Анализ воды. Что собой представляет качественный анализ воды: как его сделать и для чего это нужно

Природные воды размещаются в подземных или поверхностных источниках. Наиболее загрязнены открытые источники, а также колодцы и мелкие скважины, не защищенные от попадания атмосферных и поверхностных загрязнений.

Перед употреблением природную воду необходимо проверить на соответствие гигиеническим требованиям. Для этого проводятся физико-химические и микробиологические анализы. Различными методами выясняется наличие в воде химических элементов и соединений, органических веществ, растворенных газов, бактерий и вирусов, и т.д. В зависимости от поставленной задачи выбранный метод анализа природных вод может выполняться в стандартной или расширенной форме. Стандартный химический анализ содержит от 12 до 25 пунктов, расширенный - 100.

Неорганические и органические загрязнения могут иметь разные фракции - крупные фрагменты, мелкие частицы, взвеси, коллоиды, суспензии, эмульсии, молекулы, ионы. Некоторые из загрязнений оказывают влияние на органолептические свойства воды - мутность, цветность, запах, привкус, и определяются человеком без специальных приборов. Однако большое количество опасных для здоровья посторонних веществ никак не влияет на внешний вид воды и обнаружить их можно только в лаборатории.

Метод анализа выбирается не только в зависимости от источника воды, но и от цели ее использования. Очевидно, что вода для питья и приготовления пищи должна быть проверена более тщательно, чем техническая. При необходимости для повышения точности результатов исследований анализ воды можно повторить.

Артезианская вода - исключение среди разных типов природной воды. Водоносный известняк располагается глубоко и полностью защищен от поверхности различными геологическими слоями, играющими роль природных фильтров. Сам известняк, в порах и трещинах которого накапливается вода, также является хорошим фильтром. Основные загрязнениями артезианской воды - соли жесткости и растворенное железо, попадающие из горных пород. Бактериологическое загрязнение отсутствует. Таким образом, для проверки артезианской воды достаточно сделать только химический анализ. Брать пробу воды из скважины на известняк рекомендуется через 2-3 недели после начала использования. За это время восстанавливается естественный химический состав, нарушенный бурением с промывкой.

Вода из мелких и открытых источников должна исследоваться более тщательно. Ничем не защищенные от атмосферы и поверхности земли реки, озера, колодцы и скважины на песок постоянно подвергаются загрязнению - как естественному сезонному, так и непредсказуемому техногенному. В песчаной скважине кроме химического присутствуют все возможные варианты органического и бактериологического загрязнения.

Основная цель проведения анализа природных вод - подбор фильтров. На основании результатов профессионального лабораторного исследования воды специалисты отдела водоподготовки создадут эффективную систему очистки.

Анализ данных о составе сточных вод, поступающих на городские очистные сооружения, показал, что большой проблемой на сегодняшний день является недостаточная эффективность очистки от органических соединений и тяжелых металлов, в частности меди и цинка. По если органические соединения подвергаются биологическому разложению, то тяжелые металлы могут только перераспределяться в объектах окружающей среды. Поэтому вопросы, связанные с повышением эффективности очистки от ионов тяжелых металлов, в частности меди и цинка, весьма актуальны.[ ...]

Вода в природе нигде не встречается в виде химически чистого вещества. Под физико-химическим составом природных вод принято понимать весь сложный, комплекс растворенных газов, ионов, взвесей и коллоидов минерального и органического происхождения. В природных водах обнаружено около половины химических элементов, входящих в периодическую таблицу Д. И. Менделеева, а многие другие пока не найдены только из-за недостаточной чувствительности методов анализа. Еще большим качественным и количественным многообразием при месей отличаются сточные воды; состав этих примесей всецело зависит от характера производства, в котором они образуются.[ ...]

Анализ состава органических примесей природных вод, сорбированных на поверхности гидроокиси алюминия, позволяет отнести их к группе флокулянтов растительного происхождения. Преимущество флокулянтов природного происхождения заключаются в отсутствии у них токсичных свойств и полной безвредности для организма человека . На это явление указывает также Т. А. Карюхина. Коллоидные гумусовые вещества сорбируются на поверхности А1 ((ЗН) ч, передавая ему свои свойства.[ ...]

Анализ сточных вод производства изопрена по отдельным органическим загрязнителям очень затруднен ввиду присутствия в сточных водах различных соединений, имеющих одинаковые функциональные группы (гидроксильные, метальные, непредельные связи, связанный формальдегид и др.). Поэтому для характеристики состава сточных вод производили обычный санитарно-химический анализ их и некоторые специфические определения, например формальдегида и изопрена.[ ...]

При анализе вод с известным качественным составом проведение указанных операций выделения и разделения органических веществ нецелесообразно; основные компоненты можно определять непосредственно в сточной воде по методикам, описанным в п. 5.3.[ ...]

При анализе природных вод, содержащих смеси органических веществ неизвестного состава, существенно усложняются задачи идентификации. Один из возможных подходов для реализации метода прямого анализа природных вод рассматривается в работах , используется принцип пиролитической хроматографии. Хроматограммы фрагментов пиролиза отдельных классов и групп соединений имеют общие и специфические пики. Описана возможность идентификации органических соединений в смесях по группам или классам в пирографических участках и расчет концентраций с помощью математической обработки .[ ...]

При анализе очень сложных смесей, когда идентификация компонентов только при помощи газовой хроматографии затруднена, все чаще используют комбинацию газовой хроматографии и. масс-спектрометрии - хромато-масс-спектроме-трию. Применение такой комбинации для определения состава органических примесей в природных и сточных водах описано в ряде работ, требующих специального рассмотрения.[ ...]

При водятся методы группового разделения органических веществ для случая неизвестного состава воды; идентификация компонентов выделенных групп производится методами физико-химического анализа; УФ, ИК спектрометрией, газово-жидкостной, тонкослойной хроматографией и др.[ ...]

