывает два следствия: повышенный уровень шума и разрушение основания, на котором установлен агрегат. Снизить уровень вибрации помогают амортизационные пружины, которые вставляются между основанием корпуса и местом установки. При монтаже некоторых моделей вместо пружин используются резиновые подушки.

Вентиляционные агрегаты — «улитка» комплектуются электродвигателями, которые могут быть снабжены взрывобезопасными корпусами и крышками, улучшенной окраской для работы в агрессивных газовых средах. В основном это асинхронные двигатели с определенной частотой вращения. Электродвигатели рассчитаны на работу от однофазной сети (220 В) или трехфазной (380 В). (Мощность однофазных электродвигателей не превышает 5 — 6 кВт). В исключительных случаях может быть установлен двигатель с управляемой скоростью вращения и тиристорным управлением.

Существуют три способа соединения электродвигателя с валом барабана:

  1. Прямое соединение. Валы соединены с помощью шпоночной втулки. «Конструктивная схема №1».
  2. Через редуктор. Редуктор может иметь несколько передач. «Конструктивная схема №3».
  3. Ременно — шкивная передача. Скорость вращения может меняться если поменять шкивы. «Конструктивная схема №5».

Наиболее безопасным соединением для электродвигателя в случае внезапного заклинивания является ременно — шкивное (если вал рабочего колеса внезапно и резко остановится, повредятся ремни).

Кожух изготавливается в 8 положениях выходного отверстия относительно вертикали, от 0 до 315 через 45 градусов. Это позволяет облегчить крепление агрегата к воздуховоду. Для исключения передачи вибрации фланцы воздуховода и корпуса агрегата соединяются через рукав из толстого прорезиненного брезента или синтетической ткани.

Оборудование окрашивается прочными порошковыми красками с повышенной ударопрочностью.

Популярные модели ВР и ВЦ

1. Вентилятор ВР 80 75 низкого давления

Предназначен для вентиляционных систем производственных и общественных зданий. Условия работы: умеренный и субтропический климат, в неагрессивных условиях. Диапазон температур, пригодный для работы оборудования общего назначения (ОН) от -40 до +40. Жаростойкие модели выдерживают повышение до +200. Материал: углеродистая сталь. Средний уровень влажности: 30-40%. Дымоулавливающие могут в течение 1,5 часа работать при температуре +600.

Рабочее колесо несет 12 изогнутых лопаток, изготовленных из нержавеющей стали.

Коррозионностойкие модели изготавливаются из нержавеющей стали.

Взрывозащищенные — из углеродистой стали и латуни (для нормальной влажности), из нержавеющей стали и латуни (для повышенной влажности). Материал для самых защищенных моделей: алюминиевые сплавы.

Оборудование производится по конструктивным схемам №1 и №5. Мощность двигателей, поставляемых в комплекте — от 0,2 до 75 кВт. Двигатели до 7,5 с частотой вращения до от 750 до 3000 об/мин, более мощные — от 356 до 1000.

Срок службы — более 6 лет.

В номере модели отражен диаметр рабочего колеса: от №2,5 — 0,25м. до №20 — 2 м. (согласно ГОСТ 10616-90).

Параметры некоторых ходовых моделей:

1. ВР 80-75 №2,5: двигатели (Дв) от 0,12 до 0,75 кВт; 1500 и 3000 об/мин; давление (Р) — от 0,1 до 0,8 кПа; производительность (Пр)- от 450 до 1700 м3/ч. Виброизоляторы (Ви)- резиновые. (4 шт) К.с. №1.

2. ВР 80-75 №4: Дв от 0,18 до 7,5 кВт; 1500 и 3000 об/мин; Р — от 0,1 до 2,8 кПа; Пр — от 1400 до 8800 м3/ч. Ви — резиновые. (4 шт) К.с. №1.

3. ВР 80-75 №6,3: Дв от 1,1 до 11 кВт; 1000 и 1500 об/мин; Р — от 0,35 до 1,7 кПа; Пр — от 450 до 1700 м3/ч. Ви — резиновые. (4 шт) К.с. №1.

4. ВР 80-75 №10: Дв от 5,5 до 22 кВт; 750 и 1000 об/мин; Р — от 0,38 до 1,8 кПа; Пр — от 14600 до 46800 м3-ч. Ви — резиновые. (5 шт.) К.с. №1.

5. ВР 80-75 №12,5: Дв от 11 до 33 кВт; 536 и 685 об/мин; Р — от 0,25 до 1,4 ка; Пр — от 22000 до 63000 м3/ч. Ви — резиновые (6 шт) . К.с. №5.

6. Вентилятор ВЦ 14 46 среднего давления.

Рабочие характеристики и материалы для изготовления идентичны ВР за исключением количества лопаток (32 шт).

Номера — от 2 до 8. Конструкционные схемы №1 и №5.

Срок службы — более 6 лет. Гарантийное количество часов отработки — 8000.

Параметры и производительность:

1. ВЦ 14 46 №2: Дв от 0,18 до 2,2 кВт; 1330и 2850об/мин; Р — от 0,26 до 1,2 кПа; Пр — от 300 до 2500 м3/ч. Ви — резиновые. (4 шт) К.с. №1.

2. ВЦ 14 46 №3,15: Дв от 0,55 до 2,2 кВт; 1330 и 2850 об/мин; Р — от 0,37 до 0,8 кПа; Пр — от 1500 до 5100 м3/ч. Ви — резиновые. (4 шт) К.с. №1.

3. ВЦ 14 46 №4: Дв от 1,5 до 7,5 кВт; 930 и 1430 об/мин; Р — от 0,55 до 1,32 кПа; Пр — от 3500 до 8400 м3/ч. Ви — резиновые. (4 шт) К.с. №1.

4. ВЦ 14-46 №6,3: Дв от 5,5 до 22 кВт; 730 и 975 об/мин; Р — от 0,89 до 1,58 кПа; Пр — от 9200 до 28000 м3/ч. Ви — резиновые. (5 шт) К.с. №1,5.

5. ВЦ 14-46 №8: Дв от 5,5 до 22 кВт; 730 и 975 об/мин; Р — от 1,43 до 2,85 кПа; Пр — от 19000 до 37000 м3/ч. Ви — резиновые. (5 шт) К.с. №1,5.

Пылевой вентилятор «улитка»

Вентиляторы пылевые предназначены для жестких условий работы, их предназначение — удалять с места работы воздух с достаточно крупными частицами (галечник, труха, мелкая металлическая стружка, деревянная стружка, щепа). Рабочее колесо несет 5 или 6 лопаток, изготовленных из толстой углеродистой стали. Агрегаты предназначены для работы в вытяжках со станков. Популярны модели ВЦП 7-40. Выполняются по К.с. №5.

Создают давление от 970 до 4000 Па, их можно отнести к классу «среднее и высокое давление». Номера рабочих колес — 5, 6,3 и 8. Мощность Дв — от 5,5 до 45 кВт.

Прочие

Существуют устройства особого класса — для поддува в твердотопливных котлах. Производятся в Польше. Специализированное оборудование для отопительных систем (частных).

Корпус — «улитка» отлит из алюминиевого сплава. Специальная заслонка с системой грузиков исключает попадание воздуха в топку, когда мотор отключен. Устанавливаться может в любом положении. Небольшой двигатель с датчиком температуры, 0,8 кВт. В продаже модели WPA-117k,WPA-120k, различающиеся размерами основания.