При анализе состава сточных вод все чаще применяют «многокомпонентные» методы анализа, позволяющие определять сразу большое число веществ, например атомно-эмиссионный и рентгеновский анализ, хроматографию. Предпочтительно использование методов прямого анализа, т. е. не связанного с химической подготовкой пробы, но в случае определения типа загрязнений, такая подготовка часто необходима. Например, предварительное концентрирование исследуемого компонента позволяет определять его в меньших концентрациях, устранять трудности, связанные с негомогенным распределением компонента в пробе и отсутствием образцов сравнения. Специфическую группу методов определения органических соединений составляют методы элементного анализа. Применение газовой хроматографии позволило автоматизировать элементный анализ: для этого выпускают С-, Н-, Ы-анализаторы и другие приборы-автоматы. Анализ органических соединений по функциональным группам (например, ЫН2-группа, ОН-группа и др.) выполняют различными химическими, электрохимическими (амперометрия, полярография), спектральными (инфракрасная спектроскопия) или хроматографическими методами.[ ...]

Общий органический углерод (ТОС) - это та часть растворенного и нерастворенного органического вещества, которая присутствует в воде. Она не дает информации о природе органического вещества. Органический углерод может быть определен до анализа или определен в составе ТОС, а затем получен путем вычитания содержания неорганического углерода из общего содержания углерода.[ ...]

На основе анализа данных о взаимодействии органических веществ в воде, их устойчивости к действию окислителей и адсорбентов может быть рекомендовано небольшое число технологических схем, обеспечивающих очистку воды в широком диапазоне ее состава. Если до последнего времени такие схемы можно было создавать на основании эмпирического подбора, то наличие сведений о природе веществ и механизме протекающих при обработке воды реакций дает возможность обоснованно рекомендовать технологические схемы и реагенты и четко очертить границы их применимости.[ ...]

Трудность анализа состава сточных вод ЦБП определяется как сложностью состава основного объекта технологического процесса древесины, так и многообразием химических операций, проводимых с древесиной, затем с целлюлозой, в результате чего образуются щелока, поступающие в сточные воды. Для делигнифика-ции древесины при получении целлюлозы используют различные химические реагенты: щелочные растворы сульфида натрия или двуокиси серы. Разнообразны способы отбелки целлюлозы: хлорирование, щелочение, обработка гипохлоритом натрия, двуокисью хлора, перекисью водорода, кислородом . Реакции, протекающие в процессе получения целлюлозы из древесины, приводят к образованию и накоплению в сточных водах ЦБП огромного количества веществ, различных по химическому составу, строению, дисперсному состоянию. Сточные воды содержат органические и неорганические, низко- и высокомолекулярные, растворенные, эмульгированные и суспендированные вещества. Положение осложняется тем, что концентрации многих компонентов очень малы, а это накладывает серьезные ограничения на использование ряда аналитических методов для их определения. Сложность состава сточных вод и неустойчивость многих компонентов весьма затрудняют идентификацию веществ. Отметим, что в наиболее изученном сульфатном черном щелоке идентифицировано к настоящему моменту 100 соединений, но это лишь небольшая часть всех веществ, имеющихся в щелоке . Сточные воды бумажного производства значительно проще по составу, чем целлюлозного производства, и не определяют специфику аналитического контроля сточных вод ЦБП, поэтому мы не будем их рассматривать .[ ...]

Метод прямого анализа водных образцов. При анализе водных растворов с помощью пламенно-ионизационного детектора возможно обнаружение присутствующих органических веществ; в концентрациях до 10-3-10-4%. Прямой анализ получил распространение при контроле сточных вод и других систем известного состава, для которых вопросы идентификации и количественного определения могут быть решены путем сравнительного анализа искусственных смесей.[ ...]

Для определения органических примесей в водах и воздушной среде и для сигнализации о выбросах опасных веществ в лабораторных производственных и полевых условиях, в том числе на транспортных средствах в составе передвижных лабораторий. Режимы работы: обзорный анализ - определение наличия и идентификация компонентов на основе использования масс-спектров индивидуальных веществ, хранящихся в компьютеризированной базе данных; анализ на содержание определяемых компонентов; количественный анализ смесей известного состава; выполнение сервисных функций - цифровая фильтрация масс-спектра от шумов, преобразование аналоговою спектра в гистограммный, пополнение базы данных и другие.[ ...]

Вследствие сложности состава производственных и бытовых сточных вод оценка самоочищения водоема в целом представляет собой сложную комплексную задачу. Чаще дают оценку самоочищения водоема по отношению к легко окисляемому органическому веществу (определяемому по ВПК) или по общему содержанию органических веществ (определяемому по ХПК). Оценка самоочищения производится и по данным определения конкретных соединений или их групп (фенолов, углеводородов, смол), а также на основании микробиологических показателей и анализа индикаторных организмов - сапробионтов. О самоочищении водоема в целом можно говорить только в том случае, когда имеются данные по всем показателям.[ ...]

Проблема исследования состава природных и сточных вод ввиду ее сложности, особенно в части органического анализа, должна решаться на основе двух основных тенденций развития современной аналитической химии: разделение веществ перед их определением и разделение суммы сигналов, получаемой при исследовании смеси веществ. В настоящем сообщении будут рассмотрены перспективы некоторых спектральных методов анализа: спектрофотометрии, ИК-спектроскопии, ЯМР, рентгено-электрон-ной спектроскопии и ЭПР. Применение масс-спектроскопии, флуо-риметрии настолько разнообразно и широко, что краткое обсуждение их вряд ли целесообразно.[ ...]

В анализируемых сточных водах должны определяться: содержание компонентов, специфичных для данного вида производства (фенолов, нефтепродуктов, поверхностно-активных, ядовитых, радиоактивных, взрывоопасных веществ); общее количество органических веществ, выражаемое БПКшш и ХПК; активная реакция; интенсивность окраски; степень минерализации; наличие биогенных элементов и др. В зависимости от технологии производственных процессов анализ состава сточных вод производится по разовым часовым, среднесменным и среднесуточным пропорциональным пробам; следует также составлять графики колебания концентраций наиболее характерных загрязнений по часам смен, суток, дням недели. Необходимо установить такие параметры, как кинетика оседания или всплывания механических примесей и их объем, возможность коагулирования сточных води др. Эти данные позволяют выбрать наиболее целесообразный и экономически обоснованный метод очистки сточных вод для определенного предприятия.[ ...]

При изучении химического состава вод определяют содержание минеральных, газовых и органических компонентов. Среди минеральных компонентов, как правило, анализируют содержание кальция, магния, натрия, калия, хлор-, сульфат-, карбонат- и бикарбонат-ионов и некоторых микрокомпонентов - стронция, бария, иода, брома, бора, азота, иногда лития и радиоактивных элементов. При этом используют обычные комплексонометриче-ские (трилонометрические) методы, пламенную фотометрию, а также классические титриметрические и гравиметрические методы анализа. Содержание основной массы неорганических веществ в подземных водах измеряется десятками и сотнями граммов, микрокомпонентов - десятками и сотнями миллиграммов на литр исследуемой воды.[ ...]

Наиболее сложным является анализ содержащихся в воде органических веществ, от состава и количества которых во многих случаях зависят санитарно-гигиенические качества воды.[ ...]

В основу хроматографического анализа окрашенных органических веществ, содержащихся в высокоцветных водах, положено различие в адсорбционной активности гумусовых веществ, отличающихся по составу и строению, а также их способность переходить в раствор при определенных значениях pH среды. При подборе деталей установки преследовалась цель обеспечить бесперебойную круглосуточную работу хроматографической колонки, что особенно важно при разделении веществ, близких по составу и свойствам.[ ...]

Из сказанного следует, что при анализе вод, имеющих в своем составе азотсодержащие органические вещества, значение ХПК, полученное при использовании метода с КгБгОв, будет выше (за счет образования нитратов), чем при использовании обычного метода с К2СГ2О7. Для отличия первую величину целесообразно обозначить символом ХПКМ0 -Она отвечает тому химическому поглощению кислорода, которое произошло бы при очистке сточных вод в биохимических сооружениях, если бы процесс доводили до полной нитрификации азотсодержащих веществ.[ ...]

Рассмотрены некоторые возможности анализа состава естественных водных сред методом дистанционной лазерной флуориметрии. Обсуждается определение концентрации нефтепродуктов в воде, определение нефтей на фоне растворенного органического вещества, приводятся конкретные схемы лидаров и лабораторного оборудования для лазерного анализа.[ ...]

Кроме показателей общего содержания органически х веществ, таких, как ХПК, ВПК, нефтепродукты, для оценки состава производственных сточных вод часто возникает необходимость определить концентрацию индивидуальных примесей, если эти примеси отрицательно влияют на процесс очистки. Задача эта очень сложна. Трудности определения индивидуальных веществ обусловлены непостоянством состава стоков, малыми концентрациями компонентов, одновременным присутствием многих разнохарактерных веществ, взаимно влияющих и затрудняющих избирательное определение. Для решения этой сложной задачи широко используются современные физико-химические методы исследования - фотоколоримстрпя, газожидкостная хроматография, осциллополярография, люминесцентный анализ в сочетании с экстракцией, отгонкой и хроматографическим разделением в тонком слое.[ ...]

При общей очистке стоков с переменным составом неэффективно использовать специфические сорбенты, обладающие селективными свойствами. Так, если очистку общих стоков химического предприятия ведут на сугубо микропористом ГАУ, обладающем хорошей емкостью по ароматическим соединениям, то в первый период работы на АУ извлекается 70-80% органических веществ, а при изменении состава сточных вод - лишь 20- 40% загрязнений. Фирмой Са оп Согр. выполнен большой статистический анализ 222 случаев сорбционной очистки на АУ промышленных стоков 68 производств 15 отраслей. Оказалось, что в 5 случаях из 8 содержание общего органического углерода (ООУ) снижалось более чем на 90%, и лишь в двух менее чем на 85%; в 6 случаях из 7 цветность снижалась более чем на 95% и лишь в одном - менее чем на 90%. В целом, в 4/9 проб исходное содержание ООУ было выше 100, но менее 1000 мг/дм3, и в стольких же выше 1000 мг/дм3.[ ...]

При исследовании смесей неизвестного состава задачи идентификации упрощаются применением специфического концентрирования, позволяющего выделять отдельные классы органических соединений. Идентификация отдельных компонентов внутри класса более легко достигается при использовании различных зависимостей, связывающих хроматографические характеристики (время, объемы удерживания) с физико-химическими свойствами веществ внутри ряда (температура кипения, молекулярный вес). Выделение отдельных классов при концентрировании часто связано с первоначальным более или менее селективным накоплением (перегонка, экстракция, вымораживание и т. д.). Поэтому разработка общих схем систематического анализа органических компонентов вод имеет существенное значение для выбора наиболее рационального пути концентрирования, с использованием элементов этих схем при решении отдельных задач . Дополнительные возможности для идентификации дает метод аналитической реакционной хроматографии, который использует химические превращения анализируемых веществ в хроматографической схеме .[ ...]

Известно, что при проведении химического анализа природных вод, сформированных в естественных условиях или в условиях наложенного техногена, для установления их состава, правильного соотношения присутствующих в них компонентов, используют результаты анализа, проведенного на месте отбора или в течение первых часов после отбора пробы. Это в первую очередь касается определения неустойчивых компонентов: растворенного кислорода (Оо), гидрокарбонатов (НСО3), нитратов (МО3), аммонийных ионов (МНр, железа (F [ ...]

Степень биохимического окисления многих органических соединений, загрязняющих сточные воды, невысока. Степень биохимического окисления серу- и азотсодержащих соединений весьма различна - от 0,02 до 0,95. Причем анализ реального состава сточных вод в канализационных коллекторах ряда промышленных районов указывает на высокое содержание в них консервативных загрязнений (БПКп/ХПК от 1/6 до 1/15) .[ ...]

Таким образом, дикарбоновые кислоты и сточная вода поступают в слабо турбулизирующий газовый поток, где процесс горения еще не закончился и сохраняются худшие условия для перемешивания паров органических веществ с кислородом воздуха. Создаются условия для еще большего затягивания горения и активизации его в конвективном газоходе. Наблюдались случаи, когда факел достигал скрубберов, где, вследствие резкого охлаждения дымовых газов орошающей водой, происходила закалка несгоревшей части органических соединений. При этом температура газов в верхней зоне была ниже, чем перед скрубберами, и, хотя в составе топочных газов СО не обнаруживалась, анализы скрубберной воды и дымовых газов показывали наличие в них органических соединений.[ ...]

Инфракрасная спектроскопия более пригодна для анализа неорганических газов и органических компонентов в воде, чем для определения металлов. Так как для значительного числа чисто неорганических твердых веществ известны инфракрасные спектры, то этот метод можно использовать для установления состава осадков, полученных при упаривании воды.[ ...]

Для определения чрезвычайно лабильных и разнообразных по составу органических веществ природных вод весьма перспективны систематические схемы анализа, включающие фракционирование сорбционными методами и сочетающие разделение по химической природе с разделением по размерам молекул . Для разделения органических веществ, обладающих сродством к ионным и водородным связям, успешно применяют сорбенты с гидрофильной матрицей (ионообменные целлюлозы и сефадексы). В отличие от ионообменных смол, целлюлозы представляют собой агрегаты полисахаридных цепей, хорошо проницаемых даже для очень больших ионов. Рыхлая структура целлюлозы, высокая дисперсность, сорбция преимущественно по поверхности обусловливают быстроту процессов сорбции и десорбции. Хорошо проницаемы для крупных молекул также нейтральные и ионообменные сефадексы.[ ...]

Сконцентрированные в ловушках (патроны и диски) загрязняющие воду примеси токсичных веществ обычно элюируют органическими растворителями (см. разделы 2.3.1 и 2.3.4). При этом выбор растворителя зависит от свойств сорбента, характера и природы матрицы (сточные, природные, питьевые воды и др.), состава и количества загрязнений и цели исследования (арбитражный анализ, экологическая экспертиза, рутинные анализы, определение отдельных наиболее важных приоритетных загрязнений, анализ представительной пробы, скрининг целевой и нецелевой и т.п.).[ ...]

Как в первой серии опытов (с добавкой 20% хозяйственнофекальных сточных вод), так и в данных был составлен общий баланс процесса. Анализ данных баланса показал, что в течение 28 суток через аэротенк прошло 377 л стоков с содержанием кислорода 19 г по фильтрованной пробе и 24,5 г по нефильтрованной. Таким образом, при средней нагрузке 271 г/м3 - сутки по фильтрованной и 350 г/м3- сутки по нефильтрованной пробе эффект очистки по БПК5 составил 96,2-94,8%; при этом разрушение органических веществ составило 260- 331 г/м3-сутки 02.[ ...]

В заключение можно сказать, что решение задачи определения индивидуальных органических соединений по существу сводится к разработке некоторого общего метода систематического анализа природных вод для определения органических компонентов . Этот метод может иметь несколько вариантов, применяемых в зависимости от состава анализируемой воды и от допустимых потерь тех или иных веществ. При изучении состава органических веществ параллельно с компонентным анализом необходимо иметь данные о содержании неорганических микро- и макрокомпонентов и органического углерода, о цветности воды, что позволит дать оценку методам выделения и определения отдельных групп органических соединений .[ ...]

Применявшийся раньше метод перманганатного окисления совершенно не пригоден для анализа сточных вод (в анализе природных вод его еще используют). Перманганат - недостаточно сильный бйбслитель: окисление органических веществ проходит неполно и многие из них совсем не окисляются. Кроме того, при кипячении растворов, содержащих избыток перманганата, последний в значительной мере разлагается с образованием диоксида марганца и кислорода. Это разложение происходит как в кислой, так и в щелочной среде. Выпадающий диоксид марганца каталитически ускоряет процесс. Количество образующегося осадка различно в зависимости от условий и состава пробы. Поправка на холостой опыт здесь невозможна, так как при проведении холостого определения осадок диоксида марганца обычно совсем не выпадает.[ ...]

К сожалению, на данный момент можно констатировать малую доступность СО природных вод для аналитиков-практиков, особенно в России из-за отсутствия отечественных образцов. К тому же образцы природных вод нередко различаются по минеральному составу ввиду сезонной и временной динамики, а также в зависимости от места отбора пробы . Другими словами, даже сертифицированный СО природной воды не всегда идентичен по минеральному и органическому составу анализируемой пробе. По этой причине в аналитических лабораториях широко применяют унифицированные методы анализа, основанные на применении более простых СО, например, водные растворы солей. Однако упрощение калибровки не упрощает, а скорее усложняет саму процедуру создания методики анализа. На этой стадии необходимо выявить все возможные влияния макро- и матричных компонентов, а также найти способ их устранения или учета, например, путем разделения микро- и макроэлементов с применением экстракции, сорбции и других методов или путем введения макрокомпонентов в образцы сравнения на уровне, соответствующем его содержанию в пробе.[ ...]

Содержание азотсодержащих соединений нитратов, аммонийного азота) в исследованных водах за период наблюдении определялось в концентрации, в несколько раз ниже предельно допустимой (ПДК - 45 мг/л) для питьевой воды. Анализ динамики изменения содержания азотсодержащих соединений в воде, обработанной прибором с активной водой, и в контрольной (после контакта с «плацебо») воде показал, что в течение срока наблюдений среднее отклонение опытных данных от контрольных составляло для нитратов - 1,46 мг/л, а для аммонийного азота - 0,035 мг/л, т.е. понижение концентрации нитратов и повышение количества аммонийного азота относительно их среднего содержания в воде является существенным и равно 27 и 22,4% соответственно (относительно контрольных величин). Отклонение от средних контрольных значений для показателей ВПК, органического углерода, перманганатной окисляемости составило 30,3%, 13,1% и 7% соответственно.[ ...]

В загрязненных водных объектах и водах [ ...]

Бихромат калия наиболее полно окисляет вещества, содержащиеся в промышленных сточных водах, особенно при использовании серебра в качестве катализатора. В результате анализа определяется суммарное количество кислорода, которое затрачивается на окисление углеродсо ержащих веществ до двуокиси углерода, серусодержащих - до сульфатов, фосфорсодержащих - до фосфатов. Кислород, который содержится в составе некоторых органических соединений, в величину ХПК не входит.[ ...]

Таким образом, расчет сооружений для биохимической очистки должен производиться с учетом состава производственных сточных вод при определении всей суммы органических загрязнений, выражаемой полной биохимической потребностью в кислороде. Для этого необходимо знать величину БПКполн, а также ХПК производственных сточных вод, которая определяется по данным анализов.[ ...]

Промывка должна быть интенсивной и равномерной, осуществляться быстро и с минимальной затратой воды. После нее в песке не должно оставаться скоплений комочков грязи, плохо промытых участков, а при анализе песка не должно обнаруживаться изменения химического состава в результате обволакивания его неотмытыми органическими и минеральными отложениями. Качество промывки зависит от интенсивности и равномерности распределения промывной воды, времени промывки и условий отвода воды.[ ...]

Последние публикации подтверждают возможность получения качественно новой геологической информации, особенно на основе данных о молекулярном составе органических веществ подземных вод. Важнейшими направлениями в области анализа органических веществ вод являются инструментализация и автоматизация методов. К одной из таких задач относится создание и внедрение в практику специальных анализаторов для определения органического углерода, азота, а также анализаторов для селективного определения отдельных компонентов или групп веществ. Серьезных успехов следует ожидать от внедрения различных видов хроматографии, особенно инструментальной (газовой и жидкостной хроматографии), а в дальнейшем - хроматомасс-спектрометрии для определения молекулярного состава органических соединений.[ ...]

Опубликованы данные по убыли кислорода и снижению ХПК первичного стока четырех очистных сооружений Калифорнии. К сожалению, ничего не сообщается о составе стоков. Было найдено, что выход убыли кислорода составляет 2,8 молекул/100 эв, даже при введении катализирующих добавок, таких, как Т 03 , Ре2+ + Н202 и Н202. Снижение ХПК измерялось при различных режимах проведения облучения: в отсутствие кислорода (насыщение азотом), при предварительном насыщении воздухом или кислородом и при барботаже воздуха во время облучения. В последнем случае С(-02), рассчитанный по изменению ХПК, равняется 10 эке/100 эв. Анализы по общему углероду показали, что около половины органических соединений разлагается до С02 и воды. Цепные процессы окисления обнаружены не были.[ ...]

По сравнению с первым изданием (1958 г.) книга значительно переработана и расширена. Наибольшее число дополнений внесено в раздел, посвященный методам определения органических веществ в промышленных сточных водах (раздел увеличен примерно в три раза), но, конечно, и это далеко не может удовлетворить острой потребности в таких методах анализа. Определение малых количеств органических веществ, присутствующих в сложных комбинациях, в сложных по составу смесях, какими являются производственные сточные воды - задача, пока еще далеко не решенная, и для анализа сточных вод многих производств мы еще не располагаем надежными методами.[ ...]

Среди выявленных представителей семейства преобладают литораль-но-эпифитные водоросли (16 таксонов), обитающие в прибрежной зоне. По отношению к содержанию солей в воде основная часть состава семейства Fragilariaceae в данных водотоках приходится на индифферентные диатомеи (24 вида с разновидностями). Основной экологической группой по отношению к pH являются алкалифильные диатомовые (26 таксонов). Сапробиологический анализ показал преобладание диатомовых водорослей (13), характерных для вод с умеренным загрязнением легкоокисляе-мыми органическими веществами. Соотношение экологических групп со-ответствуетхимическому составу вод исследованных водотоков. Среди био-географических групп первое место занимают космополиты (27 видов с внутривидовыми таксонами). Выявлены редкие виды.[ ...]

Следует отметить, что ранее с использованием фотометрических методов было получено большое количество аномально высоких и, как правило, некорректных результатов по содержанию ртути в незагрязненных природных водах . Следовательно, необходимо очень осторожно применять эти методы для анализа ртути, а также интерпретировать данные по ее содержанию, полученные с их использованием. Обзоры фотометрических и экстракционно-фотометрических методов определения ртути приведены в . В обзоре , рассматривающем развитие фотометрических методов за 20 лет (1971-1991 гг.), в табличном виде приведены характеристики используемых органических реагентов, их аналитические свойства, сведения по селективности методов, мешающие компоненты. В зависимости от характеристик и состава анализируемых объектов можно выбрать наиболее подходящий метод анализа. Авторы обзора делают вывод, что большинство разработанных фотометрических методик определения ртути недостаточно избирательны вследствие неспецифичности функционально-аналитических групп применяемых реагентов и проведения комплексообразования в щелочной среде. Поэтому для фотометрического определения ртути перспективны направленный синтез органических реагентов, образующих устойчивые комплексы с ртутью в сильнокислых средах, и разработка высокочувствительных методов на их основе .[ ...]

Геохимическое опробование снежного покрова проводилось в течение нескольких лет (1992-1995 гг.) на территории нескольких промышленных городов области (Новый Уренгой, Сургут, Тюмень), в поселках, возникновение которых связано со строительством компрессорных станций (КС) на магистральных трубопроводах. Для сопоставления проводилось исследование состава снежного покрова в ненарушенных, т.е. фоновых условиях. Исследованиями были охвачены различные природные зоны - от типичных тундр (п-ов Ямал) до границы таежной и лесостепной зон (г. Тюмень, КС “Богандинская“). Отбор проб и подготовка к анализу проводились по методике мониторинга снежного покрова [Василенко и др., 1985]. В талой снеговой воде определялись: основные гидрохимические показатели, содержание тяжелых металлов методом атомно-адсорбционной спектрофотоме-трии, содержание ряда органических соединений, используемых в технологических процессах на КС (метанол, этиленгликоль, фенол), а также ароматические углеводороды (бензол, этилбензол, толуол и др.). Математическая обработка полученных результатов включала вычисление стандартных статистических параметров, корреляционный и факторный анализы. По материалам опробования строились картосхемы (методом изолиний), отражающие пространственное распределение загрязнителей по территории исследуемых городов и КС. При оценке уровня экологической опасности загрязнения использовались предельно допустимые концентрации для природных водоемов.[ ...]

В основном в пробах были отмечены планктонные и факультативно-планктонные формы водорослей, однако достаточно большую долю диатомовых составляют обрастатели, бентосные и эпифитные формы. В экологогеографическом отношении водоросли планктона прудов были представлены широко распространенными видами, обитающими в пресных водоемах и предпочитающими нейтральные или щелочные воды. Виды-космополиты преобладали в списке водорослей и составляли в зависимости от типа водоема 42-75 % от общего числа. По шкале сапробности число водорослей-индикаторов органического загрязнения составило в среднем 35-43 % от общего количества видов по водоему. Среди них значительное положение занимали (3-мезосапробы (20-34 % от общего количества видов в водоеме) и олиго-

Водохранилища - искусственно созданные водоемы различных размеров - приобретают в настоящее время большое народнохозяйственное значение, позволяя решать важные проблемы энергетики, промышленности, транспорта, сельского хозяйства. Заселение водохранилищ ценными породами рыб (рис. Формирующийся в конкретных условиях данного водохранилища химический состав воды определяет пригодность ее использования для намеченных целей, а также условия жизни рыб, противокоррозионную устойчивость гидротехнических сооружений и многое другое. Игнорирование этого вопроса может привести к тяжелым, трудно исправимым последствиям. Процесс формирования химического состава воды в водохранилищах протекает особенно интенсивно в первоначальный период их существования. В результате затопления новых площадей суши, представляющей леса, луга, пашни, болота, происходит смыв в водохранилища большого количества растворимых органических и минеральных веществ, отмирание и разложение растительности, формирование новых грунтов дна водохранилища при интенсивном взаимодействии растворенных в воде ионов и газов с почвами. Этот период первичного формирования химического состава воды для различных водохраниг лищ протекает в различные промежутки времени (порядка нескольких лет), а затем в водохранилищах устанавливается свойственный им режим, близкий к озерному, Переход от речного режима к озерному сопровождается изменением гидрологических и биологических условий: повышается температура воды, усиливается испарение, увеличивается прозрачность, более интенсивно развиваются планктон и водная растительность. Все это может привести к существенным изменениям гидрохимического режима. Точный анализ возможных изменений представляет значительные трудности, и прогнозы гидрохимических особенностей создаваемых водохранилищ могут быть даны лишь в предварительной общей форме, на основе учета рассмотренного выше влияния физико-географических условий и водного режима на гидрохимический режим водоемов.

Методы анализа, разработанные для поверхностных пресных и соленых вод, применимы, несомненно, и для анализа других водных объектов, в том числе грунтовых и лизиметрических вод, почвенных растворов и вытяжек.

Аналитическая процедура определения содержаний элементов в водах различного состава включает несколько стадий:

Пробоотбор;

Пробоподготовку;

Собственно инструментальный анализ.

В зависимости от концентраций определяемых элементов и возмож­ностей инструментальной техники вышеперечисленные стадии могут быть усложнены введением дополнительных этапов, связанных с консервацией анализируемых образцов, предварительным концентрированием элементов и модернизацией оборудования (например, введением дополнительных приспособлений для ввода пробы, перевода из одного агрегатного состо­яния в другое и т.д.).

Пробоотбор и пробоподготовка как важнейший этап анализа. Отбор пробы воды следует рассматривать как стадию, в значительной степени определяющую правильность последующего анализа, причем ошибки, допущенные в процессе пробоотбора, в дальнейшем не могут быть исправлены даже самым квалифицированным аналитиком. Место и усло­вия отбора пробы воды в каждом случае определяют конкретными задачами исследований, однако основные правила отбора проб носят общий ха­рактер:

Проба воды, взятая для анализа, должна отражать условия и место отбора;

Отбор пробы, ее хранение и транспортировка должны исключать возможность изменения ее первоначального состава (содержаний опре­деляемых компонентов или свойств воды);

Объем пробы должен быть достаточным для проведения анали­тической процедуры в соответствии с методикой.

Отбор проб воды. Отбор проб воды может быть разовым и серийным. Разовый отбор обычно применяют для получения первоначальной информации о качестве ана­лизируемой воды. Принимая во внимание изменяющийся во времени и пространстве состав анализируемых вод, более оправдан серийный отбор, который проводят либо с разных глубин источника, либо в различные моменты времени. При таком отборе можно судить об изменении качества воды во времени или в зависимости от ее расхода.

По своему виду пробы бывают простыми и смешанными. Простая проба обеспечивается путем однократного отбора всего требуемого для анализа количества воды, при этом полученная информация отвечает составу в данной точке в данный момент времени.Смешанную пробу получают путем сливания простых проб, отобранных в разные промежутки времени или в различных точках, характеризуя таким образом усреднен­ный состав воды. Если пробу отбирают из открытого водотока, необходимо соблюдать условия, при которых она будет типичной: лучшие места для пробоотбора - бурные участки, где происходит более полное смешение. При отборе пробы сточной воды нужно соблюдать следующие условия:

Скорость отбора не менее 0,5 м/с;

Диаметр отверстия пробоотборника не менее 9-12 мм;

Высокая турбулентность (в случае отсутствия создают искусственно).

При отборе пробы питьевой воды необходимо предварительно спустить воду в течение 15 мин при полностью открытом кране. Перед закрытием сосуда пробкой верхний слой воды сливают так, чтобы под пробкой оставался слой воздуха объемом 5-10 см 3 .

Для отбора и хранения проб используют посуду из стекла, полиэтилена, тефлона. Для определения ультрамикроконцентраций элементов идеальным материалом для отбора и особенно для хранения проб является новый полимер политетрафтор-алкокси-этилен (PFA). Его главные преимущества по сравнению с тефлоном, применяющимся в аналитической химии микро­элементов, - высокая гидрофобность и практически полное отсутствие внутренних пор, а значит и отсутствие эффекта "памяти".

Консервация и хранение. Отобранная проба природной воды представляет собой двухфазную сис­тему, состоящую из раствора и взвешенного вещества. Чтобы избежать потерь микроэлементов за счет биохимических процессов и сорбции на стенках сосуда пробу после фильтрования консервируют, в отдельных случаях даже нефильтрованные образцы, если это согласуется с задачей исследования.

Для консервирования металлов, как правило, применяют подкисление образца азотной кислотой до рН < 2, причем во избежание загрязнения пробы микроэлементами во время консервации кислоту пред­варительно очищают суббойлерной перегонкой.

Пробы питьевой воды консервируют лишь в том случае, если не­возможно провести анализ в день отбора.

Сложно консервировать сточные воды, так как введение консерванта может привести к побочным процессам, осложняющим анализ. В ряде случаев биохимические процессы в пробах сточных вод могут быть замедлены охлаждением и хранением при 3 - 4"С. Последнее эффективно и для проб природных вод.

Следует отметить, однако, что несмотря на приведенные рекомендации по отбору проб воды, доля погрешности пробостбора в общей погрешности анализа может достигать 80% и более. Повышение точности анализа может быть достигнуто средствами мобильного анализа.

Качественный анализ воды в обязательном порядке проводят перед вводом источника в эксплуатацию. Вода должна отвечать требованиям СанПиН 2.1.4.1175-02, соответствовать нормативам по микробиологическим, органолептическим, химическим показателям. Помимо исследования на начальном этапе, рекомендуют периодически проводить анализ качества воды в уже эксплуатируемом источнике, чтобы узнать, не произошло ли загрязнения, неопределимого на глаз, и принять меры, если оно произошло (анализ не только покажет состав жидкости, но и позволит установить причины его изменения).

Согласно СанПиН 2.1.4.1175-02 вода должна соответствовать 16-ти нормативам: делая обычный качественный анализ, проверяют именно эти 16 параметров. Надо понимать, что отклонение хотя бы от одного из допустимых значений делает воду непригодной для употребления. Существует еще расширенный анализ природной воды (проверяют 25 показателей), он необязательный, но дорожащие своим здоровьем и здоровьем близких предпочитают широкое исследование, поскольку колодцы находятся в группе риска по причине малой глубины.

Параметры разделены на три группы:

  1. Микробиологические.
  2. Органолептические.
  3. Химические.

Это три отдельных исследования, проводимых в процессе анализа качества воды.

Микробиологические параметры природной воды

Микробиологические параметры - наличие/отсутствие в воде колиформных бактерий и образующих колонии микробов. Колифаги, бляшкообразующие единицы, общие и термотолерантные колиформные бактерии должны отсутствовать (гепатит А, дизентерия и другие заболевания зачастую возникают из-за плохой воды). Допустимое наличие микробов ничтожно - 100/мл.

Результат микробиологического анализа

Органолептические параметры природной воды

Органолептические параметры воды - это ее качества, воспринимаемые органами чувств (вкус, зрение, осязание, слух): запах, мутность, привкус, цвет.

Если вода стала рыжей, в ней переизбыток железа (как вариант), и это видно невооруженным глазом. Однако до такого состояния лучше не доводить: незначительный окрас может быть глазу не виден, но организм будет получать повышенную дозу железа, причем уже окисленного. То же касается мутности. Запах и привкус - более определяемые параметры.

Запах

Воде придают запах различные жидкие и органические вещества природного и искусственного происхождения. Болотный, гнилостный, серный - природные «ароматы». Источник запаха - продукт жизнедеятельности анаэробных бактерий, обитающих в глиняном осадке на дне колодца. Запах искусственного происхождения создают нефтяные, фенольные, хлорные и другие примеси. Параметр оценивают по пятибалльной шкале. Допустимое значение - максимум 3.


Мутность

Это параметр, зависящий от наличия и количества мелкодисперсных взвесей. Мутность не всегда можно определить визуально (видно, когда содержание нерастворимых частиц в воде уже зашкаливает), но при проведении анализа природной воды ее оценивают по сухому остатку после фильтрации. Еще один метод определения мутности - фотометрия (оценивают качество прошедшего сквозь воду светового луча).

Причина возникновения мутности - повышение концентрации различных примесей: в основном это глина и ил. Для колодезной воды характерно сезонное повышение мутности, когда талые и ливневые воды подмывают грунт. Реже вода мутнеет от повышенного уровня железа и гумуса.


При проведении качественного анализа обязательно оценивают цветность и мутность воды

Привкус

Горький, кислый, сладкий, соленый - это вкус. Все остальное - привкусы: аммиачный, металлический, хлорный и прочие. Определяют по наличию примесей (на вкус не пробуют), в том числе и при нагреве (при высоких температурах наблюдают усиление эффекта). В оценке используют пятибалльную шкалу (максимум 3 балла допустимо). Основная причина превышения допустимых значений - промышленные загрязнения.

Цвет

Вода принимает различные оттенки в зависимости от находящихся в ней веществ. Появление коричневатого или желтого оттенка свидетельствует о повышенном содержании железа. Торфяные отложения также окрашивают воду в желтый. Глина придает красноватый оттенок. Ни одна из этих примесей не безопасна, а существует еще множество других. Чтобы выявить причину изменения цвета и принять соответствующие меры (правильно выбрать очистные фильтры), нужно сделать качественный анализ природной воды.

Химические параметры природной воды

Химические параметры показывают не только содержание веществ искусственного происхождения, но и естественного (кальций, магний). Качественный анализ природной воды определяет уровень содержания элементов, концентрацию органических и неорганических веществ. К химическим параметрам относятся:

  1. Водородный показатель.
  2. Жесткость.
  3. Содержание нитратов (NО3).
  4. Минерализация воды (общая).
  5. Перманганатная окисляемость.
  6. Содержание сульфатов (SO4(2-)).
  7. Содержание хлоридов (CL(-)).
  8. Концентрация органических, неорганических химических веществ.

Жесткость

Жесткой воду делают соли кальция и магния, превращающиеся в нерастворимые под воздействием температур. Жесткость воды - причина образования отложений в трубах и котлах, накипи на стенках бытовых приборов (чайник, стиральная машина, посудомоечная машина и др.). Кальций и магний оказывают влияние на работу сердечно-сосудистой и мочеполовой систем организма человека, поэтому их содержание в воде жестко нормируется.

Сухой осадок состоит из органических элементов; растворенных в воде неорганических солей. При контакте с кислородом растворимые соединения окисляются и выпадают в осадок, принимая нерастворимую форму. Основная причина осадка - железо, марганец (их высокое содержание). В процессе качественного анализа воды определяют состав осадка и количественный показатель: он не должен превышать 1500 мг/л.

Водородный показатель

Водородный показатель измеряют в единицах рН (в норме: от 6 до 9). Отклонения свидетельствуют о превышении/недостаточности допустимого содержания щелочей и кислот в воде. При недостаточном уровне рН вода кислотная, при повышенном - щелочная.


Как сделать качественный анализ воды

Качественный анализ воды проводят в специальных лабораториях. Точность анализа зависит не только от реагентов, четкого соблюдения порядка процедуры и лабораторного оснащения, но и от грамотного забора проб. Соблюдайте следующие правила:

  • емкость для забора воды нужно простерилизовать;
  • объем емкости - минимум 1 л;
  • нельзя использовать бутылки из-под сладкой газированной воды (это исказит результаты);
  • для проведения микробиологического анализа нужно забрать образец как можно быстрее, чтобы бактерии из воздуха не испортили пробу;
  • отобранную воду необходимо доставить в лабораторию в течение суток.


Всего три шага для получения качественного анализа

Доводить до ситуации, когда уже можно визуально сделать анализ воды, определив на глаз ее непригодность, не стоит. Даже если отбросить законодательство и все остальные умные тезисы, останутся голые факты:

  1. Соли фтора провоцируют развитие флюороза и кариеса.
  2. Молибден повышает содержание кислоты в крови, моче.
  3. Ртуть поражает ЦНС.
  4. Нейротоксический алюминий, с его устойчивой тенденцией к накоплению, поступая в печень и головной мозг, расстраивает их функции.
  5. Мышьяк провоцирует развитие онкологических заболеваний.

Каждый элемент, присутствующий в организме - барий, бериллий, железо, марганец, медь и др. - при повышенном содержании в воде превращается в яд. И это лишь безопасные, в принципе, элементы, но ведь есть еще и бактерии, и промышленные загрязнения.

Анализ можно сделать самостоятельно, но он лишь определит наличие примесей, их приблизительную количественную характеристику, но не качественную составляющую. Например, определенное содержание железа неопасно, но ртуть в том же количестве - яд. Отдавать воду на проведение профессионального анализа рекомендуют даже разработчики тестов, показывающих наличие металлов в жидкости.

Видео: анализ воды на тяжелые металлы в домашних условиях

Анализ можно сделать самостоятельно, но он лишь определит наличие примесей, их приблизительную количественную характеристику, но не качественную составляющую.

Например, определенное содержание железа неопасно, но ртуть в том же количестве - яд.

Отдавать воду на проведение профессионального анализа рекомендуют даже разработчики тестов, показывающих наличие металлов в жидкости.

Как определить качество природной воды? Для этого нужно провести анализ природной воды. Разновидности методов определения состава воды, их особенности. Экспресс методы изучения природной воды. Альтернативные методики тестирования. Приборы для быстрого анализа в разных условиях.

Не знаете, как определить качество природной воды? Главными показателями её качества являются жёсткость, прозрачность, щёлочность и окисляемость. Но для этого нужно провести анализ природной воды.

Разновидности анализов

На сегодняшний день в России действует система анализа, которая базируется на изучении микробиологических и химических характеристик жидкости и дальнейшем сравнении полученных данных с нормативными значениями.

Первый вид мероприятий позволяет выявить жёсткость воды, присутствие сухого содержимого, а также найти количество других веществ природного происхождения и элементов, попавших в жидкость во время проведения водоподготовительных процедур.

Три следующие методы позволяют найти в воде даже минимальное количество канцерогенного и мутагенного содержимого (ртути, пестицидов, сурьмы, ароматических углеводов, цианидов, различных летучих смесей и т.п.).

Радиационный контроль природных вод позволяет определить суммарную активность элементов, а так же, если требуется, выявить радионуклеидный состав вредных примесей.

Как правило, анализ воды выполняется в несколько этапов:

  1. Сокращённый этап анализа жидкости.
  2. Комплексный химический анализ.
  3. Проведение исследований жидкости по отдельным группам показателей.

Обычно чтобы определить качество природной воды, достаточно сокращённого анализа. Однако иногда приходится выполнять комплексный химический анализ либо проводит тестирование отельных показателей.


Анализ природной воды: экспресс методики

Помимо органолептических характеристик воды (запаха, привкуса) с помощью аппаратного обеспечения можно проводить гидромониторинг состава воды. Также можно выполнять экспресс тестирование.

Сегодня для этих целей могут применяться такие методики анализа природной воды:

  • Потенциометрия
  • Титрометрия
  • Турбидиметрия
  • Спектрофотометрия
  • Кондуктометрия
  • Нефелометрия
  • Пламенная фотометрия и обычная
  • Флюорометрия
  • Газовая хроматография

Использование данных методик позволяет определить:

  1. Физические характеристики воды. Её кислотность и жёсткость.
  2. Химический состав, то есть количество элементов железа, нитратов, хлора, наличие частиц тяжёлых металлов. На данном этапе можно определить перманганатную окисляемость воды.
  3. Токсикологический состав жидкости, а именно показатель ПКД.

Конечно, самый быстрый анализ воды может провести каждый из нас самостоятельно. Например, попробовав на вкус воду из наших водопроводов, вы точно ощутите присутствие хлора, выпив дачной воды, можно по вкусу с уверенностью сказать, что в составе есть железо. А если долго отстаивать воду, то на дне тары образуется белый осадок, говорящий о примесях солей. Однако такие методики тестирования очень субъективны, поэтому есть риск ошибиться. Чтобы безошибочно вычислить, можно пить воду или нет, нужно провести анализ питьевых и природных вод.


Альтернативные методики тестирования воды

Анализ природных и сточных вод можно выполнить, используя бактериологические, химико-физические и биологические методы оценки качества. Каждый из этих методов имеет свои плюсы и минусы.

  1. Физико-химический метод позволяет изучать химические и физические характеристики жидкости в нужный временной промежуток, а также отслеживать взаимодействие этих показателей между собой. Преимуществом метода является высокая точность результатов при минимальной погрешности. Недостаток: метод позволяет исследовать только абиотические показатели жидкости, что не даёт полной картины.
  2. Бактериологические методы выявляют качество воды на основании наличия в ней патогенных микроорганизмов. Плюсы методы: высокая точность, возможность широкого применения. Недостатки: методику можно использовать только в стерильной лабораторной среде. Отобранные пробы воды необходимо хранить в определённых условиях. Для проведения анализа нужен специалист врач-бактериолог и лаборант.
  3. Биологические методы дают возможность исследовать показатели, которые на первом этапе выявить невозможно. Данный метод помогает определить санитарное состояние жидкости, уровень и вид загрязнения, степень его распространения в водоёме. Также с помощью этого метода можно охарактеризовать протекание процессов самоочищения. Минусы: требуется провести забор множества проб в разных местах. Всё это займёт много времени. Понадобится привлечь специалиста-гидробиолога. Ограничения в сезоне. Невозможно отследить быструю смену уровня загрязнения водоёма.


Приборы для анализа природной воды

Для проведения химического анализа природных и сточных вод можно использовать различные портативные приборы, которые подходят для использования в разных условиях. Обычно такие приборы идут в комплекте с требуемыми реагентами, приспособлениями (компактными фотоколориметрами, спектрофотометрами) и индикаторами. Например, приборы CHEMetrics.

Данный агрегат имеет всё, что нужно для проведения тридцати разновидностей анализов жидкости. Точность прибора довольно высокая. Он имеет самозаполняемые капсулы для проб воды. Продолжительность анализа – пять минут.

Прибор позволяет определить 5 главных показателей качества воды:

  1. Химические характеристики.
  2. Органолептические.
  3. Токсикологические.
  4. Микробиологические.
  5. Общие.

Хотите заказать анализ воды? Звоните, по телефонам указанным на сайте, наши специалисты проведут забор воды и все необходимые анализы.